Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

RF-DTR: A Multi-Stage DCT Token Regression Network
for Progressive Rib Fracture Mask Refinement

ShouYu Chen!, Liang Hu'*, JunTao Wang', Usman Naseem?, ZhongYuan Lai®, Qi Zhang!
'Tongji University
*Macquarie University
3Shanghai Ballsnow Intelligent Technology Co. Ltd

Abstract

Rib fracture patterns are key indicators of trauma
severity. Detecting and locating these fractures is a
critical yet time-consuming task, especially in 3D
imaging, due to their minute size and irregular ge-
ometries. Existing voxel-based spatial methods fail
to capture frequency-domain variations inherent in
imaging and do not replicate the progressive refine-
ment process used by clinicians during manual an-
notation, leading to suboptimal results. We propose
a novel regression network, RF-DTR, incorporat-
ing a gated regressor mechanism and operating en-
tirely in the frequency domain to address these
challenges. Specifically, we present an innova-
tive spatial-frequency transform applied to volumes
and corresponding masks. Furthermore, we intro-
duce a Mahalanobis regularization technique to en-
hance the model and learn high-frequency DCT
components relevant to clinical tasks. Finally, a
multi-stage penalty is proposed to improve the con-
fidence of the prediction. Extensive experiments
confirm our method’s superiority in handling com-
plex, sparsely annotated medical imaging datasets.

1 Introduction

Rib fracture detection presents a significant challenge due
to the need to accurately identify small, hollow lesions
with intricate geometries in large 3D voxel spaces. The
scarcity of positive samples further complicates tasks such
as classification [Lindsey et al., 2018; Cheng et al., 2019;
Huang et al., 2023], segmentation [Yao et al., 2021; Wu
et al., 2021], and object detection [Yao et al, 2021; Yu
et al., 2022]. While generative anomaly detection models
trained exclusively on healthy samples have demonstrated
potential in clinical applications, their reliance on one-class
setting often undermines their robustness. These models
identify high reconstruction errors from out-of-distribution
(OOD) data [Fernando et al., 2021] as pixel-level anomalies.
However, recent studies [Lu et al., 2023; You et al., 2022;
Zhang et al., 2023] indicate that generative models can inad-
vertently reconstruct OOD samples with high fidelity, leading
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Figure 1: UMAP visualization illustrates that the frequency-domain
(DCT) representation better distinguishes CT volumes than the
spatial-domain (voxel) representation. The distinct frequency bands
within the three sub-spectrums exhibit varying degrees of separabil-
ity, motivating frequency-aware modeling. Further details are pro-
vided in Supplementary Materials §A.

to false negatives in anomaly detection. Although semantic
segmentation-based methods typically achieve higher accu-
racy, their ability to capture spatial details remains limited.

Despite the progress in rib fracture detection, existing
methods inadequately leverage the high-frequency character-
istics of fractures in the frequency domain. For instance,
FracNet [Jin et al., 2020] employs a sliding window strategy
with 3D U-Net variants for patch-wise learning, establish-
ing a foundational pipeline for subsequent works [Wu ez al.,
2021; Yao er al., 2021]. However, as illustrated in Figure 1,
our empirical analysis demonstrates that rib fractures exhibit
greater discriminability in the frequency domain, particularly
in the high-frequency components. This observation under-
scores the potential advantages of frequency-domain mod-
eling. Clinically, annotating small and hollow rib fractures
is an iterative process that relies on human expertise for re-
finement and quality assurance. While this well-established
method produces reliable results, it is often labor-intensive
and susceptible to human error. An automated workflow that
accurately replicates this process would be highly desirable,
offering the dual benefits of ensuring robust quality and main-
taining interpretability.

Our study targets two fundamental challenges: (1) detect-
ing small and hollow fractures and (2) designing interpretable
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models that emulate clinicians’ annotation process, ensuring
a more transparent and intuitive decision-making framework.
Recent research [Xu et al., 2020; Wen ef al., 2022] suggests
that frequency-domain representations can serve as effective
feature embeddings. Since fine structural details in CT im-
ages primarily manifest as high-frequency signals, accurately
capturing these components is crucial. However, previous
studies have demonstrated that deep neural networks (DNN5s)
[Xu et al., 2019], convolutional neural networks (CNNs)
[Xu et al., 2020], and Transformers [Wang et al., 2022;
Piao et al., 2024] often exhibit insensitivity to high-frequency
information, limiting their ability to learn fine-grained struc-
tures. Empirical results in Figure 3(a) further illustrate this
challenge in rib fracture detection. To mitigate this issue,
we introduce a frequency-domain regularization to enhance
high-frequency learning. Last but not least, we propose a
multi-stage penalty mechanism that progressively refines pre-
dictions, closely mimicking expert annotation workflows.

