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Abstract
The Dynamically Reconfigurable Battery (DRB)
systems, which use high-speed power electronic
switches to dynamically adjust battery intercon-
nections in real-time, are critical to the perfor-
mance of the battery pack. Traditional battery
management strategies often fail to address multi-
objective optimization, leading to imbalanced per-
formance and inadequate energy utilization. To en-
hance decision-making across multiple objectives,
an Evolutionary Ensemble Reinforcement Learn-
ing (EERL) framework is proposed in this paper.
This framework incorporates evolutionary algo-
rithms to associate ensemble learning, thus improv-
ing reinforcement learning (RL) performance. It
decomposes a complex objective into multiple sub-
objectives, each optimized independently, while in-
corporating diverse performance metrics into the
correlation stage to derive the Pareto optimal so-
lution. The EERL can efficiently mitigate poten-
tial adverse effects such as short circuits, discon-
nections, and reverse charging, thereby effectively
reducing capacity differences among various bat-
teries. Simulations and real-world testing demon-
strate that the proposed approach overcomes the is-
sue of local optima entrapment in multi-objective
optimization scenarios. In a real-world system, an
11.08 % increase in energy efficiency is observed
compared to existing approaches.

1 Introduction
Lithium-ion battery energy storage systems are extensively
utilized due to their high energy density, lack of memory ef-
fect, and long cycle life [Lu et al., 2023b]. These systems
serve as flexible and adjustable solutions for power charging
and discharging, enabling the temporal and spatial conversion
of energy to meet the demands of various scenarios [Matos et
al., 2019].

A battery system typically comprises multiple cells to meet
a broad range of application requirements [Dai et al., 2021;
Deng et al., 2020]. However, when these cells are assembled

∗Corresponding Author: zhihong@xmu.edu.cn

Figure 1: In a fixed topology, energy is constrained by the weakest
battery, while the DRB system, controlled by the Battery Manage-
ment System (BMS), enables complete energy release.

into a battery pack, the overall performance and energy uti-
lization of the pack are significantly influenced by the consis-
tency and aging issues of individual cells. Inherent variations
in production processes and operational conditions may result
in inconsistent performance among the cells within a battery
pack [Lin and Ci, 2017]. This inconsistency tends to exacer-
bate over time with usage. The degradation of individual cells
diminishes the overall capacity of the battery pack and poses
safety risks, thereby shortening its operational lifespan [Turk-
soy et al., 2020]. As illustrated in Fig. 1(a), a fixed topology
cannot rectify cell inconsistencies. Consequently, the study
of battery equalization technology is crucial.

Currently, battery equalization strategies rely on additional
energy consumption through component connections [Ismail
et al., 2017] or energy transfer via conversion modules [Park
et al., 2023]. However, the introduction of an extra equaliza-
tion discharge flux leads to a significant reduction in energy
efficiency [Cui et al., 2022]. To address this issue, Dynam-
ically Reconfigurable Battery (DRB) systems, as depicted in
Fig. 1(b), have been proposed. These systems consist of in-
terconnected cells controlled by high-speed power electronic
switches. The system dynamically modulates interconnec-
tions in real-time by adjusting the series-parallel configura-
tion, aligning with load demands and battery cell conditions,
ultimately optimizing the performance [Yang et al., 2022].

The number of switches in a DRB system affects the di-
versity of configurations it can support [Cui et al., 2022].
More switches increase adaptability in battery management
but add complexity to control strategies. With more switches,
the risk of short circuits or disconnections grows, highlight-
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ing the need for methods to balance performance and safety
among the exponential growth of connection configurations.
Designing adaptive control strategies is challenging due to the
complex interplay of requirements and constraints. The com-
bination of different targets as rewards often fails to achieve
optimal performance, making reward engineering a signifi-
cant challenge.

