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Abstract

One-shot Federated Learning (OFL) is a distributed
machine learning paradigm that constrains client-
server communication to a single round, addressing
privacy and communication overhead issues associ-
ated with multiple rounds of data exchange in tradi-
tional Federated Learning (FL). OFL demonstrates
the practical potential for integration with future
approaches that require collaborative training mod-
els, such as large language models (LLMs). How-
ever, current OFL methods face two major chal-
lenges: data heterogeneity and model heterogene-
ity, which result in subpar performance compared
to conventional FL. methods. Worse still, despite
numerous studies addressing these limitations, a
comprehensive summary is still lacking. To address
these gaps, this paper presents a systematic analy-
sis of the challenges faced by OFL and thoroughly
reviews the current methods. We also offer an inno-
vative categorization method and analyze the trade-
offs of various techniques. Additionally, we dis-
cuss the most promising future directions and the
technologies that should be integrated into the OFL
field. This work aims to provide guidance and in-
sights for future research.

1 Introduction

Federated Learning (FL) [McMahan er al., 2016] is an es-
tablished paradigm that fosters multiple clients to collabora-
tively engage in distributed machine learning, allowing the
aggregation of local models on a server to generate a global
model. In practice, current implementations of FL require
multiple rounds of data exchange between clients and the
server to ensure the training of a high-accuracy global model
without the need to directly utilize raw data. However, as
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FL is widely employed in fields such as intelligent trans-
portation, economy, manufacturing and healthcare [Kairouz
et al., 2021], the traditional multi-round setup can still vio-
late privacy-preserving principles [Kairouz et al., 2021] and
incur significant communication overhead [Wang et al., 2023;
Tang et al., 2024b].

To protect data privacy, researchers have proposed three
main techniques to address privacy leakage in FL: Differen-
tial Privacy (DP) [Dwork, 2011], Secure Multi-Party Com-
putation (SMPC) [Bonawitz et al., 2017], and Homomor-
phic Encryption (HE) [Cheon et al., 2017]. DP-based meth-
ods introduce noise into the intermediate data before sharing
to prevent privacy leakage, but this can reduce model accu-
racy. SMPC-based methods increase network communication
overhead between participants, especially when scaling to a
large number of clients. HE-based models are criticized for
requiring substantial computational resources. While these
methods address privacy-preserving issues, they do not tackle
communication overhead and can introduce additional issues.

Consequently, communication between server and clients
is limited to a single round, as in one-shot Federated Learning
(OFL) [Guha et al., 2019]. OFL methods have been specif-
ically designed to improve accuracy in one-shot scenarios.
OFL not only reduces the burden of communication trans-
mission but also potentially achieves even stronger security
due to its single-round setting when integrated with existing
privacy-preserving methods. Additionally, it offers further
advantages, such as alleviating the requirements for transmis-
sion synchronization [Alemdar er al., 2021]. Therefore, OFL
methods have emerged as a promising approach to address
these practical issues. Since 2019, a significant number of
researchers, recognizing the potential of OFL, have begun to
study this area and have already proposed various methods
aimed at addressing specific challenges as well as enhanc-
ing global model performance on the server side [Tang et al.,
2024b; Shen et al., 2025].

However, none of the current papers has effectively sum-
marized the challenges within the OFL domain, and most re-
searchers have provided inadequate summaries and classifica-
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tions of OFL-related literature. This may be due to the rapid
development of OFL as a practical field, which has yet to
receive a thorough overview. Additionally, because current
OFL methods often employ multiple techniques simultane-
ously, categorization becomes muddled, leading to inconsis-
tent and imprecise classification approaches in the literature.

Existing survey papers tend to focus on Knowledge Distil-
lation [Mora et al., 20241, Label Leakage [Liu et al., 2024b],
or integration with Foundation Models [Woisetschlager and
others, 2024] in FL, but none have concentrated on pro-
viding a comprehensive overview of the challenging and
promising practical methods in OFL. As Large Language
Models (LLMs) gain prominence, maintaining data privacy
during large-scale model training and reducing communica-
tion overhead through collaborative training among multiple
clients becomes increasingly important [Tang et al., 2024a;
Ye et al., 2024]. Especially with the development of cloud-
edge collaborative frameworks [Tang et al., 2024a], OFL may
demonstrate even broader applicability alongside LLMs.

Thus, we present the first survey paper specifically focused
on the OFL domain. Our main contributions are not limited
to a standard survey; they are summarized as follows:

* We propose novel taxonomies addressing the challenges
faced by OFL and current methods, aiding researchers in
better understanding the issues and existing approaches.

* We provide a thorough and detailed overview of exist-
ing OFL methods, including their primary designs, un-
derlying principles, and advantages and potential draw-
backs in addressing specific challenges. This enables re-
searchers to gain a deeper understanding of approaches.

* Beyond summarizing existing methods, we discuss our
findings, highlight promising future directions, and iden-
tify relevant areas, assisting researchers in integrating
OFL with practical applications.

