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Abstract
Symbolic music generation aims to create musical
notes, which can help users compose music, such
as generating target instrument tracks based on pro-
vided source tracks. In practical scenarios where
there’s a predefined ensemble of tracks and various
composition needs, an efficient and effective gen-
erative model that can generate any target tracks
based on the other tracks becomes crucial. How-
ever, previous efforts have fallen short in address-
ing this necessity due to limitations in their mu-
sic representations and models. In this paper, we
introduce a framework known as GETMusic, with
“GET” standing for “GEnerate music Tracks.” This
framework encompasses a novel music represen-
tation “GETScore” and a diffusion model “GET-
Diff.” GETScore represents musical notes as to-
kens and organizes tokens in a 2D structure, with
tracks stacked vertically and progressing horizon-
tally over time. At a training step, each track of a
music piece is randomly selected as either the target
or source. The training involves two processes: In
the forward process, target tracks are corrupted by
masking their tokens, while source tracks remain as
the ground truth; in the denoising process, GETDiff
is trained to predict the masked target tokens con-
ditioning on the source tracks. Our proposed repre-
sentation, coupled with the non-autoregressive gen-
erative model, empowers GETMusic to generate
music with any arbitrary source-target track com-
binations. Our experiments demonstrate that the
versatile GETMusic outperforms prior works pro-
posed for certain specific composition tasks.

1 Introduction
Symbolic music generation aims to create musical notes,
which can help users in music composition. Due to the practi-
cal need for flexible and diverse music composition, the need

∗Corresponding authors: Xu Tan (xuta@microsoft.com) and Rui
Yan (ruiyan@ruc.edu.cn).

for an efficient and unified approach capable of generating
arbitrary tracks based on the others is high.1 However, cur-
rent research falls short of meeting this demand due to in-
herent limitations imposed by their representations and mod-
els. Consequently, these approaches are confined to specific
source-target combinations, such as generating piano accom-
paniments based on melodies.

Current research can be categorized into two primary ap-
proaches based on music representation: sequence-based and
image-based. On one hand, sequence-based works [Huang
and Yang, 2020; Zeng et al., 2021; Christopher, 2011] repre-
sent music as a sequence of discrete tokens, where a musical
note requires multiple tokens to describe attributes such as
onset, pitch, duration, and instrument. These tokens are ar-
ranged chronologically, resulting in the interleaving of notes
from different tracks, and are usually predicted by autoregres-
sive models sequentially. The interleaving of tracks poses
a challenge of precise target generation because the autore-
gressive model implicitly determines when to output a target-
track token and avoids generating tokens from other tracks.
It also complicates the specification of source and target
tracks. Therefore, the existing methods [Dong et al., 2023;
Ren et al., 2020; Yu et al., 2022] typically focus on either one
specific source-target track combination or the continuation
of tracks.

On the other hand, image-based research represents music
as 2D images, with pianorolls being a popular choice. Pi-
anorolls represent musical notes as horizontal lines, with the
vertical position denoting pitch and the length signifying du-
ration. A pianoroll explicitly separates tracks but it has to
incorporate the entire pitch range of instruments, resulting
in large and sparse images. Due to the challenges of gen-
erating sparse and high-resolution images, most research has
focused on conditional composition involving only a single
source or target track [Dong et al., 2017; Yang et al., 2017;
Shuyu and Sung, 2023] or unconditional generation [Mittal
et al., 2021].

1A music typically consists of multiple instrument tracks. In this
paper, given a predefined track ensemble, we refer to the tracks to be
generated as “target tracks” and those acting as conditions as “source
tracks.” We refer to such an orchestration of tracks as a “source-
target combination.”
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To support the generation across flexible and diverse
source-target track combinations, we propose a unified repre-
sentation and diffusion framework called GETMusic (“GET”
stands for GEnerate music Tracks), which comprises a
representation named GETScore, and a discrete diffusion
model [Austin et al., 2021] named GETDiff. GETScore rep-
resents the music as a 2D structure, where tracks are stacked
vertically and progress horizontally over time. Within each
track, we efficiently represent musical notes with the same
onset by a single pitch token and a single duration token, and
position them based on the onset time. At a training step,
each track in a training sample is randomly selected as either
the target or the source. The training consists of two pro-
cesses: In the forward process, the target tracks are corrupted
by masking tokens, while the source tracks are preserved as
ground truth; in the denoising process, GETDiff learns to pre-
dict the masked target tokens based on the provided source.
Our co-designed representation and diffusion model in GET-
Music offer several advantages compared to prior works:

• With separate and temporally aligned tracks in
GETScore, coupled with a non-autoregressive generative
model, GETMusic adeptly compose music across various
source-target combinations.

