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Can We Verify Step by Step for Incorrect Answer Detection?

Xin Xu , Shizhe Diao , Can Yang∗ , Yang Wang
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Abstract
Chain-of-Thought (CoT) prompting has marked a
significant advancement in enhancing the reasoning
capabilities of large language models (LLMs). Pre-
vious studies have developed various extensions of
CoT, which focus primarily on enhancing end-task
performance. In addition, there has been research
on assessing the quality of reasoning chains in CoT.
This raises an intriguing question: Is it possible to
predict the accuracy of LLM outputs by scrutiniz-
ing the reasoning chains they generate? To answer
this research question, we introduce a benchmark,
R2PE, designed specifically to explore the relation-
ship between reasoning chains and performance in
various reasoning tasks spanning five different do-
mains. This benchmark aims to measure the false-
hood of the final output of LLMs based on the rea-
soning steps. To make full use of information in
multiple reasoning chains, we propose the process
discernibility score (PDS) framework that beats the
answer-checking baseline by a large margin. Con-
cretely, this resulted in an average of 5.1% increase
in the F1 score and 2.97% improvement in AUC-
PR across all 45 subsets within R2PE. We further
demonstrate our PDS’s efficacy in advancing open-
domain QA accuracy. Codes and data are avail-
able at https://github.com/XinXU-USTC/R2PE.git.
For further details on the appendix, please refer to
https://arxiv.org/abs/2402.10528.

1 Introduction
Recent development in large language models (LLMs) [Ope-
nAI, 2023; Bubeck et al., 2023; Yang et al., 2024a] has
showcased their remarkable aptitude for tackling diverse
downstream tasks. Given several demonstrations with rea-
soning steps, LLMs exhibit a formidable capability to ad-
dress reasoning tasks, commonly referred to as chain-of-
thought (CoT) [Wei et al., 2022]. There have been signif-
icant advancements in improving the reasoning abilities of
LLMs in terms of end-task performance, such as intricate
math word reasoning [Shum et al., 2023; Diao et al., 2023;

∗Corresponding author.

Figure 1: An example from HotpotQA that GPT-4 outputs highly
consistent but wrong answers. In this particular example, our PDS
can detect conflicting information about the actor (colored by red)
and predicts that the answer will be incorrect because it is less than
zero, while ADS predicts the answer to be correct because it is
greater than 2.5.

Zheng et al., 2023; Yu et al., 2023; Xu et al., 2024; Yang
et al., 2024b], and tasks that involve extensive search and
tactical planning [Yao et al., 2023]. Another line of re-
search lies in the analysis of the reasoning steps themselves
with or without human-annotated ones [Clinciu et al., 2021;
Prasad et al., 2023; Xia et al., 2024].

[Wei et al., 2022; Ye and Durrett, 2022] have manually
inspected whether reasoning steps align with the correct-
ness of ultimate answers in both correct and incorrect answer
groups through case studies. Moreover, [Prasad et al., 2023;
He et al., 2023] find that elevating the quality of the rationales
could potentially enhance task performance. Since aggregate
task performance is a summation of the accuracy of final an-
swers across individual instances, these observations offer an
initial qualitative scrutiny of the reasoning chains and their
impact on the accuracy of the final predictions. Despite these
insights, there remains a shortage of quantitative proof to sub-
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𝑅1: (𝑟1,𝑎1) 𝑅𝑖: (𝑟𝑖,𝑎𝑖) 𝑅𝑛: (𝑟𝑛,𝑎𝑛)

𝑅1: (𝑟1,𝑎1) 𝑅𝑖: (𝑟𝑖,𝑎𝑖) 𝑅𝑛: (𝑟𝑛,𝑎𝑛)

Calculate Pairwise Process Supervision Score 𝑷𝑷𝑺𝑺(𝑹𝒊,𝑹𝒋)

Q: What was the nationality of the actor playing a 
Russian hostage taker in "Hostage for a Day”?

(𝒓𝟏, 𝒂𝟏): First, .... Second, ... The 
answer is American.

(𝒓𝟐, 𝒂𝟐): First, .... Second, ... The 
answer is American.

(𝒓𝒏, 𝒂𝒏): First, .... Second, ... The 
answer is Canadian.

ground-
truth:
Canadian

majority 
vote:
American

❌

Label:
FALSE

Exact 
Match

Prediction:
TRUE

Answer Checking. ADS > H: 
achieving a consensus.

Prediction:
FALSE

Process Supervision. PDS < H: 
indicating contradictions in 𝑅𝑖’s.

