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Abstract
Text-driven video editing powered by generative
diffusion models holds significant promise for ap-
plications spanning film production, advertising,
and beyond. However, the limited expressiveness
of pre-trained word embeddings often restricts nu-
anced edits, especially when targeting novel con-
cepts with specific attributes. In this work, we
present a novel Concept-Augmented Textual In-
version (CATI) framework that flexibly integrates
new object information from user-provided concept
videos. By fine-tuning only the V (Value) projec-
tion in attention via Low-Rank Adaptation (LoRA),
our approach preserves the original attention distri-
bution of the diffusion model while efficiently in-
corporating external concept knowledge. To fur-
ther stabilize editing results and mitigate the is-
sue of attention dispersion when prompt keywords
are modified, we introduce a Dual Prior Super-
vision (DPS) mechanism. DPS supervises cross-
attention between the source and target prompts,
preventing undesired changes to non-target areas
and improving the fidelity of novel concepts. Ex-
tensive evaluations demonstrate that our plug-and-
play solution not only maintains spatial and tem-
poral consistency but also outperforms state-of-the-
art methods in generating lifelike and stable edited
videos. The source code is publicly available at
https://guomc9.github.io/STIVE-PAGE/.

1 Introduction
Text-driven video editing, powered by generative diffusion
models [Ho et al., 2020], [Song et al., 2020], [Rombach et
al., 2021], has emerged as a transformative technology with
broad applications in film, art, and advertising [Ho et al.,
2022], [Hong et al., 2022], [Blattmann et al., 2023]. Re-
cent advancements, such as Tune-A-Video [Wu et al., 2023],
FateZero [Qi et al., 2023], and VideoComposer [Wang et al.,
2024], have significantly enhanced the ability to edit objects,
backgrounds, and styles in video while preserving overall
scene consistency through optimized attention mechanisms

and spatiotemporal continuity. Despite these successes, ex-
isting methods are constrained by the limited expressiveness
of CLIP [Radford et al., 2021] word embeddings, which re-
stricts their ability to perform nuanced edits on targets with
specific attributes. Moreover, modifications to the target
prompt often disrupt attention mechanisms, leading to incon-
sistencies in non-target areas before and after editing.

Inspired by Textual Inversion [Gal et al., 2022], a feasible
approach is to leverage external concept word embeddings,
which are optimized within CLIP text encoder [Radford et al.,
2021] while keeping the diffusion model’s parameters frozen.
This technique allows the model to incorporate user-provided
custom images for guided editing. However, the conventional
Textual Inversion faces significant limitations when applied
to video editing. Specifically, it lacks the ability to capture
novel object information from arbitrary concept videos, re-
sulting in word embeddings with insufficient fidelity to ac-
curately describe target objects. Consequently, directly ap-
plying Textual Inversion to one-shot video editing often fails
to generate satisfactory results for novel concept pairs, high-
lighting the need for a more robust and adaptive solution.

To this end, we propose Concept-Augmented Textual In-
version to enable one-shot flexible video editing based on
external word embedding and target video. Specifically, we
employ cutting-edge LoRA (Low-Rank Adaptation) modules
to fine-tune attention value weights, focusing exclusively on
the V (Value) projection (we elaborate on the rationale for
tuning only V in subsequent sections). This approach effec-
tively maintains the advantages of low VRAM overhead dur-
ing tuning while preserving the plug-and-play capabilities of
the model. In the context of V projection LoRA, our primary
objective is to perform inversion while integrating novel ob-
ject information from arbitrary concept videos for one-shot
video editing. The textual inversion process relies on the pre-
trained denoising network’s established text-image attention
probability distribution to achieve accurate target representa-
tion. By fine-tuning only the V weights—rather than both
Q (Query) and K (Key)—we enable the direct integration
of new feature representations while minimizing disruptions
to the pre-trained attention distribution. This selective fine-
tuning strategy ensures stable training during the early stages,
as it suppresses unnecessary changes to the model’s foun-
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dational attention mechanisms. In addition, we introduce a
Dual Prior Supervision (DPS) mechanism, designed to sta-
bilize the generated video by supervising the cross-attention
between the source and target prompts. This mechanism ad-
dresses the issue of attention dispersion, which often arises
when modifications are made to the target prompt. By effec-
tively controlling the attention distribution, DPS significantly
enhances the consistency of non-target areas before and af-
ter video editing. Furthermore, it enriches the fidelity of the
concepts in the edited results, ensuring that the final output
maintains both spatial and temporal coherence.

• We propose a novel Concept-Augmented Textual In-
version (CATI) approach that reliably captures target
attributes from user-provided concept videos, improving
the fidelity and flexibility of video editing.

• We introduce a Dual Prior Supervision (DPS) mech-
anism that stabilizes video generation by supervising
cross-attention between source and target prompts. DPS
prevents attention dispersion caused by target prompt
modifications, significantly improving the consistency
of non-target areas before and after editing.