• GETScore is a compact multi-track music represen-
tation while effectively preserving interdependencies among
simultaneous notes both within and across tracks, fostering
harmonious music generation.

• Beyond track-wise generation, the mask and denois-
ing mechanism of GETDiff enable the zero-shot generation
(i.e., denoising masked tokens at any arbitrary locations in
GETScore), further enhancing the versatility and creativity.

We demonstrate that our proposed versatile GETMusic sur-
passes approaches proposed for specific tasks such as condi-
tional accompaniment or melody generation, as well as gen-
eration from scratch.2

2 Background
2.1 Symbolic Music Generation
Symbolic music generation aims to generate musical notes,
whether from scratch [Mittal et al., 2021; Yu et al., 2022]
or based on given conditions such as chords, tracks [Shuyu
and Sung, 2023; Huang and Yang, 2020; Dong et al., 2017],
lyrics [Lv et al., 2022; Ju et al., 2021; Sheng et al., 2020],
or other musical properties [Zhang et al., 2022], which can
assist users in composing music. In practical music compo-
sition, a common user need is to create instrumental tracks
from scratch or conditioning on existing ones. Given a pre-
defined ensemble of tracks and considering flexible composi-
tion needs in practice, a generative model capable of handling
arbitrary source-target combination is crucial. However, nei-
ther of the existing approaches can integrate generation across
multiple source-target combinations, primarily due to inher-
ent limitations in their representations and models.

Current approaches can be broadly categorized into two
main categories with respect to adopted representation:

2Demo link: https://ai-muzic.github.io/getmusic/. Code link:
https://github.com/microsoft/muzic

sequence-based and image-based. In sequence-based meth-
ods [Huang and Yang, 2020; Hsiao et al., 2021; Zeng et al.,
2021; Ren et al., 2020], music is represented as a sequence of
discrete tokens. A token corresponds to a specific attribute of
a musical note, such as onset (the beginning time of a note),
pitch (note frequency), duration, and instrument, and tokens
are usually arranged chronologically. Consequently, notes
that represent different tracks usually interleave, as shown
in Figure 1(b) where the tracks are differentiated by colors.
Typically, an autoregressive model is applied to processes
the sequence, predicting tokens one by one. The interwove
tracks and the autoregressive generation force the model to
implicitly determine when to output tokens of desired tar-
get tracks and avoid incorporating tokens belonging to other
tracks, which poses a challenge to the precise generation of
the desired tracks; the sequential representation and model-
ing do not explicitly preserve the interdependencies among
simultaneous notes, which impact the harmony of the gener-
ated music; furthermore, the model is required to be highly
capable of learning long-term dependencies [Bengio et al.,
1994] given the lengthy sequences. Some unconventional
methods [Ens and Pasquier, 2020] organize tokens accord-
ing to the track order in order to eliminate track interleaving.
However, it comes with a trade-off, as it results in weaker
dependencies both in the long term and across tracks.

Image-based methods mainly employ pianoroll represen-
tations which depict notes as horizontal lines in 2D images,
with the vertical position denoting pitch and the length signi-
fying duration. However, pianorolls need to include the en-
tire pitch range of the instrument, resulting in images that
are both large and sparse. For instance, Figure 1(c) illus-
trates a pianoroll representation of a three-track music piece,
which spans a width of hundreds of pixels, yet only the
bold lines within it carry musical information. Most works
focus on conditional composition involving only a single
source/target track [Dong et al., 2017; Yang et al., 2017;
Shuyu and Sung, 2023] or unconditional generation [Mittal
et al., 2021] because generating a sparse and high-resolution
image is challenging.

Our proposed GETMusic addresses above limitations with
a co-designed representation and a discrete diffusion model
which together provide an effective solution to versatile track
generation.

2.2 Diffusion Models
Diffusion models, initially proposed by [Sohl-Dickstein et
al., 2015] and further improved by subsequent research [Ho
et al., 2020; Song et al., 2021; Ho and Salimans, 2021;
Dhariwal and Nichol, 2021], have demonstrated impressive
capabilities in modeling complex distributions. These mod-
els consist of two key processes: a forward (diffusion) pro-
cess and a reverse (denoising) process. The forward process

q(x1:T |x0) =
T∏

t=1
q(xt|xt−1) introduces noise to the original

data x0 iteratively for T steps, corrupting it towards a prior
distribution p(xT ) that is independent of x0. The goal of dif-
fusion models is to learn a reverse process pθ(xt−1|xt) that
gradually denoises xT to the data distribution. The model is
trained by optimizing the variational lower bound (VLB) [Ho
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Figure 1: Different representations for the same piece of music. Figure (a) is the music score. Figure (b) illustrates the sequence-based
representation in REMI style, and due to the length of the sequence, we only show the portion enclosed by the dashed box in Figure (a).
Figure (c) shows a sparse pianoroll that represents notes by lines. In Figure (d), GETScore separates and aligns tracks, forming the basis
for unifying generation across various source-target combinations. It efficiently preserves the interdependencies among simultaneous notes,
fostering generation harmony. Numbers in (d) denote token indices.