We formulate rib fracture detection as an instance seg-
mentation task and propose a model that learns from spatial-
frequency transformed input images and corresponding out-
put masks. Our model integrates the discrete cosine trans-
form (DCT) [Ahmed er al., 1974] and employs a progressive
mask refinement strategy. Inspired by hierarchical designs in
computer vision, we introduce frequency-domain regression
modules and a conditional penalty term to improve mask pre-
diction. Our key contributions are as follows:

* We conduct a frequency-domain analysis revealing that
existing rib fracture detection models suffer from a crit-
ical limitation: insufficient high-frequency learning.

L]

To address this issue, we propose an encoder-only DCT
token regression network that operates entirely in the
frequency domain, significantly enhancing sensitivity to
fine-grained structures.

We introduce a novel Mahalanobis regularization to en-
hance high-frequency learning. Moreover, we improve
our method’s interpretability for a transparent decision-
making process by a unified cross-stage penalty.

We validate our approach through experiments on a pub-
lic CT benchmark and our curated dataset, demonstrat-
ing superior performance in segmentation and detection
tasks, surpassing state-of-the-art (SOTA) methods.

2 Related Works
2.1 Classical Methods: Challenges and Advances

Deep learning models achieve high recall but often exhibit
higher false positive rates than radiologists [Zhang et al.,
2021]. Existing methods [Chen et al., 2017; Jin et al., 2020]
struggle to capture fine-grained fracture features, limiting
their effectiveness in precise localization. To mitigate this is-
sue, some approaches integrate detection and segmentation
techniques. For instance, [Wu er al., 2021] combines 2D
Faster R-CNN for detection with 3D U-Net for segmentation,
while a three-stage pipeline [Yao er al., 2021] sequentially
performs rib segmentation, localization, and fracture classifi-
cation. Cascade-based framework [Zhang et al., 2021] lever-
ages the Foveal network [Brosch and Saalbach, 2018] and

Faster R-CNN to refine rib masks and detect fracture candi-
dates. To better capture rib morphology, SA-FracNet [Cao et
al., 2023] employs contrastive learning to address the elon-
gated and inclined rib structure, while CCE-Net [Gao et al.,
2022] adopts feature fusion. Additionally, SA-FracNet in-
troduces a shape-aware loss function based on Signed Dis-
tance Maps to improve fracture delineation. In contrast, our
method employs an encoder-only architecture that effectively
captures detailed fracture features by frequency modeling.

2.2 Frequency-Informed Learning

Spatial voxel details correspond to high-frequency compo-
nents. Recent studies have revealed inherent learning biases
in neural networks when analyzed from a frequency perspec-
tive. The Frequency Principle [Xu et al., 2019] suggests
that DNNs inherently prioritize low-frequency signals. CNNs
exhibit a strong preference for low-frequency components
[Xu et al., 2020], and similar tendencies have been observed
in Transformers [Wang et al., 2022; Park and Kim, 2022;
Tian et al., 2023; Guo et al., 2023; Piao et al., 2024]. Fast
Fourier Transform (FFT) has gained widespread application.
GFNet [Rao et al., 2023] utilizes FFT for global feature
extraction, while Frequency-Adaptive Dilated Convolutions
[Chen et al., 2024] dynamically adjust dilation rates based
on local frequency characteristics. FFT-based token mix-
ers provide a computationally efficient alternative to self-
attention [Tatsunami and Taki, 2024], and Fourier regulariza-
tion mitigates high-frequency artifacts [Xu ez al., 2019]. Ad-
ditionally, MDTNet [Zhao e al., 2024] enforces prediction-
ground truth alignment via Fourier constraints, improving
tasks such as image reconstruction [Wang et al., 2018;
Jiang et al., 2021] and enhancement [Greenspan et al., 2000;
Fuoli et al., 2021]. Building on these insights, we propose an
efficient DCT-based architecture incorporating a multi-stage
penalty mechanism to refine mask predictions hierarchically.