𝑷𝑺𝑺 =
𝑚𝑒𝑎𝑛𝑖≠𝑗𝑃𝑃𝑆𝑆(𝑅𝑖,𝑅𝑗)

PDS = (𝐴𝐷𝑆+PSS)/2

🤩

😭

Open-domain QA: HotpotQA, 2WikiMultihop

Q: Is 3D printing able to make adenovirus?

Commonsense Reasoning: StrategyQA

Q: The plane is horizontal. What is the magnitude 
of the gravitational field flux through the planar 
surface of area A?
Answer Choices: (A) phi = E * A * cos(𝜃) 

Physical Reasoning: Physics

Q: A near-Earth object is a dwarf planet.

Fact Verification: FEVER

Q: What is the slope of a line perpendicular to the 
line whose equation is 𝑥

4
− 𝑦
5
= 1? Express your 

answer as a common fraction.

Mathematical Reasoning: GSM8K, MATH

Extraction

Manual Cleaning

Labeling

Play

Response 
Generation

45 subsets with ~20.2K TRUE, ~18.1K FALSE 
instances in total

Data Collection

Figure 2: An overview of R2PE benchmark and PDS framework. The construction of R2PE includes 5 stages: data collection, response
generation, extraction, manual cleaning, and labeling. Sourced from 8 distinct datasets covering a variety of task types and derived from
6 different LLMs, R2PE comprises 45 subsets, featuring approximately 20.2K TRUE and 18.1K FALSE instances across 5 domains. The
objective is to establish a discernibility score that accurately indicates the veracity of answers. PDS adopts answer checking and process
supervision to detect all potential discrepancies among different rationales, which beats ADS that focuses merely on the answer consensus.

stantiate whether the evaluation of reasoning chains can reli-
ably affirm the validity of the final outcomes. To bridge this
gap, we introduce the R2PE (Relationship of Rationales to
Performance Evaluation) benchmark, a test bed designed to
quantitatively investigate this question.

The susceptibility of LLMs to generate incorrect informa-
tion has been underscored by [OpenAI-Blog, 2022; Zhao et
al., 2023]. Meanwhile, [Ye and Durrett, 2022] associate false
predictions with nonfactual explanations. Furthermore, [Wei
et al., 2022] have demonstrated that, even in arithmetic rea-
soning tasks, incorrect rationales can occasionally yield cor-
rect outcomes, and a variety of errors may occur at intermedi-
ate reasoning steps. To perform a qualitative evaluation of ra-
tionales to validate final predictions, the R2PE benchmark is
established to integrate a diverse spectrum of reasoning tasks,
covering mathematical, commonsense, physical, and textual
reasoning (including fact verification and open-domain ques-
tion answering). These tasks extend across domains such
as mathematics, common knowledge, physics, literature, and
general world knowledge. Responses are collected from six
distinct LLMs to promote a broad generality of the findings.
The characteristics and the creation steps of the R2PE bench-
mark are illustrated in Figure 2.

Each evaluated question or claim begins with the genera-
tion of multiple reasoning chains, leading to an answer ag-
gregation based on majority voting [Wang et al., 2022] after

extraction and manual cleaning. Once the final outcomes are
labeled as true or false using an exact match, our goal is to
derive a discernibility score (DS), which is intended as an in-
dicator of the credibility of the final answer. To fully exploit
the information contained in all reasoning chains, we present
a process discernibility score (PDS) that substantially exceeds
the answer discernibility score (ADS) baseline that counts the
number of the same answers. As shown in Figure 1, PDS can
detect conflicting information about the actor and predict the
incorrectness of the final answer. Figure 2 presents a succinct
overview of both our benchmark and our method.

In summary, our contributions are as follows:
• We propose R2PE, the first benchmark that quantita-

tively assesses the relationship between reasoning chains
and end-task performance across a spectrum of reason-
ing tasks, multiple domains, and an array of LLMs.

• We introduce a process discernibility score (PDS)
framework that aggregates the information in different
reasoning chains for CoT verification.

• Comprehensive experiments of PDS reveal its superior-
ity over the answer discernibility score (ADS) in pre-
dicting final answer correctness, leading to consistent
increases in the F1 score and AUC-PR.

• Further experiments show the effectiveness of our ap-
proach in improving open domain question answering

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

performance when combined with verify-and-edit [Zhao
et al., 2023].