et al., 2020]:

Lvlb = Eq[− log pθ(x0|x1)] +DKL[q(xT |x0)||p(xT )]]

+

T∑
t=2

DKL [q(xt−1|xt, x0)||pθ(xt−1|xt))] .
(1)

The models that operate within the latent space are com-
monly referred to as continuous diffusion models, whereas
the discrete diffusion models [Sohl-Dickstein et al., 2015]
were developed for binary sequence learning. [Hoogeboom
et al., 2021] extended these models to handle categorical ran-
dom variables, while D3PM [Austin et al., 2021] introduced a
more structured categorical forward process: the forward pro-
cess is a Markov chain defined by transition matrices, which
transitions a token at time t− 1 to another at time t by prob-
ability. In the reverse process, a pivotal technique known as
x0-parameterization was introduced by [Austin et al., 2021].
Instead of directly predicting xt−1 at time step t, the model
learns to fit the noiseless original data x0 and corrupts the
predicted x̃0 to obtain xt−1. Consequently, an auxiliary term
scaled by a hyper-parameter λ is added to the VLB:

Lλ = Lvlb + λEq

[
T∑

t=2

− log pθ(x0|xt)

]
. (2)

[Mittal et al., 2021] first applied continuous diffusion mod-
els to music generation. However, due to technical limita-
tions at the time, their approach is not fully end-to-end and
is restricted to generating single-track music unconditionally.
They opted for a pianoroll representation in their model. SD-
Muse [Zhang et al., 2022] considered the limitations inher-
ent in the pianoroll and sequence representation. They first
employ a continuous diffusion model that operates on pi-
anoroll, followed by an autoregressive model to refine the mu-
sic sequence converted from generated pianorolls. This two-
stage pipeline significantly increases the computational cost
but it does not fundamentally address the performance bot-
tleneck, i.e., accurately generating sparse and high-resolution
pianorolls.

In contrast to these prior works, GETDiff is an end-to-end
discrete diffusion model. The rationale behind the discrete
model lies in the fact that GETDiff is specifically crafted

to operate on GETScore, which comprises discrete tokens,
aligning perfectly with the inherently discrete nature of sym-
bolic music. Moreover, [Gu et al., 2022; Tang et al., 2022]
have demonstrated that, for conditional generation, discrete
diffusion models offer many advantages over continuous dif-
fusion models. Meanwhile, our novel representation com-
bines the strengths of conventional representations while cir-
cumventing their shortcomings, thereby overcoming the ob-
stacles associated with generating high-quality content.

3 GETMusic
In this section, we introduce two key components in GET-
Music: the representation GETScore and the diffusion model
GETDiff. We first provide an overview of each component,
and then highlight their advantages in supporting the flexible
and diverse generation of any tracks.

3.1 GETScore
Our goal is to design an efficient and effective representa-
tion for modeling multi-track music, which allows for flexi-
ble specification of source and target tracks and thereby lay-
ing the foundation of the diverse track generation tasks. Our
novel representation GETScore involves two core ideas: (1)
the 2D track arrangement and (2) the musical note tokeniza-
tion.

Track arrangement. We derive inspiration from music
scores to arrange tracks vertically, with each track progress-
ing horizontally over time. The horizontal axis is divided into
fine-grained temporal units, with each unit equivalent to the
duration of a 16th note. This level of temporal detail is suf-
ficient to the majority of our training data. This arrangement
of tracks brings several benefits:

• It prevents content of different tracks from interleaving,
which simplifies the specification of source and target tracks,
and facilitates the precise generation of desired tracks.

• Because tracks are temporally aligned like music scores,
their interdependencies are well preserved.