2.3 DCT-Based Frequency-Domain Analysis

DCT is a real-valued frequency transformation that provides
greater computational efficiency than FFT [Pan et al., 2022].
It has been integrated into neural networks to replace convo-
lutions with DCT-based perceptrons, reducing computational
costs [Pan et al., 2022]. Additionally, a frequency-channel se-
lection method [Xu et al., 2020] eliminates non-salient DCT
components without compromising accuracy. In instance seg-
mentation, DCT-Mask [Shen er al., 2021] encodes binary
masks into compact vectors, reducing training costs, while
PatchDCT [Wen et al., 2022] refines this approach for pre-
cise boundary segmentation. In channel attention, DCT fre-
quency analysis [Qin ef al., 2021] models channel representa-
tion as a compression process. Furthermore, DCTNet [Zhao
et al., 2022] reconstructs high-resolution images from low-
resolution depth maps by capturing both shared and modality-
specific features. Despite these advances, existing methods
such as DCT-Mask and PatchDCT [Wen er al., 2022] rely
on L1 loss and overlook critical frequency-domain properties
such as scale and correlation. To address this, we introduce
a metric learning approach based on DCT that de-correlates
frequency features while ensuring scale alignment.
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Figure 2: (a) Overview of the proposed encoder-only regression framework, where the Multi-Stage Token Prediction is designed to integrate
seamlessly with any General Vision Encoder. (b) The DCT Token Regressor reconstructs hidden features from each stage into a predicted
fracture mask. (c) Illustration of transforming a 3D sub-volume into DCT tokens, with an optional gating label generation process. (d) The
proposed Unified Cross-Stage Penalty is hierarchically compatible with both the gating and regressor modules. “Gat.” denotes the gating
module, “RAG” represents the Regressor-After-Gating mechanism, and “SG” refers to the stop-gradient operation.

3 Method

3.1 Problem Description

We aim to detect and segment rib fractures in CT volumes
using a sliding window approach, framing the problem as a
3D instance segmentation task. Formally, the training dataset
is defined as D = {(V;, M;)}}Y,, where each image win-
dow V; € RP*HXW represents a cropped 3D sub-volume
extracted from the CT volume, and its corresponding ground
truth mask M; € {0, 1}P*H>*W indicates the presence of rib
fractures at a voxel level. During inference, the model takes
V; as input and predicts a segmentation mask M, where each
of its voxels represents the probability of belonging to a frac-
tured region, as illustrated in Figure 2(a).

3.2 DCT Tokenizer

Spatial-Frequency Transformation. Inspired by the JPEG
compression standard [Wallace, 1992] and related methods
[Shen et al., 2021; Wen et al., 2022] in 2D computer vision,
we design a DCT Tokenizer tailored for volumetric V and M,
as illustrated in Figure 2(c). The tokenizer projects spatial
patches into the frequency ones. For t € {V, M}, this pro-
cess is defined as 7, = Tokenizer(t). Specifically, the data is
first split into non-overlapping patches along all dimensions:

By = Patchify(t) € RE X5 X 5 xBxBxB (1)

Here, B denotes the patch size, set to 8 to align with the
JPEG standard. The terms %, %, % represent the number of
patches along each axis. Each patch undergoes DCT-II en-
coding as Fy = DCT-II(B;) (details in Supplementary Ma-
terials §B). Notably, B = 8 aligns with the configuration of
the 3D ViT encoder, allowing Jy, to be used seamlessly as

input to the ViT’s projection layer without any modifications.

The task is then reformulated as patch-level regression, tar-
geting Faq = {Faap}ps Fa,p denotes a DCT mask patch,
and p = (x,y, z) specifies the patch indices along each axis:
1‘6{1,"' ,%},ye{L... ,%},26{1,"' 7% .
Gating Label Definition. Each patch is labeled as state
0, 1, or 2, representing non-fractured, partially fractured, and
fully fractured samples. Following PatchDCT [Wen et al.,
2022], the label is determined by the DCT tensor’s direct cur-
rent component (DCC), which reﬂects its overall intensity: a

DCC of 0 corresponds to state 0, == to state 2, and other-

wise to state 1. The states for all patches of current M are
collectively denoted as G = {G, },.

3.3 Multi-Stage Token Prediction

The ViT encoder produces hierarchical hidden features rep-
resented as h', h? h3 h* = ViT(Fy,). For each hierarchical

level € {1,2,3,4},h! € RB® X dmoaer dmodel 18 the dimension
of the ViT patch vector. RF-DTR is composed of three core
components: (1) a DCT Token Regressor with Regressor-
After-Geting (RAG) mechanism, (2) a frequency-domain reg-
ularization, and (3) a multi-stage conditional penalty. Patch
indices are omitted in the subsequent descriptions for clarity.