• We orchestrate a framework that allows users to ex-
tract concepts from custom videos and generate diverse
edited videos through concept templates. This approach
supports plug-and-play integration with stable diffusion
models, enabling efficient and stable video editing.

2 Related Work
Text-Driven Video Editing. Current approaches for text-
driven video editing mainly fall into three categories: fine-
tuning video generation models [Zhao et al., 2023], [Wang
et al., 2024], fine-tuning image generation models extended
with temporal modules [Wu et al., 2023], [Qi et al., 2023],
and combining NLA [Kasten et al., 2021] with pre-trained
image generation models [Bar-Tal et al., 2022], [Lee et al.,
2023], [Chai et al., 2023]. Recent advances have demon-
strated various innovative approaches in these categories. For
example, [Ku et al., 2024] employs a pretrained model for
diverse video editing tasks, while GenVideo [Singer et al.,
2025] utilizes a target-image-aware approach with InvEdit
masks to overcome text-prompt limitations. [Bar-Tal et al.,
2022], [Lee et al., 2023], [Chai et al., 2023] extract layered
neural atlases from video to edit atlases which are further
processed to synthesize videos; however, generating a neu-
ral atlas demands considerable computational time. Recently,
Tune-A-Video [Wu et al., 2023] achieves one-shot video edit-
ing with improved inter-frame coherency by updating self-
attention with sparse causal attention. FateZero [Qi et al.,
2023] further proposes self-attention blending and incorpo-
rates attention control [Hertz et al., 2023] to enhance the
ability of editing objects, background, and styles while main-
taining scene consistency. For temporal consistency specif-
ically, VidToMe merges self-attention tokens across frames,
while [Geyer et al., 2023] leverages inter-frame correspon-
dences to propagate features. In spatial editing, approaches
like [Ceylan et al., 2023], [Cohen et al., 2024], [Liu et al.,

2024] improve results using spatial or temporal attention fea-
tures in diffusion models. For editing targets with specific at-
tributes, it becomes necessary to introduce external word em-
beddings. Our method supports the incorporation of external
concept word embeddings. Furthermore, inspired by Tune-
A-Video [Wu et al., 2023] and FateZero [Qi et al., 2023],
we introduce a dual prior supervision mechanism between
video latents and word embeddings to enhance scene consis-
tency before and after video editing based on attention control
methods. Compared to existing approaches, our method fo-
cuses on attention supervision and control mechanisms and
operates on a one-shot video editing paradigm.

Textual Inversion. [Gal et al., 2022] proposes a textual in-
version method that optimizes newly added concept word em-
beddings in the CLIP [Radford et al., 2021] text encoder,
supervised by the latent variable distribution of specific im-
ages in the diffusion model. However, using a pre-trained
diffusion model for self-supervised text inversion may lead
to under-fitting for some specific images due to the finite la-
tent space. Although it’s feasible to optimize full parameters
of the denosing network in diffusion model with a smaller
learning rate simultaneously, or to train it with frozen con-
cept embeddings in the next stage, this process faces issues of
easy over-fitting and high storage costs. Our method, build-
ing upon textual inversion [Gal et al., 2022], attempts to add
LoRA [Hu et al., 2022] to the denosing network, optimizing
them simultaneously with concept words at a smaller learning
rate, to enhance the text editing capabilities of concept words.

Cross Attention Control and Supervision. Prompt-to-
Prompt [Hertz et al., 2023] proposes three attention control
methods for stable text-driven image editing based on diffu-
sion models: word swap, refinement, and reweighting. By
applying the cross-attention probability map recorded from
the original image latent variables and text to the denoising
process of original image latent variables and edited text, it
has achieved significant success in stable text-driven image
editing [Avrahami et al., 2022], [Avrahami et al., 2023]. Ad-
ditionally, [Qi et al., 2023] proposed self-attention blend ef-
fectively transfers the stability of text-driven image editing to
video editing. Our method, built upon this foundation, intro-
duces external concept words to support editing with higher
degrees of freedom. Inspired by the work of [Yang and Tang,
2022], we introduce an attention supervision mechanism to
address the issue of dispersed attention in editing words.