Note tokenization. To represent musical notes, we focus
on two attributes: pitch and duration, which are directly asso-
ciated with composition. Some dynamic factors like velocity
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Figure 2: An overview of training the GETDiff using a 3-track GETScore. Note that GETScore is capable of accommodating any number
of tracks, with this example serving as a toy example. During this training step, the piano track is randomly selected as the source and the
drum track as the target, while the melody track is ignored. Thus, xt consists of the ground truth piano track, an emptied melody track, and a
corrupted drum track. GETDiff generates all tokens simultaneously in a non-autoregressive manner which may modify tokens in its output.
Therefore, when xt−1 is obtained, the sources are recovered with the ground truth while ignored tracks are emptied again.

and tempo variation fall outside the scope of our study. We
use two distinct tokens to denote a note’s pitch and duration,
respectively. These paired pitch-duration tokens are placed in
accordance with the onset time and track within GETScore.
Some positions within GETScore may remain unoccupied by
any tokens; in such instances, we employ padding tokens to
fill them, as illustrated by the blank blocks in Figure 1(d).
Each track has its own pitch token vocabulary but shares a
common duration vocabulary, considering pitch characteris-
tics are instrument-dependent, whereas duration is a univer-
sal feature across all tracks. To broaden the applicability of
GETScore, we need to address two more problems:

(1) How to use single pitch and duration tokens to repre-
sent a group of notes played simultaneously within a track?
We propose merging pitch tokens of a group of simultaneous
notes into a single compound pitch token. Furthermore, we
identify the most frequently occurring duration token within
the group as the final duration token. This simplification of
duration representation is supported by our observation from
the entire training data, in only 0.5% groups, the maximum
duration difference among notes exceeds a temporal unit.
These findings suggest that this simplification has minimal
impact on the expressive quality of GETScore. Figure 1(d) il-
lustrates the compound token: in the piano track, we combine
three simultaneous 1/8 notes played at the first beat, namely,
“La”, “Do”, and “Fa,” into a single pitch token indexed with
“147” alongside a duration token “2.”

(2) How to represent percussive instruments, such as
drums, which do not involve the concepts of ”pitch” and ”du-
ration?” We treat individual drum actions (e.g., kick, snare,
hats, toms, and cymbals) as pitch tokens and align them with
a special duration token. The drum track in Figure 1(d) illus-
trates our approach.

In conclusion, besides the benefits from track arrangement,
our GETScore also gains advantages through this note tok-
enization:

• Each track requires only two rows to accommodate the
pitch and duration tokens, significantly enhancing the effi-
ciency of GETScore.

• The compound token preserves the interdependecies
within a track. When a token is generated, the harmony is
guaranteed because the corresponding note group is derived
from real-world data.

3.2 GETDiff

We first introduce the forward and the denoising process of
GETDiff. Next, we introduce the inference procedure and
outline GETDiff’s benefits for diverse generation needs.

The forward process. Our discrete diffusion model GET-
Diff takes GETScores as inputs. We introduce a special to-
ken [MASK] into the vocabulary as the absorbing state of
the forward process. At time t − 1, a normal token re-
mains in its current state with a probability of αt and tran-
sitions to [MASK] (i.e., corrupts to noise) with a probability
of γt = 1 − αt. As GETScore includes a fixed number of
tracks that GETMusic supports, and the composition does not
always involve all tracks, we fill the uninvolved tracks with
another special token [EMPTY]. [EMPTY] never transitions
to other tokens, nor can it be transitioned to from any other to-
kens. This design prevents any interference from uninvolved
tracks in certain compositions. Formally, a transition matrix
[Qt]mn = q(xt = m|xt−1 = n) ∈ RK×K defines the transi-
tion probability from the n-th token at time t− 1 to the m-th
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token at time t:

Qt =


αt 0 . . . 0 0
0 αt . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
γt γt . . . 0 1

 , (3)

where K is the total vocabulary size, including two special
tokens. The last two columns of Qt correspond to the proba-
bility q (xt|xt−1 = [EMPTY]) and q (xt|xt−1 = [MASK]),
respectively. Denoting v(x) as a one-hot column vector indi-
cating the category of x and considering the Markovian na-
ture of the forward process, we can express the marginal at t,
and the posterior at t− 1 as:

q(xt|x0) = v⊤(xt)Qtv(x0), with Qt = Qt . . . Q1. (4)

q(xt−1|xt, x0) =
q(xt|xt−1, x0)q(xt−1|x0)

q(xt|x0)

=

(
v⊤(xt)Qtv(xt−1)

) (
v⊤(xt−1)Qt−1v(x0)

)
v⊤(xt)Qtv(x0)

.

(5)

The denoising process. Figure 2 provides an overview of
GETDiff denoising a three-track training sample of a length
of L time units. GETDiff has three main components: an
embedding module, Roformer [Su et al., 2021] layers, and a
decoding module. Roformer is a Transformer [Vaswani et al.,
2017] variant that incorporates relative position information
into the attention matrix, which enhances the model’s ability
to length extrapolation during inference.

During training, GETDiff needs to cover the various
source-target combinations for a music piece with I tracks,
represented as a GETScore with 2I rows. To achieve this,
m tracks (resulting in 2m rows in GETScore) are randomly
chosen as the source, while n tracks (resulting in 2n rows in
GETScore) are selected as the target, m ≥ 0, n > 0, and
m+ n ≤ I .