DCT Token Regressor. As illustrated in Figure 2(b), the
output h! from the [-th ViT stage is reshaped first to restore
its spatial dimensions:

h! = Reshape(h') € Rt xBxBxB, (2)

We present the RAG mechanism, designed to successively
predict the gating state and the DCT token for each patch,
denoted as G', 7, = RAG(h'!). The module begins by ap-
plying stacked 3D convolutions (S-Conv3D) for feature ex-
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traction, resulting in hl, = = S-Conv3D(h'). Subsequently,

the gating and regression tasks are executed upon hl,

¢! = Conv3D(hl,,,) € REXH X5 3)

Fl, = Conv3D(hl,,,) € REX 5 x5 x5, )

For F , the last dimension corresponds to a flattened cu-
bic structure encoding DCT tokens. As shown in Table 4, the
proposed RAG is an effective and important design. How-
ever, relying solely on h* may lead to blurred predictions,
particularly in complex boundaries. To compensate for this
limitation, we propose a multi-stage design optimized using
the gating loss Lga and regression loss Lreg. The hierarchical
loss function at a single stage [ is defined as follows:

Zp EGal(gAzlﬂ gp) Zpeépp [-:Reg (/I}IZ’J’ 'Up)
G| |G .

Here, 9, = vec(F!) and v}, = vec(F,) represent the flat-

L=

&)

tened predicted and ground truth DCT tokens at p in F M and
Fum. The set Gop = {p | G} = 1,G. € G'} identifies the in-
dices of patches classified as partially-fractured. We employ
shared weights for RAG modules across all stages, supported
by the fact that the hierarchical features h! maintain identical
spatial scale and target. Under this design, deeper features
h! can be viewed as conditional encodings of h!~!, capturing
progressively refined representations.

Mahalanobis-Regularized Regression Loss. Figure 4(a)
empirically reveals that the naive hybrid Transformer-CNN
architecture is disproportionately sensitive to low-frequency
signals, leading to the loss mainly concentrated in high-
frequency components. To mitigate this imbalance, we im-
prove the L1 regression loss by introducing the Mahalanobis
regularization, enabling scale normalization and feature de-
correlation across different frequencies:

Dar(8h,0) = /(8 — ) TS71 (0, —w,). ()

3 3 . o ..
3 € RB™*B" 5 a learnable symmetric and positive defi-
nite matrix, and its inverse ¥~ can be factorized as:

QAQ ' =371, )

Q c RE °xB” i an orthogonal matrix representing rota-

tion, and A is a diagonal matrix representing scaling. The

DCT token discrepancy between the prediction and ground

truth, projected onto the positive definite cone, is defined as

AF = A’UTQ, where Av = 9! — vy. The self-adaptive
weight factor is subsequently noted as follows:

o |AF;|
W = max(AF) )’

sg denotes the stop-gradient operation. This formulation
leads to the Mahalanobis-regularized loss, as shown below, [
and p in Equation 6 are omitted for simplicity:

i€1,B%, 8)

Lu(6.0) = \/ATQWTAIQ Av,  ©)

Unified Cross-Stage Penalty. We propose a cross-stage
penalty to encourage deeper stages to generate progressively
more accurate prediction masks. An uncertainty function,
fune, quantifies the discrepancy between prediction and the
shared ground truth at each stage. The function is applicable
for both gating and regressor:

d = fone(7h, ), 7 €{G, Faa}, (10)

where fyy. is instantiated by Dy in Equation 6 for the re-
gressor and cross-entropy for gating module, ensuring align-
ment with the primary loss functions. The penalty that exists
between consecutive stages [ and [ —1 at position p is formally
defined as follows:

l -1 el 1—1
- d, —sg(d, ), ifd,>d, ", (11
p 0, otherwise.
For stage [ > 2, the penalty term is computed as:
Z €g wi\/l P
wl — #) (12)
M G+

where |G | denotes the cardinality of valid positions that
are predicted as partially fractured by both consecutive stages.
Similarly, wlg for the gating module can be computed by ap-
plying cross-entropy as func over all patches. The overall
multi-stage penalty term across all stages is then defined as:

L
1 Z UG+ Vi) - (13)
=2

This formulation ensures a progressive contribution from
each stage, encouraging the outputs of deeper stages to
achieve consistently greater accuracy than their shallower
counterparts. The overall loss function incorporates the regu-
larization and multi-stage penalty as follows:

LOverall = LGat + aﬁM + BLII; (14)

where L, denotes the cross-entropy loss for the gating
module, and Ly represents the Mahalanobis-regularized re-
gression loss. The weighting factors « and 3 control the rel-
ative contributions of these terms. This formulation enables
multi-stage refinement by mitigating the inherent limitations
of L1 loss in frequency-sensitive tasks, enhancing both ro-
bustness and precision—particularly in scenarios demanding
fine-grained recognition.

4 Experiments and Results

4.1 Dataset and Preprocessing

We conducted experiments using the publicly available
RibFrac Challenge dataset [Jin ef al., 2020]. In our sliding-
window framework, the patch size was setto D x H x W =
64 x 64 x 64 voxels, following [Jin et al., 2020]. To enhance
rib visibility, bone window normalization was applied using
a window width of 1200 Hounsfield units (HU) and a win-
dow level of 400 HU. The CT intensities were then linearly
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(a) CT Image (b) UNETR (c) DCTNet

(d) DCT-Mask (e) Ours (f) GT Mask

Figure 3: Segmentation results on the RibFrac-GTRefined dataset. Our method performs better in identifying small and hollow rib fractures,

which pose significant challenges due to their subtle appearance and complex anatomical structures.

“GT” denotes the ground truth.

Family Method RibFrac RibFrac-GTRefined
Se. () Sp.(1) FIL() Se.(t) Sp.(1) FIL()
FracNet [Jin et al., 2020] 0.820 0901 0.580 0.780 0.892 0473
S UNETR [Hatamizadeh er al., 2022] 0.861 0969 0.610 0.853 0971 0.513
UNETR++ [Shaker er al., 2024] 0.86¢4 0903 0.609 0.831 0912 0.526
DCTNet [Xu et al., 2020] 0.860 0973 0.614 0.855 0930 0.516
F DCT-Mask [Shen er al., 2021] 0.579 0999 0312 0580 0998 0.301
PatchDCT [Wen et al., 2022] 0.855 0967 0.626 0.841 0932 0.630
Ours 0.876 0981 0.699 0.881 0.982 0.714

Table 1: Quantitative comparison of our method against SOTA approaches for rib fracture detection on both the official and refined RibFrac
datasets. “S” denotes spatial-domain models, while “F” represents frequency-domain ones. The best results are highlighted in bold, and the
second-best results are underlined. “Se.” and “Sp.” correspond to sensitivity and specificity, respectively.

Method # Param. (|) FLOPs (])
FracNet 1.40 94.87
UNETR 19.50 27.62
UNETR++ 9.06 17.49
DCTNet 19.50 27.62
PatchDCT 20.60 27.76
Ours 21.50 17.50

Table 2: Comparison of our method with SOTA approaches in model
size (M) and computational complexity, measured by FLOPs (B).

scaled to [—1, 1] via min-max normalization. Spatial aug-
mentations were applied to training patches, including ran-
dom perturbation, flipping, and axis permutation. To stan-
dardize pixel spacing across different CT scanners, we set the
spacing parameter to (0.6, 0.6, 0.6), corresponding to a voxel
size of 0.6>mm?3. Figure S1 in Supplementary Materials illus-
trates the coarse nature of rib fracture annotations in RibFrac,
which do not fully capture the complexity of real-world frac-
tures. To address this limitation, we refined RibFrac using
rib annotations from RibSeg v2 [Jin et al., 2023], producing
a higher-quality dataset with reduced label noise. Detailed
information on the refinement process is provided in Supple-
mentary Materials §D.

4.2 Settings

Performance Metrics. We evaluate the model’s performance
in fracture detection and instance segmentation. Following
the FracNet workflow [Jin er al., 20201, we report sensitivity,
specificity, and F1-score for detection. For segmentation, we
use Intersection over Union (IoU) and Dice coefficient, con-
sistent with previous studies [Jin ef al., 2020; Yu et al., 2022;

Zhao et al., 2021; Wu et al., 2021]. To assess computational
efficiency, we report floating point operations (FLOPs).