3 Method
3.1 Preliminaries
Textual Inversion. Textual inversion [Gal et al., 2022]
learns new embeddings for user-provided visual concepts in
the textual embedding space, associating them with pseudo-
words for use in new sentences for text-to-vision editing.
The process uses a latent diffusion model, typically with a
pretrained autoencoder and a noise prediction network: the
encoder E maps image x to latent z = E(x), and the de-
coder D reconstructs x ≈ D(z). Textual inversion employs a
CLIP [Radford et al., 2021] text encoder cθ with added con-
cept words to encode conditional text y. The optimization
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Figure 1: Overview of our training and inference pipelines. During the training stage, we first adapt the diffusion model to new visual
concepts using our introduced Concept-Augmented Textual Inversion (CATI), and then we tune the temporally extended diffusion model with
our proposed Dual Prior Supervision (DPS) mechanism to prevent unintended changes in edited videos. During the inference stage, we blend
self-attention matrices (Self-Attention Blending) and swap cross-attention matrices (Cross-Attention Swap) to achieve stable video editing.

objective is:

Lnoise = Ez∼E(x),y,ϵ∼N (0,1),t[∥ϵ− ϵθ(zt, t, cθ(y))∥22], (1)

where zt is the noised latent at time step t, ϵ is the noise, and
ϵθ is the noise prediction network.
Low-Rank Adaption. [Hu et al., 2022] proposes an effi-
cient fine-tuning scheme based on matrix low-rank decompo-
sition. For the pre-trained weight W0 ∈ Rd×k in the original
model, it updates the weight as W = W0 + ∆W , where
∆W = BA, B ∈ Rd×r, A ∈ Rr×k, and r ≪ min(d, k).
During the fine-tuning process, the pre-trained weight W0

is frozen, while A and B are trainable parameters. For the
forward computation of the original weight h = W0x, the
updated forward computation becomes:

LoRA(h) = W0x+∆Wx. (2)

Video Diffusion Models with Temporal Extensions.
Tune-A-Video [Wu et al., 2023] introduces Spatio-
Temporal Attention (ST-Attn) to replace the original Self-
Attention [Vaswani, 2017] in the 2D UNet. When calculating
the keys K and values V , ST-Attn concatenates latent vari-
ables of the first and former frames of the video, leading to
the attention result where the current frame attends to both the
first and former frames. The specific operations for replacing
K,V in Self-Attention are as follows:

K = WK [zv1
; zvi−1

],V = W V [zv1
; zvi−1

], (3)

where WK and WV are projection matrices for key and value
respectively, zvi denotes the latent variable of the i-th frame
of the video to the current attention layer, and [·] denotes con-
catenation.

3.2 Stabilized Text-Driven Video Editing
Our training and inference pipelines are shown in Fig. 1. We
use a UNet initialized from Stable Diffusion’s pre-trained 2D

UNet [Rombach et al., 2021] as the noise predictor. To handle
3D video inputs, we replace spatial self-attention layers with
ST-Attn (Eq.3). Following FateZero [Qi et al., 2023], we add
LoRA-based temporal convolution layers after spatial convo-
lutions, and temporal self-attention with zero-initialized lin-
ear output after cross-attention. These new modules are resid-
ually connected to the originals.

Our approach for stabilized text-driven video editing has
two learning phases. In the first phase, we introduce Concept-
Augmented Textual Inversion (CATI) to adapt the diffusion
model to new visual concepts. In the second phase, we tune
partial parameters of the temporally extended diffusion model
to suppress unintended changes in edited videos by calibrat-
ing cross-attention results.

Concept-Augmented Textual Inversion. Textual inver-
sion [Gal et al., 2022] learns to represent a specific set of
user-provided images with pseudo-words in the latent space,
offering an intuitive way for natural language-guided image
editing. We incorporate this technique into our framework to
facilitate video editing. However, due to the self-supervised
nature within the limited latent space of the pre-trained diffu-
sion model, the vanilla textual inversion often results in var-
ied performance in terms of quality and efficiency for differ-
ent image sets, requiring meticulous adjustments for learning
rates and iteration counts.

To alleviate this issue, we draw inspiration from exist-
ing parameter-efficient fine-tuning techniques and propose
adding LoRA modules [Hu et al., 2022] to the value pro-
jection parameters in the cross-attention layers of the UNet.
Consequently, the values V are updated to LoRA(V ) ac-
cording to Eq. (2). The rationale behind our approach is that
we aim to enhance the expressiveness of the pre-trained dif-
fusion model by slightly adjusting its capacity to accommo-
date new visual concepts while preserving its original gener-
ation capability. Besides, inserting LoRA modules not only
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Figure 2: Visualization of the dual prior supervision mechanism.
Each row displays a video frame, a set of cross-attention maps be-
tween this video frame and prompt words, and a pseudo ground truth
mask. The scam loss and tcam loss are computed between relevant
words and pseudo masks to reduce unintended changes.

augments textual inversion with low storage overhead but
also maintains a plug-and-play characteristic during infer-
ence. Textual inversion process relies on the pre-trained de-
noising network established text-image attention probability
distribution to achieve accurate target representation. In this
context, fine-tuning only the V weights instead of Q and K
allows new feature representations to be directly integrated
while suppressing changes towards the pre-trained attention
distribution to enable stable training during the early stages.