At a randomly sampled time t, to obtain xt from the orig-
inal GETScore x0, tokens in target tracks are transitioned
according to Qt, tokens in the source tracks remain as the
ground truth, and uninvolved tracks are emptied. GETDiff
denoises xt in four steps, as shown in Figure 2:

(1) All tokens in GETScore are embedded into d-
dimensional embeddings, forming an embedding matrix of
size 2Id× L.

(2) Two types of learnable embeddings, named condition
flags, are added to the matrix. These flags differentiate
whether a token originates from the provided source (“True”)
or is generated by the model (“False”). The rationale behind
this design is as follows: GETScore is designed to mimic a
music score where each token, including paddings that sig-
nify rests or cadences, carries information. Because the to-
kens predicted at the current time step can act as conditions in
the subsequent time step, any inaccuracies in these tokens can
lead to deviations from the intended denoising direction dur-
ing inference, especially in the first few steps. Condition flags
explicitly indicates the reliability of the tokens upon which
the model is conditioned, thereby enhancing the quality of
generation.

(3) The embedding matrix is resized to GETDiff’s input
dimension dmodel using an MLP, and then fed into the Ro-
former model.

(4) The output matrix passes through a classification head
to obtain the token distribution over the vocabulary of size
K and we obtain the final tokens using the gumbel-softmax
technique.

GETDiff employs the x0-parameterization [Austin et al.,
2021] (see §2.2) and thus the training objective is defined as
Eq.2. The posterior computation for the Lvlb term in Eq.2 is
provided by Eq.5.
Inference. During inference, users specify source and tar-
get tracks, forming the GETScore representation xT with
ground truth source tracks, masked target tracks, and empty
tracks (if any). GETDiff denoises xT to produce x0 non-
autoregressively, potentially altering source tokens. To main-
tain consistent guidance from source tracks, source tokens in
xt−1 are restored to ground truth, and uninvolved tracks are
re-emptied.

Considering the combined benefits of the representation
and the diffusion model, our GETMusic framework offers
several major advantages in addressing the diverse compo-
sition needs:

• Through a unified diffusion model, GETMusic has the
capability to compose music across a range of source-target
combinations without requiring re-training.

• Beyond the track-wise generation, the mask and denois-
ing mechanism of GETDiff enables the zero-shot generation
of any arbitrary masked locations in GETScore, which further
enhances versatility and creativity.

4 Experiments
4.1 Experiment Settings
Data. Due to the data-hungry nature of the diffusion model,
we ensured adequate data preparation for its training and test-
ing. We gathered 1,569,469 MIDI files from the Musescore
website. We processed the crawled data basically follow-
ing the approach outlined in [Ren et al., 2020], resulting in
symbolic music data comprising I = 6 instrumental tracks:
bass, drum, guitar, piano, string, melody, along with an addi-
tional chord progression track. Further details are provided in
Appendix A. After implementing rigorous cleansing and fil-
tering procedures, we produced approximately 140,000 high-
quality GETScores, equivalent to approximately 3,000 hours,
with the maximum L as 512. We sampled 1,000 GETScores
for validation, 1,000 for testing, and the rest for training.
Tasks and baselines. We consider three symbolic music
generation tasks: (1) accompaniment generation based on the
melody, (2) melody generation based on the accompaniments,
and (3) generating tracks from scratch.

For Task 1 and 2, we compare GETMusic with Pop-
MAG [Ren et al., 2020], which is an autoregressive Trans-
former encoder-decoder model that processes a sequence rep-
resentation MuMIDI. To be comparable, we restrict the gen-
erated music up to 128 beats, which is the longest compo-
sition length for PopMAG. Both PopMAG and GETMusic
always employ the ground truth chord progression as a con-
dition (i.e., a source track) for generation in these tasks. For
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the third task, we compare GETMusic with Museformer [Yu
et al., 2022], one of the most competitive unconditional music
generation models. For fair comparison, we train all baselines
on our crawled data. Task 1 and 2 are evaluated on the test
set, while Task 3 is evaluated by unconditionally generating
1,000 pieces of music using different random seeds.

Training details. We set diffusion timesteps T = 100 and
λ = 0.001. For the transition matrix Qt, we linearly increase
γt (cumulative γt) from 0 to 1 and decrease αt from 1 to 0.
GETDiff has 12 Roformer layers with d = 96 and dmodel =
768, where there are about 86M trainable parameters. Dur-
ing training, we use AdamW optimizer with a learning rate
of 1e − 4, β1 = 0.9, β2 = 0.999. The learning rate warmups
first 1000 steps and then linearly decays. The training is con-
ducted on 8 × 32G Nvidia V100 GPUs and the batch size on
each GPU is 3. We train the model for 50 epochs and check-
points are selected based on the validation loss.