Network Configuration and Training Protocol. Our
model consists of a DCT token regressor and a four-stage ViT
encoder, resulting in a compact and computationally efficient
design. The model is randomly initialized and trained for 200
epochs using the AdamW optimizer [Loshchilov, 2017]. The
learning rate is set to 1 x 10—%, with a batch size of 4 and
a gradient accumulation factor of 2. The loss function incor-
porates weighting factors & = 0.3 and 5 = 0.1. We sam-
ple 8 patches per volume to ensure class balance, evenly split
between fractured and healthy patches. Fracture patches are
extracted around the centroid of each lesion, while healthy
patches are selected from symmetrical regions correspond-
ing to the fracture locations and from the spine. During val-
idation and testing, all patches are sampled using a sliding
window with a fixed stride. For a fair comparison, we imple-
mented 3D adaptations of the competitor methods DCTNet,
DCT-Mask, and PatchDCT, initially designed for 2D inputs.
Additional architectural details and implementation specifics
are provided in Supplementary Materials §C.

4.3 Quantitative Comparison with SOTAs

Table 1 compares our method against SOTA approaches in
spatial and frequency domains. The comparison includes
CNN-based architectures and Transformer-CNN hybrid mod-
els for the detection task. Our results demonstrate con-
sistent superiority over existing methods on the RibFrac
dataset. Notably, the performance gap widens on the more
challenging RibFrac-GTRefined dataset, which better reflects
real-world clinical scenarios, highlighting our model’s ro-
bustness in handling complex anatomical structures. Addi-
tionally, frequency-domain-based methods generally achieve
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Family Method RibFrac RibFrac-GTRefined
IoU (1) Dice Coefficient (1) IoU (1) Dice Coefficient (1)

FracNet [Jin et al., 2020] 0.532 0.695 0.531 0.694

S UNETR [Hatamizadeh ef al., 2022]  0.583 0.737 0.576 0.731
UNETR++ [Shaker et al., 2024] 0.584 0.738 0.581 0.735
DCTNet [Xu et al., 2020] 0.589 0.741 0.592 0.743

F DCT-Mask [Shen et al., 2021] 0.204 0.339 0.205 0.340
PatchDCT [Wen et al., 2022] 0.531 0.694 0.622 0.767
Ours 0.613 0.760 0.649 0.787

Table 3: Quantitative comparison of our method against SOTA approaches for rib fracture segmentation. “S” denotes spatial-domain models,
while “F” represents frequency-domain models. The best results are highlighted in bold, and the second-best results are underlined.

(a) Naive DCT Frequency Error
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100 200 300 400
DCT Features of Fracture Mask (Low Freq. -> High Freq.)
(b) Mahalanobis-regularized DCT Frequency Error

Epoch Index

100 200 300 400
DCT Features of Fracture Mask (Low Freq. -> High Freq.)

500

Figure 4: Impact of Mahalanobis regularization in the DCT domain.
(a) Without regularization, the model progressively concentrates
loss on high-frequency components during training. (b) With reg-
ularization, loss distribution remains balanced across all frequency
components, improving stability

higher F1 scores than their spatial-domain counterparts, ex-
cept DCT-Mask, underscoring the advantage of frequency-
domain modeling in capturing high-frequency details. Ta-
ble 3 further corroborates this trend in segmentation results,
where our method consistently outperforms others. The supe-
rior performance on RibFrac-GTRefined reinforces the effec-
tiveness of our approach in tackling challenging clinical seg-
mentation tasks. Beyond accuracy, our method demonstrates
superior computational efficiency, as summarized in Table 2.
By adopting an encoder-only architecture with a shared DTR
module, our design significantly reduces the overall param-
eter count while preserving segmentation accuracy. This ar-
chitectural choice optimizes the trade-off between accuracy
and computational cost, making our model more feasible for
real-world medical applications.

4.4 Visualization

Figure 3 provides a qualitative comparison of segmentation
results between our method and SOTA approaches. Our

Input Output F1 (1) Dice (1)
S S 0.513 0.524
F-8 S 0.511 0.532
F-16 S 0.515 0.533
F-8-Norm S 0.535 0.554
F-16-Norm S 0.531 0.539
S F-8 0.303 0.302
S F-16 0.304 0.323
S F-8-RAG 0.653 0.691
S F-16-RAG  0.643 0.680
F-8-Norm  F-8-RAG 0.671 0.702
F-16-Norm F-8-RAG 0.669 0.701
F-8-Norm  F-16-RAG 0.673 0.702
F-16-Norm F-16-RAG  0.652 0.609

Table 4: Effect of input and output domains on the validation set.
Here, “S” denotes the spatial domain, while “F” represents the fre-
quency domain. “Norm” refers to batch normalization applied after
DCT tokens, and “RAG” denotes the Regressor-After-Gating mech-
anism. The numbers 8 and 16 indicate different patch sizes.