2 R2PE Benchmark
R2PE serves as a comprehensive platform for verifying LLM-
generated answers in CoT reasoning, which is meticulously
constructed with the following critical characteristics: (i) As-
sessability: every instance within R2PE can be verifiable as
true or false based on a certain criterion. (ii) Task Diversity:
The benchmark should encompass a wide range of reason-
ing datasets, featuring various answer formats, and spanning
different task categories across multiple domains. (iii) Gener-
alizability across LLMs: Responses should be elicited using
different LLMs to ensure broad applicability. (iv) High Qual-
ity: To minimize instances where correct answers are inaccu-
rately labeled as false due to extraction failures, it is crucial
that answers are precisely extracted from responses.

2.1 Construction Process
As shown in Figure 2, the creation of R2PE consists of the
following five steps:

Data Collection. we utilize a total of eight datasets includ-
ing benchmarks for mathematical reasoning such as GSM8K
[Cobbe et al., 2021] and MATH [Hendrycks et al., 2021],
common sense reasoning tasks like StrategyQA [Geva et al.,
2021] and Play dialogue from BIG-bench collections [Sri-
vastava et al., 2022], physical reasoning tasks (Physics from
BIG-bench collections [Srivastava et al., 2022]); fact verifica-
tion (FEVER [Thorne et al., 2018]) and open-domain ques-
tion answering (HotpotQA [Yang et al., 2018], 2WikiMul-
tihop [Ho et al., 2020]). Each selected dataset meets the
criterion of assessability through verifiable answers. These
tasks not only vary in answer formats, including numerical,
yes/no, multiple choice, and free form, but also span an array
of domains such as mathematics, commonsense, literature,
physics, and general world knowledge (see Appendix A.1).

Response Generation. For each question (or claim in
the FEVER dataset) Q, the LLM is prompted using CoT to
produce n responses (R1, R2, ..., Rn), respectively. The full
prompts are given in Appendix A.3. The responses are aggre-
gated from six distinct LLMs to ensure the generalizability:
text-davinci-003, GPT-3.5-turbo [OpenAI-Blog, 2022], its
instruct-trained variant GPT-3.5-turbo-instruct, Gemini Pro,
Mixtral-8x7b, and mistral-medium. A concise exposition
along with detailed settings, is deferred to Appendix A.2.

Extraction. Rationale ri and the corresponding anwser
ai need to be isolated from each response Ri. During the
pilot extraction period, we use the prompt cue ”The answer
is” as a delimiter to segregate responses. We find that almost
all LLMs yielded some outputs that did not conform to the
expected answer format. Given the varying responses styles
across different LLMs, the answer trigger words are identified
for different LLMs and datasets after observing the original
responses to facilitate extraction (see Appendix A.3). This
strategy effectively segments most of the responses.

Manual Cleaning. To maintain a high-quality benchmark,
manual inspection and cleaning are performed to handle un-
usual cases. For atypical responses that deviate from the rec-
ognized patterns, we either manually separate the response to

derive the answer or assign a special marker when separation
is not feasible. A detailed description of the extraction and
manual cleaning procedure is provided in Appendix A.3.

Labeling. Upon completion of extraction and manual
cleaning,R = {R1 = (r1, a1), ..., Rn = (rn, an)} are col-
lected for each question Q. Then we can aggregate the out-
puts to obtain the final answer by the majority votes: a =
argmaxaifreq(ai), where freq(ai) denotes the frequency
in which ai appears. The final result a of each question Q
is then compared with its ground truth; A match results in a
”TRUE” label, while a mismatch is assigned as ”FALSE”.

2.2 R2PE Overview
Our R2PE benchmark comprises a diverse collection of data
derived from six LLMs on eight reasoning tasks. These tasks
encompass a variety of types, answer formats, and domains,
making the benchmark rich and comprehensive. In total, it in-
cludes approximately 38.3K instances with around 20.2K la-
beled as TRUE and 18.1K as FALSE. The structure of R2PE
allows for the organization of instances into 45 distinct sub-
sets based on the original dataset and the LLM used to gen-
erate responses. Hereinafter, subsets are denoted as (dataset
name from LLM name), with detailed statistics and concrete
examples available in Appendix B.

Each instance e within R2PE incorporates a series of
structured data fields: question or claim Q, the associated
dataset name, the queried LLM name, five responses along-
side their rationales and answers R = {R1 = (r1, a1), R2 =
(r2, a2), ..., R5 = (r5, a5)}, the final output a, the ground-
truth answer of question Q, and the label L ∈ {T, F} to in-
dicate whether the generated answer a matches the ground
truth. Detailed explications of the constituent data fields and
illustrative examples are presented in Appendix B.