Conventional strategies often fail to improve overall sys-
tem performance. While they may achieve energy equaliza-
tion, they usually cannot well address challenges such as con-
nectivity hazards, stability issues, and power losses. In DRB
systems, ensuring the safety of all topological configurations
is crucial and optimizing performance involves balancing the
energy of the battery pack while avoiding additional adverse
effects, which is framed as a multi-objective optimization
problem within the decision-making process. Scalarizing
multi-objective using intricate reward engineering techniques
may lead to convergence at a local optimum. Futhermore, ex-
isting multi-objective reinforcement learning (RL) strategies
are typically restricted by specific frameworks [Yang et al.,
2019], limiting their applicability to tasks involving multi-
dimensional continuous action spaces, and often fail to ensure
power system security. The reliance on pre-defined weight in-
dices is also inadequate for reward settings involving complex
interdependencies. To address these challenges, we propose
an Evolutionary Ensemble Reinforcement Learning (EERL)
framework.

The proposed framework aims to improve model perfor-
mance on specific objectives by employing ensemble learn-
ing. The evolutionary algorithm prevents the imbalanced de-
velopment of agents on corresponding objectives. By uti-
lizing non-dominated sorting with multiple objectives, the
model can focus on individual sub-tasks while ensuring a
synergistic enhancement in model performance across multi-
ple dimensions. Furthermore, a buffering mechanism for the
agents, avoids the direct replacement of the actor. This refine-
ment strengthens the agent’s robustness during the training
phase. In applying the DRB systems, this approach targets
diverse requirements into several sub-tasks, thereby enhanc-
ing the system’s performance through targeted learning. The
main highlights of the framework are as follows.

• To the best of our knowledge, EERL is the first approach
to apply RL to multi-objective policy control in DRB
systems.

• The EERL framework effectively addresses local optima
arising from the multi-objective scalarization in existing
RL methods.

• An enhanced method for updating evolutionary RL
is presented, expediting the optimization process of a
multi-objective battery system.

• A real prototype is developed for testing, as well as rig-
orous simulations of the DRB systems.

2 Related Work
2.1 Dynamically Reconfigurable Battery
The battery energy storage system typically comprises mul-
tiple individual cells interconnected via a static framework.

During operation, discrepancies in voltage, internal resis-
tance, and capacity among these cells tend to accumulate and
exacerbate [Morstyn et al., 2015]. An effective structure that
mitigates these disparities through dynamic connections be-
tween different batteries is known as the DRB systems [Lin
et al., 2018]. A battery system, denoted by (b1, b2, . . . , bnc

),
is represented by n cells. The state of charge (SOC) of cells
can be described as (soc1, soc2, . . . , socnc). The initial value
of SOC is related to factors such as production conditions and
usage environment. We define the current SOC for each cell
in the DRB systems as follows:

SOCt = SOCt−1 + c · s ·∆SOCt−1 (1)

Where t denotes the current moment, ∆ denotes the con-
sumption of SOC during the time period. The variable c rep-
resents the charging and discharging case, with 1 indicating
charging and −1 indicating discharging, and s denotes the
on-off state of the battery as controlled by the switchs, with
0 indicating the battery is off and 1 indicating the battery is
connected to the system operation.

The battery system encompasses a variety of topologies.
The SOC of different batteries can be maintained in a rel-
atively balanced state through continuous adjustments. Re-
searchers have explored various techniques to achieve battery
pack equalization. Initial studies concentrated on static series
and parallel configurations [Alvarez-Diazcomas et al., 2020;
Samanta and Chowdhuri, 2021]. In certain researches, bat-
tery equalization has been achieved through the integration of
resistors, capacitors, and additional circuit components. De-
spite the ease of implementation, this approach incurs higher
energy consumption and significant heat generation [Alvarez-
Diazcomas et al., 2020]. To mitigate the substantial reactive
power losses, researchers have employed power electronic
switches for battery pack equalization [Jiang et al., 2023].
Some researchers have determined the optimal configuration
of the system through dynamic planning, path search [Lin and
Ci, 2017; He et al., 2019]. However, these models are sim-
plified to alleviate computational complexity, focusing on a
single objective such as energy or voltage difference. These
strategies neglect a system-level perspective that incorporates
multiple objectives. Several researchers have explored the
application of RL in controlling DRB systems [Yang et al.,
2023]. However, the inherent complexity of training and con-
figuring RL frameworks has largely limited their application
to single-switch topologies in DRB systems [Lu et al., 2024],
precluding direct multi-switch control without reducing the
number of actions. Furthermore, these approaches often rely
on a limited set of features, which undermines their ability to
optimize overall system performance.