Loss Function F1 (1) Dice (1)
L1 0.674 0.701
L1, Min-Max Norm)  0.693 0.746
L1 (Softmax Norm) 0.681 0.742

Table 5: Comparison of the proposed Mahalanobis regularization
(M) with the standard L1 loss. Two weighting strategies are evalu-
ated for Mahalanobis regularization.

method exhibits superior segmentation accuracy, particularly
in detecting small, hollow structures that pose significant
challenges for existing models. Figure 5 illustrates our pro-
posed multi-stage refinement strategy, where penalty terms
between consecutive stages enforce consistency and guide
deeper stages toward more confident predictions. This design
mirrors the iterative refinement process employed by clini-
cians during manual annotation, enhancing both segmenta-
tion reliability and interpretability.
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Figure 5: Progressive visualization of our hierarchical refinement
strategy, mimicking human annotators’ stepwise delineation of frac-
ture masks. Predicted segmentations at early, mid, and late train-
ing epochs are shown alongside corresponding CT and ground-truth
masks, demonstrating the model’s capacity for iterative refinement

Stages F1 (1) Dice (1)
4 0.681 0.740
34 0.687 0.744
23,4 0.693  0.751
1,234 0.690 0.747

Table 6: Performance comparison across varying hierarchical
depths. Models with 1 to 4 hierarchical stages are evaluated, demon-
strating that hierarchical architectures consistently outperform non-
hierarchical counterparts.

4.5 Ablation Study

Different Input and Output Domains. We explore the ef-
fect of varying the data domains for model inputs and outputs.
As shown in Table 4, replacing voxel representations with
DCT tokens in the input space consistently improves model
performance, with larger patch sizes yielding better results.
However, substituting the segmentation mask with DCT to-
kens and using L1 loss on the output side significantly de-

Cls. Reg. F1(T) Dice(?)
0.693 0.751
v 0.696 0.753
v 0.702 0.749
v v 0.708 0.770

Table 7: Ablation study on the effect of penalizing the gating and
regressor modules in the hierarchical model with four stages.

grades performance. This is likely due to the dominance of
healthy voxels, which overshadow the gradients and impair
the model’s ability to capture fracture features effectively.
In contrast, the proposed RAG mechanism substantially en-
hances model performance, demonstrating its effectiveness in
modeling small and hollow targets.

Mahalanobis Regularization. Table 5 presents a quan-
titative comparison between the L1 loss and the proposed
Mahalanobis-regularized loss. We evaluate two self-adaptive
weighting strategies for Mahalanobis loss, and the results
consistently show its superiority in improving model perfor-
mance. This improvement is further supported by Figure 4,
which illustrates that Mahalanobis regularization alleviates
the known deficiency of L1 loss in capturing high-frequency
signals, leading to more robust feature learning.

Number of Stages. We investigate the effect of varying the
number of stages, as shown in Table 6. While a hierarchical
design intuitively suggests performance gains, our results re-
veal a non-monotonic trend as the number of stages increases
from 1 to 4. Performance initially improves with additional
stages but declines when the number of stages exceeds three.
Nevertheless, hierarchical architectures consistently outper-
form their non-hierarchical counterparts, emphasizing their
effectiveness in structured feature learning.

Unified Multi-Stage Penalty. Table 7 evaluates the im-
pact of the proposed hierarchical penalty, which imposes con-
straints on both the gating module and the regressor, either in-
dependently or in combination. The results indicate that pe-
nalizing both components simultaneously yields the highest
performance, highlighting the importance of jointly optimiz-
ing these modules for optimal results.

5 Conclusions

We propose a novel approach for rib fracture analysis
by developing a full-frequency model, which integrates
Mahalanobis-regularized frequency loss and a unified cross-
stage penalty within the RAG module. This method improves
interpretability and achieves high-performance fracture de-
tection, bridging the gap between clinical annotation work-
flows and deep learning model design. Future iterations are
expected to improve performance by strategically selecting
signals from input DCT tokens and developing a more task-
oriented frequency-domain model.
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