We aim to predict the correctness of final outcomes based
on the intermediate reasoning steps. The response set R
serves as an input for predicting the label L for every instance
e. We introduce a numerical criterion, the discernibility score
(DS), to encapsulate the quality of R.A low DS might sug-
gest a potential mismatch between the final output a and the
ground-truth answer. Hence, we will classify the example as
false: L̂ = F , if its DS falls below a certain threshold H .

3 Process Discernibility Score
3.1 The Fallacy of Answer Agreement
From [Wang et al., 2022; Zhao et al., 2023], the degree of
consensus among answers, is posited as a diagnostic tool to
gauge the instances in which LLMs may make wrong predic-
tions. We refer to the answer agreement number as Answer
Discernibility Score (ADS) hereinafter. A high ADS often
suggests a high likelihood that the proposed answer is cor-
rect. If the ADS is below that midpoint (i.e., the threshold
H = n/2), L̂ = F is predicted.

However, LLMs may generate substantially consistent but
incorrect answers in reasoning tasks. Figure 1 showcases one
such example, where the LLM is queried about the nationality
of an actor from ”Hostage for a Day”. The LLM gives the
answer ”American” four times and ”Canadian” once. Here,
the ADS stands at 4, which erroneously points to a seemingly
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Figure 3: Results on the subset (HotpotQA from GPT-4): ADS (left), PDS (middle), and PDS-ADS (right). ADS has high precision: large
answer agreement does not always guarantee accurate predictions. PDS yields desirable outcomes, while PDS-ADS has poor precision.

accurate but ultimately false consensus. This example serves
to warn against overreliance on ADS as the sole indicator of
the veracity of the final answer in reasoning tasks.

3.2 Process Discernibility Score
In our R2PE benchmark, each response Ri constitutes a ratio-
nale ri paired with an answer ai. The ADS, however, limits
its analysis to the answers (a1, ..., an), which takes up only a
small proportion of the information contained in R. Inspired
by [Yoran et al., 2023], a DS that makes use of rationales
would be preferable.

To quantify the similarity between two responses, we em-
ploy Pairwise Process Supervision Score PPSS(Rk, Rl) to
measure the degree to which the content of Rl is both in-
cluded in and opposes that of Rk. PPSS is confined within
the interval (-1, 1), where a positive score indicates a higher
level of similarity relative to contradiction. For a set of n
responses, we can calculate the average of PPSS across all
ordered response pairs, culminating in the Process Supervi-
sion Score (PSS): PSS = meani̸=jPPSS(Ri, Rj). This al-
lows PSS to evaluate the information across all responses. To
underscore the final answers, we get

PDS = (ADS + PSS)/2, (1)

wherein ADS = 2(ADS−n/2)/n represents the normalized
ADS, adjusted to align with PSS’s range. The overview of
PDS is shown in Figure 2.

Subsequently, we classify instances where the PDS falls
below the threshold H as L̂ = F , whereas all remaining
instances are designated as L̂ = T .

Compared to ADS, our PDS is capable of overseeing rea-
soning processes as well as doing implicit answer checking
(ADS term in Equation (1)). As depicted in Figure 1, the
PDS can detect contradictive information about the name of
the actor playing a Russian hostage taker in ”Hostage for a
Day” among multiple reasoning chains (highlighted by red)
and give a correct label L̂ = F , while the ADS only assesses
the agreements among the answers.

3.3 Experimental Setup
We will detail the experimental setup in this section.

Dataset. All subsets of the R2PE benchmark.

Baselines. From [Wang et al., 2022; Zhao et al., 2023],
ADS can act as the baseline in our setting. We also in-
clude SelfCheckGPT [Manakul et al., 2023] and HaloCheck
[Elaraby et al., 2023] as our baselines.

Metrics. We will employ the F1 score and AUC-PR as our
evaluation metrics. As we aim to detect potential incorrect
answers, False labels are treated as positive. Therefore, true
positives are examples with L = F and L̂ = F . We do not
compare with SelfCheckGPT and HaloCheck in terms of F1
score, as they do not provide thresholds for prediction.