The paper is organized as follows. Section 2 introduces
the fundamental challenges. Section 3 provides a novel tax-
onomy and discusses in detail the technical aspects of each
category. Section 4 offers a discussion that summarizes our
findings and outlines future directions for the development of
OFL. Finally, Section 5 concludes our paper.

2 Challenges in One-shot Federated Learning

2.1 Problem Formulation

In federated learning, clients collaboratively train local mod-
els using their private local datasets to produce a global model
for the server within a distributed fashion. The objective is to
minimize the optimization problem:

Hgn F(w):=q; Z F;(w;) (D
i€[n]

where n denotes the number of clients, w; denotes the pa-
rameters of local client;, w denotes the parameters of the
global model, a; denotes the proportion of client;’s private
dataset to the entire dataset, F' is the loss function.

In the traditional FL setting, clients upload their parameters
w; multiple times to get the final w. However, in OFL, they
only upload their parameters once.

2.2 Proposed Taxonomy for Challenges

Besides the privacy issues, OFL methods must improve the
global model’s test accuracy while addressing two main chal-
lenges: (1) Data Heterogeneity, where the private datasets
on each client are non-iid (independent and identically dis-
tributed); and (2) Model Heterogeneity, as the local models
participating in FL often differ from one another.

Data Heterogeneity

In practice, data heterogeneity arises from the non-IID char-
acteristics of the private datasets among clients, which are
primarily due to three types of skew [Li et al., 2022]: quan-
tity skew, feature skew and label skew.

For quantity skew, each client has the same data distribu-
tion but with different amounts of data. For feature skew, the
classes within different clients’ private datasets have differ-
ent statistics. For label skew, different clients have varying
proportions of data for the same class.

In traditional FL, numerous methods have been proposed
to handle data heterogeneity, such as FedAvg [McMahan
et al., 2016] (averaging parameters from clients), SCAF-
FOLD [Karimireddy et al., 2020] and MOON [Li et al.,
2021a] (measuring the similarity and disparity of parameters
between parties), FedProx [Li er al., 2020] (adding an L2
regularization term for optimization) and VHL [Tang et al.,
2022] (calibrating features via virtual data). These methods
work well in non-one-shot scenarios by iteratively updating
and integrating the features of client models with the server
round by round [Li ef al., 2022].

However, in a one-shot setting with non-IID data, the dif-
ferences in model data across clients can be substantial, pos-
ing new challenges that traditional methods struggle to ad-
dress efficiently in a single pass. This challenge is essentially
an out-of-distribution (OOD) detection [Yang er al., 2024al
problem. Since models are uploaded only once, if the FL
method fails to capture all the hidden dataset statistics in the
client parameters effectively, parts of the data samples may
be OOD in the global model and remain unrecognized [Guha
et al., 2019]. In multi-round settings, global models can be
finetuned through iterative updates, but OFL methods require
more robust learning capabilities to overcome the data het-
erogeneity challenge without sacrificing accuracy.

Model Heterogeneity

In practice, having all clients and the server share the same
model as the global model often fails to meet the diverse
needs of all clients, especially since FL is commonly inte-
grated with different model architectures within cloud-edge
collaborative frameworks or deployed on different edge de-
vices, or due to privacy considerations [Zhang et al., 2024al.
Consequently, personalized FL [Smith et al., 2017] was pro-
posed to address these concerns, and most of this research is
based on the assumption of model homogeneity.

Model heterogeneity arises from differences in the com-
munication capabilities [Shah and Lau, 20211, computing re-
sources [Shin et al., 2024], and model architectures of lo-
cal clients [Shen et al., 2025]. Even when clients share the
same model, disparities in computing resources can lead to
different clients using different sub-models from the global
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model [Diao et al., 2021; Shen et al., 2025] for training or
updating only specific layers’ parameters to meet varying re-
quirements [Li et al., 2021c], resulting in model heterogene-
ity. Additionally, clients may be unwilling to disclose details
of their model designs, further complicating the issue.
Therefore, in OFL tasks, researchers must consider not
only data heterogeneity but also the persistent challenge of
model heterogeneity. Current approaches for model hetero-
geneity of OFL primarily concentrate on addressing the chal-
lenge posed by differing model architectures among clients.
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Figure 1: A basic taxonomy of one-shot federated learning tech-
niques. Note that Some hybrid methods employ multiple techniques.

3 One-shot Federated Learning Techniques

Figure 1 illustrates our new taxonomy of current OFL tech-
niques. These techniques aim to enhance the final global
model’s accuracy in light of the two challenges we previ-
ously mentioned. From an innovative perspective, we com-
prehensively categorize all the current methods into four
main groups based on the techniques they employ: Param-
eter Learning, Knowledge Distillation, Generative Mod-
els, and Ensemble Methods. Besides these four techniques,
many methods are hybrid methods, which employ a combi-
nation of multiple techniques.