2.2 Multi-Objective Reinforcement Learning
The RL has demonstrated its effectiveness in tackling con-
tinuous decision-making problems across various fields, such
as robot training [Dalal et al., 2021; Akalin and Loutfi,
2021], workshop scheduling [Zhang et al., 2020; Zhang et
al., 2022], and urban planning [Lin et al., 2024; Peng et
al., 2021]. By formulating problems as Markov Decision
Processes (MDPs), RL models sequential decision-making,
where actions of the agent influence subsequent states and
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future rewards [Van Otterlo and Wiering, 2012]. The opti-
mal control strategy is derived through iterative processes.
Traditional methods often struggle with constructing accurate
and efficient mathematical models for optimization problems
[Bengio et al., 2021]. In contrast, RL can overcome these
limitations by learning optimal strategies through interaction
data [Nguyen et al., 2020a]. For improving the DRB systems
performance, RL can explore the impact of battery factors
on performance in complex scenarios and maximize rewards
through agent decisions.

In practical scenarios, decision-making involves multi-
objective optimization, where rewards are represented as vec-
tors instead of scalars [Nguyen et al., 2020b]. Unlike single-
objective RL tasks, where the focus is on maximizing the
cumulative reward, multi-objective tasks necessitate the con-
sideration of conflicts and constraints among multiple ob-
jectives, thereby amplifying the complexity of the decision-
making process [Pirotta et al., 2015]. Some researchers have
attempted to combine multiple objectives into a single scalar-
ized objective [Prabhakar et al., 2022], but this approach can
result in reaching a local optimum, which impedes the abil-
ity of the agent to make effective trade-offs [Van Moffaert
and Nowé, 2014]. Some researchers have addressed multi-
objective requirements by learning distinct state-hidden rep-
resentations tailored to specific task preferences [Shu et al.,
2024]. Others have explored linear scalarization based meth-
ods to identify the convex set of Pareto front [Alegre et al.,
2023; Chen et al., 2019]. However, in many real-world RL
applications, specific preference or linear scalarization are
unavailable or difficult to specify, posing significant chal-
lenges for effective training and deployment.

3 Methodology
3.1 Problem Definition
To achieve equalization of the DRB system, a reasonable
action a∗ needs to be obtained. A topological control set
A = {a1, a2, . . . , am} is defined for the DRB system, where
m is obtained as an exponent of the number of cells. This
problem is formulated as a sequential decision-making pro-
cess, where the agent interacts with the environment to pur-
sue multiple objectives, which are jointly represented by the
reward function R and constrained by a set of constraints C.
The goal is to find an action a∗ ∈ A that maximizes the re-
ward while softly satisfying the constraints:
a∗ = arg max

ase∈A
R(ase,Env(s, ase)) subject to C(ase) ≥ 0

(2)
where ase represents the selected action, s represents the state
after executing the action, and Env is the environment ob-
tained based on the action and state. However, as the num-
ber of strategies in DRB system increases exponentially with
the number of cells, it is challenging to choose a reasonable
topological pattern among the exponential level of paths. The
complex task design causes the agent to fall into local op-
tima during learning. Especially in the scenarios with strict
safety conditions, the agents can not take into account mul-
tiple objectives well, which makes the performance unstable
and prone to serious safety hazards. As mentioned in equa-
tion 2 with the constraints C should be satisfied to the greatest

extent possible. It represents several conditions such as secu-
rity, equilibrium, stability, and multiple parallel.