PDS Implementation. For PPSS(·, ·), we adopt the
SAUMMAC zero-shot model [Laban et al., 2022],which
is a consistency detection method for text summarization
that leverages the out-of-the-box natural language inference
model to compute pairwise entailment score. As suggested
by [Laban et al., 2022], probabilities of sentence-level en-
tailment and contradiction are used. To detect all potential
inconsistencies in any sentence, we use min operation to ag-
gregate across sentence pairs:

PPSS(Rk, Rl) = min
j

max
i

(
ent(ai, bj) − con(ai, bj)

)
,

(2)
where ai, bj are sentences of two responses Rk, Rj corre-
spondingly, ent represents the probability of entailment, con
is the probability of contradiction, the min is taken over all
sentences of Rj , and max is taken over all sentences of Rk.
Note that the PPSS metric lacks symmetry; however, this is
not a problem in our implementation because the PSS calcu-
lation averages across all possible ordered response pairs.

Threshold Selection. As ADS ∈ {0, 1, 2, ..., 5}, threshold
H is set to be the midpoint H = 2.5. Another reason for
this selection is that ADS > 2.5 means the majority agrees,
which aligns the choice in [Zhao et al., 2023]. The range of
this PPSS spans in (−1, 1). A negative value implies the po-
tential presence of conflicting information. Consequently, it
is reasonable to set the threshold H for the PDS to be 0. Fol-
lowing [Li et al., 2023], the threshold of ADS is raised to 4.5
for discriminative tasks (yes/no, multiple-choice questions),
and the PDS threshold is adjusted to 0.4 according to Equa-
tion (1). Our choice of threshold H is not task-specific. We
regard this as a benefit because held-out data for threshold
tuning may not always be available in the real scenario. A
detailed discussion is given in Appendix C.3.
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Dataset Method GPT3 GPT-instruct GPT-3.5 Gemini Mixtral mistral avg

GSM8K ADS 66.59 53.63 42.83 52.05 58.63 50.14 -
PDS 69.30 56.65 52.50 55.04 62.50 53.26 +4.23

MATH ADS 81.33 76.72 70.40 77.92 81.19 77.56 -
PDS 86.55 80.38 74.93 78.95 83.85 81.33 +3.48

StrategyQA ADS 36.79 59.06 54.28 52.54 60.39 62.59 -
PDS 52.21 59.14 57.51 56.76 63.14 63.83 +4.49

Play ADS 50.22 56.64 54.28 53.07 71.12 56.32 -
PDS 55.59 59.00 56.16 54.09 72.02 58.78 +2.30

Physics ADS 48.70 52.46 56.52 65.86 61.54 63.33 -
PDS 52.31 55.56 58.65 88.44 66.90 66.01 +6.58

FEVER ADS 50.92 55.97 49.14 63.56 64.58 - -
PDS 59.64 60.68 53.01 63.64 65.72 - +3.70

HotpotQA ADS 72.78 71.52 63.95 81.46 74.24 - -
PDS 85.71 78.84 70.25 85.65 78.66 - +7.00

2WikiMultihop ADS 69.26 69.75 42.67 62.83 69.36 - -
PDS 78.65 76.51 57.14 71.76 70.81 - +9.80

avg - +7.92 +3.88 +5.76 +5.63 +2.82 +2.65 +5.10

Table 1: PDS consistently outperforms ADS across all subsets in our R2PE benchmark in F1 scores (in %). The abbreviations GPT-3, GPT-
instruct, GPT-3.5, Gemini, Mixtral, mistral correspond respectively to the LLMs text-davinci-003, GPT-3.5-turbo-instruct, GPT-3.5-turbo,
Gemini Pro, Mixtral-8x7b, and mistral-medium. Results on FEVER, HotpotQA, and 2WikiMultihop from mistral-medium are not reported,
as discussed in Section 2. The last row and column are the average improvement of PDS over ADS across datasets and LLMs respectively.
The results of HotpotQA and 2WikiMultihop from GPT-3.5 are replaced with those from GPT-4 (see Appendix A.2).

Dataset Method GPT3 GPT-instruct GPT-3.5 Gemini Mixtral mistral avg

GSM8K

SelfCheckGPT 53.87 35.67 30.35 27.07 40.30 29.29 36.09
HaloCheck 47.89 34.52 28.45 21.65 39.61 25.03 32.86

ADS 70.79 55.83 54.58 52.59 63.18 48.15 57.52
PDS 74.14 61.02 55.37 56.23 68.37 51.86 61.17

MATH

SelfCheckGPT 89.04 74.55 55.60 73.46 85.51 82.96 76.85
HaloCheck 88.11 76.46 58.26 80.08 82.57 81.77 77.87