4.2 Evaluation Metrics
Objective evaluation. We introduce objective metrics that
quantitatively evaluates the generation quality. Following
[Ren et al., 2020], we evaluate the models from two aspects:

(1) Chord accuracy: For Task 1 and 2, we measure the
chord accuracy CA between generated target tracks and their
ground truth to evaluate the melodic coherence:

CA =
1

Ntracks ×Nchords

Ntracks∑
i=1

Nchords∑
j=1

⊮(C
′
i,j = Ci,j). (6)

Here, Ntracks and Nchords represent the number of tracks
and chords, respectively. C

′

i,j and Ci,j denote the j-th chord
in the i-th generated target track and the ground truth. Note
that this metric is not suitable for the third task. Instead,
melodic evaluation for the third task relies on both the pitch
distribution and human evaluation, which are discussed later.

(2) Feature distribution divergence: For the first two
tasks, we assess the distributions of important musical fea-
tures in generated and ground truth tracks: note pitch, dura-
tion (Dur) and Inter-Onset Interval (IOI) that measures the
temporal interval between two consecutive notes within a
bar. First, we quantize the duration and IOI into 16 classes,
then convert the histograms into probability density functions
(PDFs) using Gaussian kernel density estimation. Finally,
we compute the KL-divergence [Kullback and Leibler, 1951]
KL{Pitch,Dur,IOI} between PDFs of generated target tracks
and ground truth. For task 3, we compute KL{Pitch,Dur,IOI}
between PDFs of generated target tracks and the correspond-
ing distribution of training data. In this definition, KLPitch

reflects the melody consistency, whereas KLDur and KLIOI

are indicative of rhythm consistency.

Human evaluation. 30 evaluators, who possessed a basic
knowledge of music, were divided into three groups, each
comprising 10 members. Each group took part in a blind test
dedicated to one of the three tasks, evaluating all music cre-
ated by GETMusic and baseline models in this task. Eval-
uation metrics include “melodic,” “rhythmic,” and “musical
structure,” etc., as outlined in Appendix B.

Method CA(%) ↑ KLPitch ↓ KLDur ↓ KLIOI ↓
Task 1: Accompaniment Generation

PopMAG 61.17 10.98 7.00 6.92
GETMusic 65.48 10.05 4.21 4.22

Task 2: Lead Melody Generation

PopMAG 73.70 10.64 3.97 4.03
GETMusic 81.88 9.82 3.67 3.49

Task 3: Generation from Scratch

Museformer - 8.19 3.34 5.71
GETMusic - 7.99 3.38 5.33

Table 1: Objective evaluation on three tasks: the accompani-
ment/melody generation as well as generating from scratch. In the
third task, where ground truth chord progressions are absent, CA
evaluation is unavailable.

4.3 Generation Results
Comparison with previous SOTA methods. Table 1
presents the objective evaluation results of three tasks. In
Task 1 and 2, GETMusic significantly outperforms PopMAG
across all metrics with a p-value of less than 0.01 in the t-test.
This highlights its ability to create more harmonious melodies
(higher CA and lower KLPitch) and more suitable rhythms
(lower KLDur and KLIOI ) that align well with the provided
source tracks. In Task 2, where all five accompaniment in-
struments serve as source tracks, we achieve better scores in
all metrics compared to the first task which relies solely on
the melody as the source track. This improvement caused by
more generation conditions aligns with intuitive expectations.
In Task 3, GETMusic outperforms the competitive baseline
Museformer in most metrics. Subjective evaluations further
confirm our effectiveness (Figure 1 in the appendix): In ev-
ery aspect, GETMusic’s human ratings outperform the com-
petitive baselines. κ values for three tasks are 0.69, 0.72, and
0.62, all indicating a substantial agreement among evaluators.

Zero-shot generation. Though GETMusic is trained for
track-wise generation, it can zero-shot recover masked tokens
at arbitrary locations, due to its mask and denoising mecha-
nism. This capability enhances the versatility and creativ-
ity of GETMusic. For example, we can insert mask tokens
in the middle of two different songs to connect them: GET-
Music generates a harmonious bridge by iteratively denoising
the masked tokens while preserving the rest of the tokens un-
changed. Despite the challenges in evaluation, our No.7 and
8 demos showcase GETMusic’s flexibility and creativity.