We train the concept-word embeddings of textual inversion
and the weight parameters of LoRA modules in an end-to-
end manner (see orange blocks in Fig. 1), where the learn-
ing rate for LoRA parameters is relatively smaller than that
for concept-word embeddings to avoid over-fitting. Denote
the noise prediction network with LoRA modules loaded on
value projection parameters as ϵθL , the optimization objective
of concept-augmented textual inversion is then updated from
Eq. (1) to the following:

Lnoise = Ez∼E(x),y,ϵ∼N (0,1),t[∥ϵ−ϵθL(zt, t, cθ(y))∥22]. (4)

Model Tuning with Dual Prior Supervision. After learn-
ing concept-augmented textual inversion, we adapt and tune
the video diffusion model for text-driven video editing in
line with the paradigm of few-shot learning. Specifically,
we learn the LoRA-structured temporal convolution layers,
the query projection weights within spatio-temporal atten-
tion layers and cross-attention layers, and the temporal self-
attention layers (see red blocks in Fig. 1). These parameters
are selected for updates during training due to their strong rel-
evance to the temporal modeling of 3D videos. To attain more
stable and higher quality editing results, we tried directly in-
tegrating existing attention control techniques [Hertz et al.,
2023] in an early attempt; however, we found that when ap-
plying text-driven video editing types such as word swap, the
dispersion phenomenon of cross-attention between text em-
beddings and video latents leads to reduced stability in editing
results, which is shown in Fig 5. To address this challenge,
we propose a dual prior supervision mechanism, which in-
cludes a source cross-attention mask (scam) loss and a target
cross-attention mask (tcam) loss.

The scam loss is designed to reduce the attention influence

of the words to be replaced in the source prompt on irrel-
evant frame areas (see the first row in Fig. 2). It is also
applied to modulate attention between concept words and
concept videos (see the second row in Fig. 2). Specifically,
for K cross-attention layers in the UNet, we record cross-
attention matrices Ms between the words and the video frame
latents in each cross-attention layer. To obtain ground truth
for optimization, we use an off-the-shelf object detection net-
work OWL-ViT [Minderer et al., 2022] to localize objects
in video frames and generate corresponding binary pseudo-
labels Mgt

s . We further apply max pooling to generate K
pseudo-labels, each with a designated resolution Pk. The loss
is then calculated as the mean absolute loss on irrelevant ar-
eas:

Lscam =
1

K

K∑
k=1

Pk∑
i=1

[
∥Mgt

s,k,i −Ms,k,i∥ · (1−Mgt
s,k,i)

]
. (5)

The tcam loss is introduced to diminish the attention influ-
ence of the target words in the edited prompt to further pro-
mote the consistency of irrelevant areas before and after video
editing (see the third row in Fig. 2). Similar to the scam loss,
we obtain cross-attention matrices Mt and pseudo-labels Mgt

t
between the target words in the edited prompt and the video
frame latents. The loss is computed as:

Ltcam =
1

K

K∑
k=1

Pk∑
i=1

[
∥Mgt

t,k,i −Mt,k,i∥ · (1−Mgt
t,k,i)

]
. (6)

Let the trainable parameters during the model tuning phase
be denoted as ϵθT . The noise prediction loss Lnoise is then
obtained by substituting ϵθ in Eq. (1) with ϵθT . Given α and
β as the weighting coefficients for our proposed scam loss
and tcam loss, respectively, the total loss for model tuning
with dual prior supervision is formulated as:

L = Lnoise + αLscam + βLtcam. (7)

Inference. As shown in Fig.1, the pipeline consists of an
inversion stage with the source prompt and an editing stage
with the modified prompt. During inversion, we cache self-
and cross-attention matrices at each step, which are later
used to control attention in editing. Specifically, we blend
self-attention matrices to preserve semantic layout [Qi et al.,
2023], and swap cross-attention matrices for changed words
and video latents [Hertz et al., 2023].

4 Experiments
4.1 Settings and Datasets
Our experiments are conducted on a machine equipped with
an NVIDIA GeForce RTX 4090. During the concept aug-
mented textual inversion stage, we set the learning rate for
CLIP [Radford et al., 2021] word embeddings to 1 × 10−3,
and the learning rate for LoRA modules inserted into the
UNet to 1 × 10−5, with the number of training steps set to
Additionally, we randomly sample frame numbers within the
range [4, 8] from the concept video during training, to pre-
vent the inversion process from over-fitting to a fixed frame
number. For the video diffusion model fine-tuning stage,
we empirically set α = 0.1 and β = 0.1 in Eq. (7). The
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Methods M-PSNR ↑ Concept Cons. ↑ Frame Cons. ↑

Tune-A-Video 14.70 0.6982 0.9399
FateZero 17.08 0.6822 0.9413
MotionDirector 12.73 0.7222 0.9452
RAVE 17.39 0.6990 0.9379

Ours 19.71 0.7642 0.9472

Table 1: Quantitative results of video editing w/ concept video.