ADS 92.82 85.50 78.28 87.81 90.13 88.05 87.10
PDS 93.83 86.77 80.84 89.49 91.82 89.66 88.73

StrategyQA

SelfCheckGPT 50.86 41.74 42.72 47.37 61.67 58.73 50.52
HaloCheck 37.02 40.94 42.48 35.93 59.80 41.20 42.90

ADS 49.56 51.42 49.36 49.85 59.55 56.27 52.87
PDS 49.97 54.49 52.87 51.18 62.08 67.22 56.30

Play

SelfCheckGPT 40.63 45.60 45.37 37.22 63.70 45.37 46.33
HaloCheck 37.02 40.94 42.48 35.93 59.80 41.20 42.90

ADS 44.37 48.93 49.90 46.00 72.68 50.44 52.05
PDS 46.14 48.01 51.31 47.66 72.84 51.86 52.97

Physics

SelfCheckGPT 40.63 45.60 45.37 37.22 63.70 45.37 46.33
HaloCheck 37.02 40.94 42.48 35.93 59.80 41.20 42.90

ADS 39.94 40.60 48.63 79.10 53.05 52.58 52.32
PDS 46.85 48.58 61.31 78.50 56.99 60.66 58.82

FEVER

SelfCheckGPT 55.08 49.36 44.86 51.63 62.28 - 52.64
HaloCheck 55.44 47.00 50.17 47.56 60.36 - 52.11

ADS 57.02 49.72 48.57 54.02 67.31 - 55.33
PDS 62.19 51.41 49.00 55.43 66.91 - 57.03

HotpotQA

SelfCheckGPT 85.69 80.20 71.37 84.48 52.60 - 74.87
HaloCheck 88.06 82.18 85.20 82.51 48.20 - 77.23

ADS 89.71 79.14 83.99 90.15 74.89 - 83.58
PDS 92.61 83.21 86.21 91.47 79.41 - 86.58

2WikiMultihop

SelfCheckGPT 85.69 80.20 71.37 84.48 52.60 - 74.87
HaloCheck 88.06 82.18 85.20 82.51 48.20 - 77.23

ADS 83.26 75.52 48.12 79.37 59.51 - 69.16
PDS 86.72 79.80 54.37 80.20 58.94 - 72.01

Table 2: PDS consistently outperforms ADS across almost all subsets in our R2PE benchmark in AUC-PR (in %).

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Method GPT3 GPT-Instruct GPT-4 Gemini Mixtral

ADS 72.78 71.52 63.95 81.46 74.24
PDS 85.71 78.84 70.25 85.65 78.66
PDS - ADS 82.00 78.16 60.57 82.35 74.24
PDS w/o ans 78.44 78.84 63.41 84.79 74.19
PDS-avg 77.49 78.81 62.72 84.86 74.29
PDS-Halocheck 77.49 78.11 62.72 84.99 75.32
PDS-selfcheckNLI 45.77 51.01 33.62 66.87 60.25

Table 3: Results of PDS on HotpotQA. Metrics are F1 (%).

Method GPT3 GPT-Instruct GPT-4 Gemini Mixtral

ADS 69.26 69.75 42.67 62.83 69.36
PDS 78.65 76.51 57.14 71.76 70.81
PDS - ADS 76.97 73.35 55.00 70.14 69.36
PDS w/o ans 76.12 75.56 50.19 67.38 68.44
PDS-avg 76.95 75.34 51.06 67.23 68.87
PDS-HaloCheck 76.66 75.08 52.30 68.39 68.78
PDS-SelfCheckNLI 52.61 47.65 25.64 42.89 55.70

Table 4: Results of PDS on 2WikiMultihop. Metrics are F1 (%).

4 Results and Analysis
4.1 PDS Substantially Outperforms All Baselines
As shown in Table 1, Across all 45 subsets in our R2PE, PDS
consistently improves ADS performance, yielding an aver-
age improvement of 5.10% in terms of F1. Although ADS
demonstrates greater precision, it suffers from significantly
lower recall, indicating its propensity to overlook numerous
examples with L = F . In contrast, PDS adeptly balances
precision and recall, culminating in superior overall perfor-
mance relative to ADS (see Table 1, 2, and Appendix C.2).
From Table 2, PDS improves ADS in terms of AUC-PR in
the majority of cases and yields comparable results (less than
1% decrease) in the remaining ones. On average, PDS re-
sults in 3.01% absolute improvement in AUC-PR. Notably,
ADS is a fairly strong baseline compared with SelfCheckGPT
and HaloCheck in our setting, and PDS can further enhance
the performance of ADS. We believe that the performance
of SelfCheckGPT [Manakul et al., 2023] and HaloCheck
[Elaraby et al., 2023], which lags behind ADS, can be at-
tributed to their operation in different settings and the lack of
explicit verification of the majority voting proportion of the fi-
nal answer, which highlights the importance of jointly consid-
ering both the reasoning process and the final answer to vali-
date CoT, demonstrating the superiority of PDS. For discrim-
inative tasks, ADS has relatively low F1 scores and AUC-PR.
This may be attributed to the fixed set of answers (e.g., yes
or no) in these tasks, which inherently exhibit higher consis-
tency, making verification based solely on answer agreement
challenging. In contrast, PDS can relieve this issue by evalu-
ating reasoning processes.