3.2 EERL Framework
The decomposition model of ensemble learning in RL is ini-
tially introduced, followed by an explanation of how evo-
lutionary algorithms integrate the decomposition model to
solve multi-objective problems. In principle, most RL meth-
ods can be incorporated into this framework. In the DRB
experiments, the RL policy employs the Soft Actor-Critic
(SAC) algorithm exclusively. This choice is based on the abil-
ity of SAC to integrate effectively with a variational autoen-
coder (VAE) for efficient selection within large-scale discrete
action spaces [Hu et al., 2025]. Unlike conventional settings,
the sparse rewards in this large action space lead to severely
degraded performance of standard RL models. A reparame-
terization strategy is used in the VAE, which is the same as
the sampling strategy of SAC, as illustrated in the following
equation:

z = µ+ σ · ϵ (3)
where µ and σ denote the mean and variance of the output
from the network. ϵ denotes the random variable drawn from
the standard normal distribution. z denotes the obtained latent
variable.

With the current RL framework, direct policy optimization
by combining all objectives and using composite rewards can
result in sub-optimal control strategies. Conflicting or incon-
sistent objectives may hinder the agents from finding a opti-
mal solution in complex tasks. We propose a decomposition
and correlation approach, illustrated in Fig. 2. The complex
task is decomposed into multiple sub-tasks, executed in ran-
domized form on different agents, and trained using ensem-
ble learning. The evolutionary algorithm maintains a popula-
tion for updating the randomly selected sub-target agent. The
best-performing agent is refined through crossover and muta-
tion processes.

The method decomposes a complex task into multiple sim-
ple sub-tasks. Each sub-task is trained by an independent
agent that focuses on learning the optimal policy for the sim-
ple goal, as shown in the following equation:

πi = argmax
π

E

[ ∞∑
t=0

γtrit | π

]
(4)

where π denotes the policy, and E denotes the expectation
over trajectories. The rit represents the reward acquired for
sub-task i at time step t and γ is the discount factor. The de-
composition helps to reduce the complexity of the problem,
allowing each agent to learn and optimize more efficiently.
This ensemble learning approach in the case of inputs with
the same state, each agent will update its network parameters
according to the corresponding objective. Therefore, the con-
cept of evolution is applied to construct a model for updating
evolutionary algorithms in a composite. During training, the
population considers each objective as a criterion of superi-
ority and inferiority. For each sub-task i agent πi is associ-
ated with multiple objectives O = {o1, o2, . . . , on}, and the
Pareto frontier of different population (including alternative
actor and real actor) are computed, which allows the agent
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Figure 2: EERL training process. A randomly selected agent performs the task in each round. Ensemble learning leverages multiple reward
functions, each corresponding to a specific objective, to reward and train the agents. An evolutionary algorithm integrates with agent selection
in ensemble learning, identifying the current optimal agent based on Pareto optimality.

performing sub-tasks to be associated to multiple objectives
during the updating process. A single objective is used as a
criterion to judge whether the alternative actor is better than
the real actor. If oi(πalt

i ) > oi(πi) then πi ← πalt
i , which

is used as a substitution requirement. The alternative actor
and the best individual in the population are then obtained by
non-dominated sorting. We define two individuals πi and πj ,
if O(πi) ≥ O(πj) and existence of ol(πi) > ol(πj) which
represent dominance relation. The absence of direct substi-
tution of real actors is intended to introduce a buffer mecha-
nism capable of managing the balance between exploration
and exploitation during policy updating. Storing the best-
performing agent as an alternative actor instead of immedi-
ately using it ensures superior performance after updates and
prevents retaining poorly updated or accidental individuals,
thereby improving efficiency.