Methods M-PSNR ↑ Frame Cons. ↑
Tune-A-Video 15.72 0.9397
FateZero 19.42 0.9246
MotionDirector 16.86 0.9403
RAVE 16.20 0.9306
Ours 22.10 0.9405

Table 2: Quantitative results of video editing w/o concept video.

training steps above all use AdamW [Loshchilov and Hut-
ter, 2017] optimizer. In the inference stage of video editing,
the guidance scale is set to 12.5, the number of DDIM In-
version steps is T = 50, and the self-attention blending and
cross-attention swap steps are within the interval [0, 0.7T ].
To evaluate our proposed method, we used a portion of the
DAVIS [Caelles et al., 2019] dataset and clip videos from the
internet to construct video editing pairs, either with or with-
out concept videos.

4.2 Metrics
Frame Consistency. To compare the coherence of the
video frames F, we refer to the metric used in [Wu et al.,
2023], [Hessel et al., 2021], which calculates the average co-
sine distance d between features (vi,vj) of each two different
frames (fi,fj) encoded by the CLIP visual encoder [Radford
et al., 2021], as Eq. (8). Here, fi,fj ∈ F, fi ̸= fj , and D
denotes the set of the vector pairs (vi,vj).

d =
1

|D|
∑

(vi,vj)∈D

vi · vj

∥vi∥∥vj∥
. (8)

Masked Peek-Signal-Noise Ratio. To compare the stabil-
ity of the video non-target areas before and after target edit-
ing, we design a Masked Peak Signal-to-Noise Ratio (M-
PSNR) metric. We use the OWL-ViT [Minderer et al., 2022]
open-vocabulary object detection model with text pseudo-
labels to estimate the bounding box mask M of the edited
target. We then compare the average peek-signal-noise ra-
tio of the original video frames and the edited video frames
after applying this mask. The calculation formula for the spe-
cific function f for the Mean Squared Error (MSE) used as
input is as follows, where M ∈ RH×W , Is ∈ RH×W×C ,
and Ie ∈ RH×W×C refer to the mask value, the frame pixel
value of video before and after editing, respectively.

f(I
s
, I

e
,M) =

1

C

∑
k∈C

∑
i∈H

∑
j∈W (Isi,j,k − Iei,j,k)2(1 − Mi,j)∑

i∈H

∑
j∈W (1 − Mi,j)

. (9)

Concept Consistency. We employ a multi-step approach
to evaluate the correlation between the video editing results
guided by the concept video and the concept video itself
while minimizing interference in non-target areas. First, we
use a pre-trained OWL-ViT [Minderer et al., 2022] model in
conjunction with pseudo-label prediction to generate object
masks for both videos. We then extract pixel segments of
the target objects from both the edited video and the concept
video. Finally, we leverage the CLIP model to predict visual
encoding vectors for these extracted segments and calculate
the average cosine similarity between them.

4.3 Comparisons with Existing Methods
Quantitative Evaluation. As illustrated in Tab. 1 and
Tab. 2, we assess text-driven video editing results in three
aspects. Compared with existing methods that extend
and fine-tune the Stable Diffusion model, including Tune-
A-Video [Wu et al., 2023], FateZero [Qi et al., 2023],
RAVE [Kara et al., 2024], and MotionDirector [Zhao et al.,
2023], our approach demonstrates superior inter-frame coher-
ence in terms of the Frame Consistency Metric. To evalu-
ate the consistency of unrelated areas before and after video
editing, we employ M-PSNR as a reference metric, and our
method achieves the highest score by a large margin. Con-
cretely, our method outperforms MotionDirector [Zhao et al.,
2023] by a noticeable 6.98 M-PSNR in editing with concept
video. This is attributed to our proposed prior supervision
mechanism, which effectively reduces the editing noise in
non-target areas for both source and concept videos. Fur-
thermore, to evaluate the target fidelity in concept and edited
videos, we utilize Concept Consistency as a reference met-
ric, and our method demonstrates greater fidelity compared
to others.
Qualitative Evaluation. Fig.3 shows visual comparison re-
sults of video editing with and without concept video guid-
ance. Our method maintains content consistency in non-
target areas before and after editing. With concept videos, it
effectively introduces visual concepts from the concept video
into the edited result. For instance, in Fig.3 (Setting I), our
method successfully replaces man with ‘$OPTIMUS’, while
others fail to preserve background or transfer the complete
target shape. Other approaches commonly face instability
in non-target areas. Tune-A-Video [Wu et al., 2023] en-
counters dispersed cross-attention issues due to fine-tuning
with only one video-text pair. While FateZero [Qi et al.,
2023] and RAVE [Kara et al., 2024] mitigate this through
cross-attention manipulation or noise shuffling, their direct
concept-driven editing compromises non-target consistency
and concept fidelity. MotionDirector [Zhao et al., 2023] ex-
tracts targets via its trainable spatial path, but coupled spatial-
temporal paths provide unstable guidance, causing non-target
inconsistencies. Our CATI and DPS effectively maintain non-
target content consistency while accurately capturing user-
provided concept attributes.