PDS demonstrates a stronger capability to verify the ac-
curacy of the predictions for free-form questions than ADS,
with notable average improvements of 7.00% in HotpotQA
and 9.80% in 2WikiMultihop. This superior performance
can be attributed to the process-oriented verification approach
employed by PDS. By addressing the challenges associated
with indirectly assessing answer consistency in free-form
questions, PDS proves to be more effective in ensuring ac-
curacy. It is important to note that the average improvement
metrics provided in Table 1 serve primarily as an indicator
of the extent to which PDS enhances performance over ADS.
However, a direct comparison of F1 scores and AUC-PR be-
tween different subsets within R2PE is not recommended.
This is because the efficacy of the F1 score as a compara-
tive metric is limited by variations in the ratio of TRUE and
FALSE instances across different subsets.

To meticulously evaluate the efficacy of the PDS, we delve
into the (HotpotQA from GPT-4) subset, partitioning it into

two sets: one where answers fail to reach a consensus greater
than half, and its counterpart. We then label the examples
with an ADS less than the threshold H as L̂ = F , and all
the others as L̂ = T . As shown in Figure 3 (left), while the
ADS proficiently segregates the examples with L = T , its
discernment for the ”False” category is less acute. On the
contrary, the PDS (Figure 3 middle) strikes a better balance
between precision and recall. Eliminating the implicit answer
verification component in Equation (1) results in diminished
precision (Figure 3 right, discussed in Section 4.2).

4.2 Ablation Study
To understand the contribution of PDS’ components, we have
carried out an extensive ablation study involving the follow-
ing variants (See Appendix C.4):

PDS-ADS. we remove the ADS in our Equation (1), and
the alternative of PDS becomes PDS −ADS = PSS.

PDS w/o ans. The original PSS considers all
PPSS(Ri, Rj), where each response Ri equals a reason-
ing path ri and an answer ai. As the information from the
answers ai’ is already used to obtain the final answer a,
we can discard them and only compute the entailment score
among rationale pairs PPSS(ri, rj), that is, PDSw/o ans =

(ADS + meani̸=jPPSS(ri, rj))/2.
PDS-avg. We can change the aggregation operation min

of PPSS(·, ·) (Equation (2)) by taking the average. Then
PPSS(A,B) = avgjmaxi(ent(ai, bj)− con(ai, bj)).

PDS-HaloCheck;PDS-SelfCheckNLI. HaloCheck
[Elaraby et al., 2023] and SelfCheckNLI [Manakul et al.,
2023] can be alternatives to PSS, denoted by PDS-halocheck
and PDS-selfcheckNLI, respectively (see Appendix C.5).

As shown in Table 3 and 4, our PDS implementation gains
the best results.

4.3 PDS for Improving Downstream Performance
VE [Zhao et al., 2023] post-edits reasoning process using ex-
ternal knowledge (see Appendix D). VE first checks the an-
swer agreement and then edits the reasoning chains based on
a retriever if ADS < H . That is to say, VE selects potential
incorrect samples by ADS. Our PDS can be incorporated into
the VE framework, dubbed ”VE + PDS”.

Experiments are carried out on (HotpotQA from GPT-4)
and (2WikiMultihop from GPT-4), utilizing ground-truth sup-
porting contexts along with distractor paragraphs as the re-
trieved documents to negate the influence of the retrieval sys-
tem. Our baseline is VE, and the standard prompting and
CoT-SC are also included as references.

Figure 4 illustrates that integrating our method with the
VE framework leads to enhanced accuracy for both datasets.
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Figure 4: PDS can be integrated with verify-and-edit to further im-
prove accuracy on open-domain QA.