5 Method Analysis
GETScore and GETDiff are complementary. To show this,
we replace GETDiff with an autoregressive model. For the
accompaniment generation task, we train a Transformer de-
coder equipped with 14 prediction heads. At each decoding
step, it predicts tokens in a column of GETScore. This is
denoted as GETMusic (AR). Table 2 highlights its subopti-
mal performance when compared to the original GETMusic.
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Method CA(%) ↑ KLPitch ↓ KLDur ↓ KLIOI ↓ Time ↓
PopMAG 61.17 10.98 7.00 6.92 23.32
GETMusic (AR) 46.25 11.91 7.08 6.49 17.13

GETMusic 65.48 10.05 4.21 4.22 4.80

Table 2: Ablation study on generation paradigms: Autoregressive vs. Non-autoregressive.

Method CA(%) ↑ KLPitch ↓ KLDur ↓ KLIOI ↓
Accompaniment Generation

CON. 63.22 10.10 4.49 4.54
DIS. 65.48 10.05 4.21 4.22

Lead Melody Generation

CON. 78.51 10.25 3.80 3.88
DIS. 81.88 9.82 3.67 3.49

Generation from Scratch

CON. - 8.07 3.63 5.82
DIS. - 7.99 3.38 5.33

Table 3: Comparing a discrete diffusion model verse a continuous
diffusion model.

Moreover, we show the average time required in seconds for
composing each musical piece using an A100-80G GPU. Due
to the considerably fewer denoising steps (T = 100) com-
pared to the extensive prediction steps required by an autore-
gressive model, GETDiff exhibits notable speed advantages.

While evaluating diffusion models on traditional sequence
representations would be informative, it is impractical for
us. Firstly, due to the inherently higher computational re-
source requirements of training a diffusion model compared
to an autoregressive model, coupled with the fact that tradi-
tional sequence representations are usually orders of magni-
tude longer than GETScore when representing the same mu-
sical piece, the training cost becomes unaffordable for our
source. Furthermore, diffusion models require the specifica-
tion of the generation length in advance. Yet, the length of
traditional sequences representing the same number of bars
can vary in a wide range, leading to uncontrollable variations
in the generated music’s length and structure.

Based on above analyses, we contend that our GETScore
and GETDiff together provide an efficient and effective solu-
tion for versatile and diverse symbolic music generation.

Discrete diffusion models are better suited for symbolic
music. Unlike continuous diffusion models, which require
thousands of denoising steps to generate music [Mittal et al.,
2021], discrete diffusion models achieve better results with
just a hundred steps. As evidence of this, we trained a con-
tinuous variant (abbr. CON) of our discrete diffusion model
(abbr. DIS), with hyperparameters following those detailed
in [Mittal et al., 2021]. The results are shown in Table 3.

Performance across varied lengths is stable. In §4.3,
Task 3 was tested with variable music lengths, whereas the
first two tasks maintained a fixed length of 128 beats. To in-
vestigate performance across various lengths, we conducted

the accompaniment generation with controlled lengths of 64
and 96 beats, respectively. Table 1 in the appendix demon-
strates the superior and stable performance of our method.

Exploring learned embeddings of GETScore. Learned
features in GETScore align closely with music theory. For
example, while C and Cm share two of three notes, their roles
in chord progressions differ—much like “gear” and “fear” in
language—resulting in a low embedding similarity of 0.12. In
contrast, C and its relative minor Am show a stronger connec-
tion, with a similarity of 0.43. These relationships show the
music-theoretic coherence and effectiveness of GETScore.

Effectiveness of condition flags. To show the impact
of condition flags, we remove them and re-train a diffusion
model. We compare the new model with the original GETD-
iff in accompaniment generation task. We do not include the
unconditional generation task in our report because the con-
dition flags are all designated as “False,” and their removal
has minimal impact. The results are shown in Table 2 in the
appendix. Given the comparable loss, removing the condi-
tion flags has minimal impact on training and convergence,
but it leads to worse generation quality. This demonstrates
that condition flags guide the model to generate high-quality
music, particularly in conditional generation scenarios.

6 Conclusion
GETMusic is a unified representation and diffusion frame-
work to effectively and efficiently generate desired target
tracks from scratch or based on user-provided source tracks,
which addresses diverse composition needs. It has two core
components: a novel representation GETScore and a diffu-
sion model GETDiff. GETMusic can compose music across
various source-target combinations and perform flexible zero-
shot generation.
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Argmax flows and multinomial diffusion: Learning
categorical distributions. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan, editors, Advances in
Neural Information Processing Systems, 2021.

[Hsiao et al., 2021] Wen-Yi Hsiao, Jen-Yu Liu, Yin-Cheng
Yeh, and Yi-Hsuan Yang. Compound word transformer:
Learning to compose full-song music over dynamic di-
rected hypergraphs. Proceedings of the AAAI Conference
on Artificial Intelligence, 35(1):178–186, May 2021.