The combination of the two strategies enables agents to fo-
cus on a single objective while being constrained by others,
ensuring excellence in one sub-task and satisfactory perfor-
mance in others. When the training is complete, the process
of using is shown in Fig. 3. The actions generated by dif-
ferent agents are scored by all the critics. By summation, the
highest rated action is output. Each critic performs an em-
pirical replay evaluation before the task, linearly mapping the
evaluation range to [α, β], where α and β are the minimum
and maximum values respectively, so that evaluation values
of different criteria can be compared. We perform the con-
version according to the following linear mapping formula:

scoreci = α+

(
ci − cmin

i

)
· (β − α)

cmax
i − cmin

i

(5)

where scoreci denotes the transformed value of critic, ci de-
notes the initial value obtained from critic, and cmin

i and cmax
i

denote the minimum and maximum values in the additional
evaluations. The conversion function can be used to obtain
the evaluation value in the same benchmark.

Figure 3: EERL testing process. The actions generated by different
agents are scored by all critics outputting the most appropriate action
through normalized comparison.

3.3 RL in the DRB System
To better describe the MDPs of the DRB system to illustrate
specific applications, the RL framework is further illustrated.
The DRB system in Fig. 1(b) allows for different connec-
tions through the opening and closing of switches, which in-
clude legal and illegal structures. The switching change in
the DRB topology is modelled as a MDPs with quaternion
(s, a, p,R), where s is the state, a is the action, p is the state
transition probability derived from system dynamics (implic-
itly defined), and R is the reward. The specific settings are as
follows:

State: The state encompasses the agent’s perception of the
battery module, including the capacities of individual batter-
ies, external load demands, battery count, and their structural
characteristics.

Action: The action variable is a 6-dimensional continuous
variable ranging from 0 to 1. It represents a hidden state that
controls switches in the system after training with the VAE.
The system includes 4nc − 3 switches, leading to 24nc−3 po-
tential discrete actions that must be evaluated. Directly man-
aging an exponential array of actions using a neural network
is impractical due to the high dimensionality of the space.
Consequently, a VAE is introduced to efficiently transform
the learned hidden variables. It represents a hidden state that
controls switches in the system after training with the VAE.
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Algorithm 1 Sub-tasks Rewards.
Input: SOCt−1, SOCt, switcht−1, switcht

Output: r1, r2, r3
1: if Legal then
2: if Satisfy the load then
3: rparallel ← if parallel then
4: if all(I) ≥ 0 then 1 else 0.2 else 0.6
5: if (∆SOCt−1 < 1 and ∆SOCt < 1) or (∆SOCt−1 >

∆SOCt) then
6: r1← 1
7: r2← sum(switcht−1 = switcht)/num switch
8: r3← rparallel
9: else

10: r1, r2, r3← 0.05
11: end if
12: else
13: r1, r2, r3← −0.05
14: end if
15: else
16: r1, r2, r3← −1
17: end if

Reward: The reward signifies whether the agent’s actions
align with the task objectives. Our primary aim is to manage
DRB systems so that battery capacity differences diminish as
they meet external load demands. We also aim to maximize
parallel connections of batteries due to the rate-capacity ef-
fect, where discharging all cells together yields greater capac-
ity than partial discharge. Additionally, we strive for the last
controlled action to closely resemble the current action being
executed, which improves system stability. The existence of
correlations and exclusions between multiple requirements is
complex and needs to be decomposed. The original task re-
ward is decomposed into r1, r2, r3 in Alg. 1.

Following the above analysis, the RL-based DRB system
exhibit a comprehensive structure, defined by the establish-
ment of states, actions, and rewards.

4 Results
4.1 Environment and Setting
The DRB system is developed and experimented on
SIMULINK. The system comprises eight cells and twenty-
nine switches, with each cell modeled according to a prede-
fined discharge profile [Zhu et al., 2013]. Our simulations
provide the current, voltage, and SOC of the cells, achieving
series and parallel connections by controlling the switches.
The environment supports interaction with Python. Further-
more, tests are conducted in real-world scenarios.