Type of Errors Type I Type II Type III Type IV

Number of Cases 14 14 18 7
Percentage (in %) 26.4 26.4 33.9 13.2

Table 5: Distribution of Error Types

Specifically, VE+PDS leads to a notable 2.9% absolute in-
crease in accuracy for HotpotQA, and 2.8% for 2WikiMul-
tihop. Given that the retrieval system in our experiments is
assumed to be near-perfection, the observed improvements in
performance are attributed to the more effective answer veri-
fication through the substitution of ADS with PDS. This suc-
cess is likely a consequence of the PDS’s capability to super-
vise processes across multiple reasoning chains, leading to
better selection of all potential incorrect predictions.

4.4 Error Analysis

We also conduct an error analysis on HotpotQA using a GPT-
4 subset of R2PE. Specifically, we find 68 cases where PDS
correctly identifies the falsehood of answers that ADS does
not. In these cases, all the labels are ”False” and the answers
are consistent, meaning ADS could not verify the answers
due to its reliance on answer consistency alone. In contrast,
PDS is able to identify potential inconsistencies among dif-
ferent reasoning chains, even when the answers are consis-
tent. However, we also find 53 cases where the labels are
”True” and the answers are consistent, where ADS succeeds
but PDS fails. After a careful manual inspection, we classify
these cases into the following categories: I. Conflicting infor-
mation among chains despite consistent and correct answers.
II. Excessive information that is correct in some chains, leads
to inconsistency among chains. III. Imperfections of the NLI
models even when there is no conflicting information. IV.
Different solutions with diverging chains lead to the same
correct answers. We present the number of cases in each cat-
egory in Table 5. See discussion in Appendix E.

5 Related Work
Extensions of CoT. CoT [Wei et al., 2022] improves LLM
performance by decomposing reasoning into steps via few-
shot examples. Refinements include sampling-based decod-
ing [Wang et al., 2022], automated exemplar selection [Ko-
jima et al., 2022; Zhang et al., 2022], and hybrid strategies
[Zou et al., 2023]. Task-specific adaptations like PHP [Zheng
et al., 2023] for mathematical reasoning and verify-and-edit
(VE) [Zhao et al., 2023] focus on improving reasoning ac-
curacy. While much work emphasizes end-task metrics, our
study explores reasoning quality-outcome linkage, verifying
predictions through chain analysis. We will also extend PDS
to Long-CoT LLMs [Jaech et al., 2024], which benefit from
sampling-based verification [Wen et al., 2025], and propose
potential extensions to test-time scaling methods [Wu et al.,
2025] via chain consistency analysis.

Reasoning Chain Quality Evaluation. Rationale
analysis is key for understanding AI performance and
limitations[Golovneva et al., 2022; Prasad et al., 2023; He et
al., 2023]. Rationale evaluation methods are either reference-
based, comparing against a gold standard [Clinciu et al.,
2021; Saparov and He, 2022], or reference-free, using met-
rics like ROSCOE [Golovneva et al., 2022]. While they link
high-quality reasoning to better task performance, the direct
impact of reasoning quality on prediction accuracy is under-
researched. Our study fills this gap with a detailed quantita-
tive analysis of this relationship. There is also research fo-
cused on evaluating not only the final predictions but also the
reasoning steps in CoT [Xia et al., 2024; Huang et al., 2024;
Xu et al., 2025].

Uncertainty Estimation. A range of methods measure
LLM uncertainty by token probabilities [Kuhn et al., 2023;
Malinin and Gales, 2020; Kadavath et al., 2022]; however,
they are inapplicable to R2PE, which does not furnish prob-
abilities for responses. Moreover, they concentrate on short
answer sequences, aligning more closely with the standard
prompting. In contrast, our work verifies the veracity of CoT
answers, which encompasses both the reasoning chains and
answer sequences. Different from [Kuhn et al., 2023], the
entailment model in our work is used to measure the infor-
mational similarities between two responses.

6 Conclusion
To shed more light on the connection between the quality of
the reasoning steps and the final outcome, we present R2PE,
the first benchmark that quantitatively analyzes whether we
can validate the answer veracity by evaluating the reasoning
chains on a variety of reasoning tasks across five different do-
mains. Six different LLMs are used in the creation of R2PE
to guarantee the generalizability of our findings. We develop
the PDS framework by integrating multiple rationales’ infor-
mation to predict the falsehood of the final predictions, which
significantly boosts the performance of answer checking on
our R2PE benchmark. Furthermore, our approach can be eas-
ily combined with the verify-and-edit framework to improve
end-task performance.
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