[Huang and Yang, 2020] Yu-Siang Huang and Yi-Hsuan
Yang. Pop music transformer: Beat-based modeling and
generation of expressive pop piano compositions. In Pro-
ceedings of the 28th ACM International Conference on
Multimedia, MM ’20, page 1180–1188, New York, NY,
USA, 2020. Association for Computing Machinery.

[Ju et al., 2021] Zeqian Ju, Peiling Lu, Xu Tan, Rui Wang,
Chen Zhang, Songruoyao Wu, Kejun Zhang, Xiangyang
Li, Tao Qin, and Tie-Yan Liu. Telemelody: Lyric-
to-melody generation with a template-based two-stage
method. CoRR, abs/2109.09617, 2021.

[Kullback and Leibler, 1951] Solomon Kullback and
Richard A Leibler. On information and sufficiency. The
annals of mathematical statistics, 22(1):79–86, 1951.

[Lv et al., 2022] Ang Lv, Xu Tan, Tao Qin, Tie-Yan Liu, and
Rui Yan. Re-creation of creations: A new paradigm for
lyric-to-melody generation, 2022.

[Mittal et al., 2021] Gautam Mittal, Jesse Engel, Curtis
Hawthorne, and Ian Simon. Symbolic music generation
with diffusion models, 2021.

[Ren et al., 2020] Yi Ren, Jinzheng He, Xu Tan, Tao Qin,
Zhou Zhao, and Tie-Yan Liu. Popmag: Pop music ac-
companiment generation. In Proceedings of the 28th ACM
International Conference on Multimedia, MM ’20, page
1198–1206, New York, NY, USA, 2020. Association for
Computing Machinery.

[Sheng et al., 2020] Zhonghao Sheng, Kaitao Song, Xu Tan,
Yi Ren, Wei Ye, Shikun Zhang, and Tao Qin. Songmass:
Automatic song writing with pre-training and alignment
constraint. CoRR, abs/2012.05168, 2020.

[Shuyu and Sung, 2023] Li Shuyu and Yunsick Sung.
Melodydiffusion: Chord-conditioned melody generation
using a transformer-based diffusion model. Mathematics
11, no. 8: 1915., 2023.

[Sohl-Dickstein et al., 2015] Jascha Sohl-Dickstein, Eric
Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep
unsupervised learning using nonequilibrium thermody-
namics. In Francis Bach and David Blei, editors, Pro-
ceedings of the 32nd International Conference on Machine
Learning, volume 37 of Proceedings of Machine Learn-
ing Research, pages 2256–2265, Lille, France, 07–09 Jul
2015. PMLR.

[Song et al., 2021] Jiaming Song, Chenlin Meng, and Ste-
fano Ermon. Denoising diffusion implicit models. In Inter-
national Conference on Learning Representations, 2021.

[Su et al., 2021] Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed
Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. arXiv
preprint arXiv:2104.09864, 2021.

[Tang et al., 2022] Zhicong Tang, Shuyang Gu, Jianmin
Bao, Dong Chen, and Fang Wen. Improved vector quan-
tized diffusion models, 2022.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

need. In Advances in neural information processing sys-
tems, pages 5998–6008, 2017.

[Yang et al., 2017] Li-Chia Yang, Szu-Yu Chou, and Yi-
Hsuan Yang. Midinet: A convolutional generative adver-
sarial network for symbolic-domain music generation us-
ing 1d and 2d conditions. CoRR, abs/1703.10847, 2017.

[Yu et al., 2022] Botao Yu, Peiling Lu, Rui Wang, Wei Hu,
Xu Tan, Wei Ye, Shikun Zhang, Tao Qin, and Tie-Yan Liu.
Museformer: Transformer with fine- and coarse-grained
attention for music generation. In Alice H. Oh, Alekh
Agarwal, Danielle Belgrave, and Kyunghyun Cho, edi-
tors, Advances in Neural Information Processing Systems,
2022.

[Zeng et al., 2021] Mingliang Zeng, Xu Tan, Rui Wang, Ze-
qian Ju, Tao Qin, and Tie-Yan Liu. MusicBERT: Sym-
bolic music understanding with large-scale pre-training. In
Findings of the Association for Computational Linguistics:
ACL-IJCNLP 2021, pages 791–800, Online, August 2021.
Association for Computational Linguistics.

[Zhang et al., 2022] Chen Zhang, Yi Ren, Kejun Zhang, and
Shuicheng Yan. Sdmuse: Stochastic differential music
editing and generation via hybrid representation, 2022.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