4.4 Ablation Study
Concept Augmentation Alleviates Under-Fitting of Tex-
tual Inversion. In this work, we draw on the idea of Tex-
tual Inversion (TI) from text-to-image generation and apply
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Figure 3: Video generation with (Setting I) and without (Setting II) concept pairs. The top row of the figure contains the concept video
with its prompt. The second row is the source video frames coupled with prompts that need to be edited. The rows below show the editing
results of the source video using the editing prompt for [Wu et al., 2023], [Qi et al., 2023], [Zhao et al., 2023], [Kara et al., 2024] and our
method, respectively, in which words with ”$” ahead mean concept words, and the same for subsequent results.

it to text-driven video editing to address the embedding of
external concept words. However, simply applying TI may
lead to under-fitting, resulting in a lack of realism. For in-
stance, in the results shown in Fig. 4(a) and Fig. 4(c), where
the keywords ‘jeep’ are altered to ‘$LAMBO’ and ‘$CY-
BERTRUCK’, although some attributes (e.g., shape) of the
target concepts are partially retained, the results appear to
“drift” due to insufficient inductive bias. In contrast, the
concept-augmented textual inversion (CATI) can effectively

capture the color, shape, and other attributes, as demonstrated
in Fig. 4(b) and Fig. 4(d). CATI provides more detailed fea-
tures for editing, significantly improving inversion fidelity.

Dual Prior Supervision Improves Stability and Fidelity.
In this work, we propose a Dual Prior Supervision (DPS)
strategy, which consists of two main components (See
Sec. 3.2): scam loss and tcam loss. Both components play
crucial roles in maintaining the stability of the target gener-
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Figure 4: Comparison of whether to use Concept Augmentation
(CA) for textual inversion. Compared the text inversion results
without and with concept augmentation for pairs (a), (b): ‘jeep’
→ ‘$LAMBO’; and (c), (d): ‘jeep’ → ‘$CYBERTRUCK’, respec-
tively, from the same source prompt “a jeep driving down a curvy
road in the countryside”.

ation. By comparing the attention regions in Fig. 5 (a) (w/o
tcam, w/o scam), Fig. 5 (b) (w/o tcam, w/ scam), and Fig. 5
(c) (w/ tcam, w/o scam), we can conclude that both scam
and tcam (Fig. 5 (d)) significantly reduce background distur-
bances and improve stability. However, the generated video
results reveal that using either component alone cannot effec-
tively capture attributes of the target object, such as the color
of the car. DPS combines both components, not only enhanc-
ing the stability of the background in the target results but
also capturing the target object’s attributes more accurately,
thereby improving the fidelity of the edited concept target.

Tuning w/ Concept Video Produces Stylized Results. Re-
call that we construct the target videos in this work by tem-
plating the concept pairs to make the editing process more
flexible. To explore the impact of the concept video in Set-
ting I (Fig. 3), we conduct a simple experiment as shown in
Fig. 6. As shown in Fig. 6(a) and Fig. 6(b), tuning models
with both concept video and concept prompt produces more
stylized videos. The possible explanation lies in that the con-
cept video alleviates the overfitting issue.

5 Limitations and Future Work
Mismatch when Significant Deformation. Our method
effectively mitigates the inconsistency in non-target areas
caused by attention dispersion in video editing methods us-
ing attention replacement mechanisms, it may struggle when
a single concept video guides target replacement in cases of
significant deformation in the source video, such as running
people. For instance, there may be insufficient detailed corre-
spondences between the internal parts of the replacing and re-
placed targets during deformation, such as moving arms and
legs. Potential solutions include ControlNet [Zhang et al.,

Figure 5: The impact of dual prior supervision. From the first to
the last row, using the editing example in Fig. 1, we compare the av-
erage cross-attention maps and the editing results with and without
the supervision mechanism of scam and tcam. Each case contains
three pairs, and each pair consists of an average cross-attention map
on the left and an edited frame on the right.

Figure 6: Comparison of whether to tune with the concept video.
Compared the video editing results without and with tuning concept
video for the left part: ‘car’ → ‘$GT3’; and the right part: ‘car’
→ ‘$LAMBO’, from the source prompt “a car is drifting around a
curve road with the background of a forest” and “a car is drifting in
the snow”, respectively.

2023], OpenPose [Cao et al., 2019] and Sign-D2C [Tang et
al., 2025] which utilize motion conditions, like human pose
or sign language, to guide the video editing process.