In the experiments, fifty training iterations are conducted
for each discharge process, with each discharge consisting of
150 steps. We establish three sub-tasks with set rewards and
employ an evolutionary algorithm to maintain a population of
twelve individuals. In each training round, 256 sample points
are selected, with the discount factor set to 0.99, the learn-
ing rate to 3e-4, and the entropy coefficient to 0.12. In the
real-world application scenario, the INR 18650-20R model
battery, which has a rated capacity of 2000 mAh, is used.
The training duration is 160 hours, while the inference time
is approximately 1.00 ms. Both the inference time and the

Figure 4: The SOC discharges are analyzed for batteries under var-
ious configurations. (a) operate within a fixed topology, (b) utilize
EERL within the DRB system.

hardware execution time are within the millisecond range, in-
dicating that the model’s inference is exceptionally efficient.
The time required for the microcontroller to transmit the col-
lected data back to the host computer from 57.86 to 87.23 ms,
which is considered reasonable.

4.2 System Operation Effect
To evaluate the performance of the proposed framework, the
batteries are placed in a fixed topology and the enhanced
framework. As depicted in Fig. 4, the framework demon-
strates superior performance on the DRB system, as it ac-
counts for the total battery capacity to achieve equalization.

In fixed topology operation, all cells are connected in se-
ries, and each cell experiences the same current. As a result,
disparities in the SOC among cells persist. When the weakest
cell reaches its lower threshold, the remaining energy of the
other cells cannot be harnessed. With a fixed topology, there
is no significant change in SOC differences through sustained
discharging, which would be more pronounced with a com-
pletely different battery attributes. Applying our proposed
method to the DRB system resulted in a gradual reduction
of SOC variance during operation. It is reduced from 12 %
at the beginning to less than 1 %, specifically 0.427 %. The
amount of energy released from each cell also improves from
4.356 Wh to 4.701 Wh upon the implementation of EERL,
resulting in a significant improvement of 7.920 %.

4.3 Modular Enhancement
To evaluate the improvement offered by the proposed method
in the baseline, we train the baseline and the model without
employing evolutionary algorithms to bootstrap the various
sub-tasks. The baseline employs the SAC algorithm as the RL
framework without incorporating additional modules. Build-
ing on this, ensemble learning is integrated to manage various
sub-tasks by simplifying complex goals. Finally, we enhance
the system by optimizing and adjusting these sub-objectives
through evolutionary learning, allowing the overall update
process to consider multiple objectives. Six tests are con-
ducted with randomized initial values for each SOC between
80% and 95%. The average results for different objectives are
presented in Table 1. Note that higher values indicate better
performance for energy and safe paralleling, whereas lower
values are required for switch operations and illegal connec-
tions.

Significant improvements in the EERL framework are ob-
served. The average energy released per battery increased
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Algorithm Baseline Ensemble Proposed
Energy / Wh 4.847E+00 4.910E+00 4.913E+00

operations / Times 7.379E+00 6.374E+00 6.303E+00
Safe Paralleling 8.060E-01 8.688E-01 8.847E-01

illegal 3.736E-03 0.000E+00 0.000E+00

Table 1: Detailed comparison of additions to different modules. The
average results of multiple experiments are shown.

Figure 5: Comparison of average results across methods: Baseline
(Base.), Ensemble (Ens.), and Proposed (Prop.). (a) – (c) represent
the energy released by each cell, the number of actuated switches
per decision, and the percentage of safe paralleling over total runs.

from 4.847 Wh to 4.913 Wh compared to the baseline, in-
dicating more efficient utilization of the battery. The aver-
age number of switching actions per decision is reduced by
14.581 %, indicating the agent achieves battery balancing at
a smaller action cost. During operation, the DRB system
should be powered by more cells due to the rate capacity ef-
fect. By training the agent achieves safe parallel demand in
88.470 % of the cases during a discharge. Crucially, the dis-
charging process may result in actions that still violate con-
nection constraints due to the complexity of hidden variables.
Illegal connections can poses a significant risk to systems.
The proposed framework includes a pre-screening feature to
ensure system safety by selecting actions that are both safe
and have a high critic score. It reduces the original 0.374 %
violation percentage to 0 % and ensures the safety, which is a
huge improvement in the performance of the DRB system.

Compared to RL with the added ensemble strategy, EERL
is more advantageous in several metrics. The table 1 demon-
strates that the model with ensemble learning shows improve-
ment over the baseline and has an advantage in individual
metrics. This improvement arises because decomposing com-
plex goals allows the agent to perform better on individual ob-
jectives. However, the absence of constraints from the evolu-
tionary algorithm on multiple goals results in less pronounced
improvements than EERL. Fig. 5 provides a more intuitive
view, illustrating that EERL outperforms both the baseline
and RL with ensemble learning.

To demonstrate the effectiveness of the improved evolu-
tionary algorithm, both the basic and the improved evolution-
ary algorithms are trained within the EERL model. The basic
achieves the optimal population of individuals by comparing
non-dominated sorting results and using the best individuals
as agents to perform tasks. We implemented a buffer mecha-
nism, where optimal individuals are placed in alternative re-
gions for observation. The replacement of the executing agent
is carried out only after the network is updated and the opti-
mal are confirmed. The reward boosts for the three sub-tasks

Figure 6: Rewards for different sub-tasks during training. (a) - (c)
represent training with different rewards as described in Alg. 1.

Figure 7: Variation in SOC of batteries under different algorithms.

during training are shown in Fig. 6. While both schemes
perform well when fully trained, the improved evolutionary
algorithm reaches the optimal result more quickly during the
training process compared to the basic. The improved scheme
avoids retaining poorly updated and accidentally excellent in-
dividuals.

4.4 Algorithm Comparison
A comparison is made for the application of current algo-
rithms to the DRB system. Traditional RL strategies, PPO
[Schulman et al., 2017], and TD3 [Fujimoto et al., 2018] are
compared to evaluate whether they can learn effectively with
different sampling methods. Different multi-objective opti-
mization algorithms are applied for the multi-objective op-
timization nature of the model, such as CAPQL [Lu et al.,
2023a], GPI-PD [Alegre et al., 2023], Meta-RL [Chen et al.,
2019], PCN [Reymond et al., 2022]. Fig. 7 shows the vari-
ation in SOC the operation of the DRB system for the ba-
sic models and multi-objective models. Determining whether
the battery energy can be fully discharged is the most im-
portant criterion for evaluating the quality of a battery pack.
Each trained model tests six times using different initial val-
ues. Light colors indicate raw results and dark colors indicate
average results.

The SAC demonstrates effective learning in equalizing the
DRB system, as anticipated. In contrast, PPO and TD3 algo-
rithms fail to converge efficiently, resulting in limited reward
improvement. The different sampling approach from VAE in
other RL methods is the essential reason for the inability to
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Algorithm CAPQL GPI-PD Meta-RL PCN PPO TD3 Proposed
Energy / Wh 4.806E+00 4.640E+00 4.313E+00 4.824E+00 2.429E+00 4.314E+00 4.913E+00

operations / Times 4.060E+00 1.299E+01 1.112E+01 6.911E+00 6.933E-01 1.157E+01 6.303E+00
Safe Paralleling 2.943E-01 1.801E-01 1.184E-01 7.417E-01 1.974E-01 2.103E-01 8.847E-01

illegal 1.036E-02 5.252E-02 6.624E-02 5.156E-03 0.000E+00 5.975E-02 0.000E+00

Table 2: Detailed comparison of different algorithms. The average results of multiple experiments are shown.