6 Conclusion
In this paper, we present an improved concept-augmented
video editing approach that flexibly produces diverse, stable
target videos by leveraging abstract conceptual pairs. Specif-
ically, we introduce Concept-Augmented Textual Inversion
(CATI) to capture user-defined target concepts, enabling a
plug-and-play, stable diffusion pipeline for more stylized
editing. We further propose a Dual Prior Supervision (DPS)
mechanism to align cross-attention between source and tar-
get prompts, preventing unintended changes in non-target re-
gions. Experimental results show that our method signifi-
cantly enhances flexibility, consistency, and stability in text-
driven video editing.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
This work is supported by the National Natural Science Foun-
dation of China under Grant No. 62472139, by the An-
hui Provincial Natural Science Foundation, China (Grant
No. 2408085QF191), the Fundamental Research Funds for
the Central Universities (Grants No. JZ2024HGTA0178,
JZ2023HGQA0097), by the Open Project Program of the
State Key Laboratory of CAD&CG (Grant No. A2403), Zhe-
jiang University.

References
[Avrahami et al., 2022] Omri Avrahami, Dani Lischinski,

and Ohad Fried. Blended diffusion for text-driven edit-
ing of natural images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 18208–18218, June 2022.

[Avrahami et al., 2023] Omri Avrahami, Ohad Fried, and
Dani Lischinski. Blended latent diffusion. ACM Trans.
Graph., 42(4), jul 2023.

[Bar-Tal et al., 2022] Omer Bar-Tal, Dolev Ofri-Amar,
Rafail Fridman, Yoni Kasten, and Tali Dekel. Text2live:
Text-driven layered image and video editing. In European
conference on computer vision, pages 707–723. Springer,
2022.

[Blattmann et al., 2023] Andreas Blattmann, Tim Dockhorn,
Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Do-
minik Lorenz, Yam Levi, Zion English, Vikram Voleti,
Adam Letts, et al. Stable video diffusion: Scaling latent
video diffusion models to large datasets. arXiv preprint
arXiv:2311.15127, 2023.

[Caelles et al., 2019] Sergi Caelles, Jordi Pont-Tuset, Fed-
erico Perazzi, Alberto Montes, Kevis-Kokitsi Maninis, and
Luc Van Gool. The 2019 davis challenge on vos: Unsuper-
vised multi-object segmentation. arXiv:1905.00737, 2019.

[Cao et al., 2019] Z. Cao, G. Hidalgo Martinez, T. Simon,
S. Wei, and Y. A. Sheikh. Openpose: Realtime multi-
person 2d pose estimation using part affinity fields. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 2019.

[Ceylan et al., 2023] Duygu Ceylan, Chun-Hao P Huang,
and Niloy J Mitra. Pix2video: Video editing using im-
age diffusion. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 23206–
23217, 2023.

[Chai et al., 2023] Wenhao Chai, Xun Guo, Gaoang Wang,
and Yan Lu. Stablevideo: Text-driven consistency-aware
diffusion video editing. arXiv preprint arXiv:2308.09592,
2023.

[Cohen et al., 2024] Nathaniel Cohen, Vladimir Kulikov,
Matan Kleiner, Inbar Huberman-Spiegelglas, and Tomer
Michaeli. Slicedit: Zero-shot video editing with text-
to-image diffusion models using spatio-temporal slices.
arXiv preprint arXiv:2405.12211, 2024.

[Gal et al., 2022] Rinon Gal, Yuval Alaluf, Yuval Atzmon,
Or Patashnik, Amit H. Bermano, Gal Chechik, and Daniel

Cohen-Or. An image is worth one word: Personalizing
text-to-image generation using textual inversion, 2022.

[Geyer et al., 2023] Michal Geyer, Omer Bar-Tal, Shai
Bagon, and Tali Dekel. Tokenflow: Consistent diffu-
sion features for consistent video editing. arXiv preprint
arXiv:2307.10373, 2023.

[Hertz et al., 2023] Amir Hertz, Ron Mokady, Jay Tenen-
baum, Kfir Aberman, Yael Pritch, and Daniel Cohen-or.
Prompt-to-prompt image editing with cross-attention con-
trol. In The Eleventh International Conference on Learn-
ing Representations, 2023.

[Hessel et al., 2021] Jack Hessel, Ari Holtzman, Maxwell
Forbes, Ronan Le Bras, and Yejin Choi. CLIPScore: a
reference-free evaluation metric for image captioning. In
EMNLP, 2021.

[Ho et al., 2020] Jonathan Ho, Ajay Jain, and Pieter Abbeel.
Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851,
2020.

[Ho et al., 2022] Jonathan Ho, William Chan, Chitwan
Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko,
Diederik P Kingma, Ben Poole, Mohammad Norouzi,
David J Fleet, et al. Imagen video: High definition
video generation with diffusion models. arXiv preprint
arXiv:2210.02303, 2022.

[Hong et al., 2022] Wenyi Hong, Ming Ding, Wendi Zheng,
Xinghan Liu, and Jie Tang. Cogvideo: Large-scale
pretraining for text-to-video generation via transformers.
arXiv preprint arXiv:2205.15868, 2022.