train effectively. SAC employs a reparameterization strategy
where the sampling is the same as the VAE, and the reparam-
eterization introduces tractable randomness that can be effi-
ciently optimized by the back-propagation algorithm. PPO
and TD3 employ probabilistic strategies and direct pertur-
bations, respectively. Equalization is a fundamental require-
ment in DRB systems. However, basic algorithms struggle to
meet this requirement, limiting their ability to optimize other
objectives effectively. For Meta-RL, the training outcomes
are suboptimal. Although a meta-learning model is incor-
porated into RL, the artificially defined weights increase the
search space without enabling effective training under highly
complex reward conditions. CAPQL converges to local op-
tima during learning and fails to satisfy load response require-
ments in each decision-making step. Additionally, the dis-
charge process does not align with specified external demands
and consistently operates at low voltage levels, resulting in
an unreasonably extended runtime. While GPI-PD and PCN
demonstrate effective training, the SOC discrepancy between
different cells remains approximately 2%, leading to reduced
energy. Incorporating weights or preferences into the com-
parison algorithm and learning the Pareto frontier expands
the learning space and increases task complexity, which may
result in less effective decision-making within the current do-
main compared to the basic scheme without weights. Details
of the comparison algorithms are provided in Table 2.

The proposed model demonstrates the highest energy re-
lease. The sampling method causes the PPO algorithm to
fail in convergence, leading to repetitive execution of the
same action. As illustrated in Fig. 7, the SOC difference
expands rapidly. After excluding models that are not effec-
tively trained, the proposed achieves maximum energy re-
lease with minimal actions and the highest percentage of safe
parallelism. Notably, the proposed model ensures operational
safety by avoiding illegal connections entirely. In contrast,
the comparison algorithm shows occasional illegal connec-
tions despite effective training, posing significant safety risks.

4.5 Real-World Scenario Testing
In this section, a real DRB system is constructed for practi-
cal evaluation. Ensuring absolute safety during testing in real
environments is crucial, as the comparison algorithm poses
risks of battery shorts and incorrect series-parallel connec-
tions. Consequently, practical tests are conducted on fixed
topology and the EERL model. The field-effect transistor
switches, with their exceptional performance, enable rapid
execution of control decisions. Decisions are made based
on current and voltage feedback from the BMS, alongside
the SOC values derived using the ampere-hour integration
method. Control of the DRB system is executed by operating

Figure 8: The SOC discharges in the Real-World Scenario. (a) repre-
sents established the real prototype, (b) operate within a fixed topol-
ogy, (c) utilize EERL within the DRB system.

the array of circuit switches through control signals generated
by the agent.

The actual hardware and experimental SOC curves are
shown in Fig. 8. In real-world testing, the measured voltages
during the run indicated that different batteries discharged at
varying rates. To create a more pronounced difference among
the battery packs at the outset, we discharged the batteries
to different SOC. As illustrated in the Fig. 8(b), The feed-
back SOC difference ranges from 13.995 % to 13.910 % as
all cells are continuously discharged in series. This indicates
that most batteries do not reach the lower discharge thresh-
old. The display connected to the load shows that the total
discharged energy is 33.521 Wh. As illustrated in the Fig.
8(c), although there is a significant initial difference in SOC
among the batteries, this disparity gradually decreases as the
system operates. The feedback data indicates that the initial
SOC difference is 13.967 %, which decreased to 1.078 % by
the end of the run. The system discharged a total of 37.236
Wh, as observed on the monitor connected to the load. This
represents a significant improvement of 11.083 %. The oper-
ation of a real energy system confirms the practicality of the
proposed model.

5 Conclusion
In this paper, control strategies for the DRB system are inves-
tigated, which can be effectively applied to electric vehicles,
uninterruptible power supplies, and the terraced utilization of
retired batteries. By splitting the complex task and correlating
different sub-tasks, we solve the problem of multi-objective
control falling into local optima in traditional RL and achieve
the performance improvement of the DRB system and battery
pack equalization while ensuring safety. It is demonstrated
that the EERL is capable of addressing the multi-objective
policy control problem and performs well across several met-
rics. In addition, we conduct model testing in real scenar-
ios to verify that the proposed model is sufficiently practi-
cal. For future work, the model is intended to be applied to
high-capacity energy storage systems, with deeper problems
in DRB systems analyzed for further optimization.
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[Van Moffaert and Nowé, 2014] Kristof Van Moffaert and
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