[Hu et al., 2022] Edward J Hu, Yelong Shen, Phillip Wallis,
Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large
language models. In International Conference on Learn-
ing Representations, 2022.

[Kara et al., 2024] Ozgur Kara, Bariscan Kurtkaya, Hidir
Yesiltepe, James M. Rehg, and Pinar Yanardag. Rave:
Randomized noise shuffling for fast and consistent video
editing with diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2024.

[Kasten et al., 2021] Yoni Kasten, Dolev Ofri, Oliver Wang,
and Tali Dekel. Layered neural atlases for consistent video
editing. ACM Transactions on Graphics (TOG), 40(6):1–
12, 2021.

[Ku et al., 2024] Max Ku, Cong Wei, Weiming Ren, Harry
Yang, and Wenhu Chen. Anyv2v: A tuning-free frame-
work for any video-to-video editing tasks. arXiv preprint
arXiv:2403.14468, 2024.

[Lee et al., 2023] Yao-Chih Lee, Ji-Ze Genevieve Jang, Yi-
Ting Chen, Elizabeth Qiu, and Jia-Bin Huang. Shape-
aware text-driven layered video editing. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 14317–14326, 2023.

[Liu et al., 2024] Shaoteng Liu, Yuechen Zhang, Wenbo Li,
Zhe Lin, and Jiaya Jia. Video-p2p: Video editing with

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

cross-attention control. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 8599–8608, 2024.

[Loshchilov and Hutter, 2017] Ilya Loshchilov and Frank
Hutter. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101, 2017.

[Minderer et al., 2022] Matthias Minderer, Alexey Grit-
senko, Austin Stone, Maxim Neumann, Dirk Weissenborn,
Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab,
Mostafa Dehghani, Zhuoran Shen, et al. Simple open-
vocabulary object detection. In European Conference on
Computer Vision, pages 728–755. Springer, 2022.

[Qi et al., 2023] Chenyang Qi, Xiaodong Cun, Yong Zhang,
Chenyang Lei, Xintao Wang, Ying Shan, and Qifeng
Chen. Fatezero: Fusing attentions for zero-shot text-based
video editing. arXiv:2303.09535, 2023.

[Radford et al., 2021] Alec Radford, Jong Wook Kim, Chris
Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack
Clark, et al. Learning transferable visual models from nat-
ural language supervision. In International conference on
machine learning, pages 8748–8763. PMLR, 2021.

[Rombach et al., 2021] Robin Rombach, Andreas
Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. High-resolution image synthesis with latent
diffusion models, 2021.

[Singer et al., 2025] Uriel Singer, Amit Zohar, Yuval
Kirstain, Shelly Sheynin, Adam Polyak, Devi Parikh, and
Yaniv Taigman. Video editing via factorized diffusion
distillation. In European Conference on Computer Vision,
pages 450–466. Springer, 2025.

[Song et al., 2020] Jiaming Song, Chenlin Meng, and Ste-
fano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

[Tang et al., 2025] Shengeng Tang, Jiayi He, Lechao Cheng,
Jingjing Wu, Dan Guo, and Richang Hong. Discrete to
continuous: Generating smooth transition poses from sign
language observation. In CVPR, 2025.

[Vaswani, 2017] A Vaswani. Attention is all you need. Ad-
vances in Neural Information Processing Systems, 2017.

[Wang et al., 2024] Xiang Wang, Hangjie Yuan, Shiwei
Zhang, Dayou Chen, Jiuniu Wang, Yingya Zhang, Yu-
jun Shen, Deli Zhao, and Jingren Zhou. Videocomposer:
Compositional video synthesis with motion controllabil-
ity. Advances in Neural Information Processing Systems,
36, 2024.

[Wu et al., 2023] Jay Zhangjie Wu, Yixiao Ge, Xintao Wang,
Stan Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu,
Ying Shan, Xiaohu Qie, and Mike Zheng Shou. Tune-a-
video: One-shot tuning of image diffusion models for text-
to-video generation. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 7623–
7633, 2023.

[Yang and Tang, 2022] Gene-Ping Yang and Hao Tang. Su-
pervised attention in sequence-to-sequence models for

speech recognition. In ICASSP 2022-2022 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 7222–7226. IEEE, 2022.

[Zhang et al., 2023] Lvmin Zhang, Anyi Rao, and Maneesh
Agrawala. Adding conditional control to text-to-image dif-
fusion models. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 3836–3847,
2023.

[Zhao et al., 2023] Rui Zhao, Yuchao Gu, Jay Zhangjie Wu,
David Junhao Zhang, Jiawei Liu, Weijia Wu, Jussi Keppo,
and Mike Zheng Shou. Motiondirector: Motion cus-
tomization of text-to-video diffusion models. arXiv
preprint arXiv:2310.08465, 2023.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