3.1 Parameter Learning

Methods in the parameter learning category are derived from
approaches like FedAvg and tend to directly learn the statis-
tical information of local clients’ model parameters to deter-
mine the global model’s parameters.

Clustering Method. k-FED [Dennis et al., 2021] employs
Lloyd’s k-means clustering method to first cluster the infor-
mation from local models and then uploads the cluster means
to the server. This aids the server in learning more local in-
formation in a one-shot scenario, albeit with increased com-
munication costs. Regularizer. MA-Echo [Su er al., 2023]

considers aggregation of local models’ parameters layer-wise
and uses a unique method by introducing new norms. This
approach helps the global model better account for differ-
ences among local models. Conformal Prediction. FedCP-
QQ [Humbert et al., 2023] utilizes a conformal prediction
method, demonstrating that for any distribution, a predic-
tion set with the desired coverage can be computed in a sin-
gle round of communication, thereby improving the global
model’s performance. Bayesian Method. FedFisher [Jhun-
jhunwala et al., 2023] is an aggregation method that uses the
empirical Fisher information matrix obtained by layer-wise
Laplace approximation. This method first leverages Bayesian
techniques to better model the posteriors of local clients and
then aggregates for the global model. FedLPA [Liu er al.,
2024a] employs a similar approach to FedFisher, further di-
rectly training the global model’s parameters to achieve re-
sults. 3-PredBaye [Hasan et al., 2024] first collects param-
eters from the posteriors of local clients and then introduces
a tunable hyper-parameter 3. This parameter interpolates be-
tween a mixture and a product of the predictive posteriors by
considering merging Gaussians in the predictive space, and
aggregation is performed based on this approach. Prototype
Learning. In prototype learning [Snell ef al., 20171, one or
more prototypes for each class are calculated using the sam-
ples from the training set. These prototypes can be consid-
ered as central representations summarizing and representing
each class. PNFM [Yurochkin er al., 2019] employs Bayesian
Nonparametric Methods for neural matching based on proto-
type learning. FedMA [Wang er al., 2020] extends the ap-
proach from PNFM by moving beyond fully-connected net-
works. It constructs a shared global model in a hierarchical
manner by matching and averaging hidden elements (such as
channels in convolutional layers or hidden states in LSTMs)
with similar feature extraction characteristics, thus expanding
the methodology to CNNs and LSTMs.

Since methods with parameter learning techniques are
based on parameter optimization, they typically provide the-
oretical proofs of convergence. As these methods require
uploading local model parameters, they can introduce pri-
vacy concerns. As a result, many approaches include ab-
lation studies that integrate with Differential Privacy (DP).
This category of methods can address the data heterogeneity
challenge, potentially improving the global model’s accuracy
over traditional FL. methods. However, due to the inherent
limitations in accurately modeling the statistics, there is still
a need to explore better approaches for capturing the features
of local clients’ parameters. Additionally, parameter learning
techniques do not address the model heterogeneity challenge.
Note that within parameter learning, prototype learning holds
the most promise for integration with others.

3.2 Knowledge Distillation

Knowledge distillation is a compression technique aimed at
reducing the model’s size and computational demands while
maintaining as much accuracy as possible. It has been shown
to address OFL problems effectively and is categorized into
two major types: data distillation and model distillation.
Data Distillation. DOSFL [Zhou et al., 2020] involves
distilling the local private dataset at each client and then
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Method Distillation Generative Models Ensemble Additional Data
DOSFL [Zhou et al., 2020] Data - - -

FedD3 [Song et al., 2023] Data - - -

Fusion Learning [Kasturi eral., 20201~ -~ Data Distribution Digest = - -

XorMixFL [Shin et al., 2020] - Embedding - Data Labels
FedOCD [Liu et al., 2024c] - Embedding - -

FedPFT [Beitollahi et al., 2024] - Feature Extractor (GMM) - Three Foundation Models
OSGAN [Kasturi, 2023] - Generative Adversarial Network - -

FedDEO [Yang et al., 2024c] - Stable Diffusion - -

FedBiP [Chen et al., 2024] . Stable Diffusion - Latent Diffusion Model [Rombach et al., 2022]
FedDISC [Yang et al., 2024b] - Stable Diffusion - CLIP [Radford et al., 2021]
FedMITR [Hao et al., 2025] - Model Inversion - -

DeDES [Wang etal., 20231 -~ . Static o
FedTMOS [Qi e al., 2025] - - Static -

FENS [Allouah et al., 2024] - - Adaptive -

FuseFL [Tang er al., 2024b] - - Adaptive -

HPFL [Shen et al., 2025] - - Adaptive -

Mediator [Lai et al., 2025] - - Adaptive -

FedOV [Diao etal,2023] - Generative Adversarial Network ~ Static -
IntactOFL [Zeng et al., 2024] - Generative Adversarial Network  Adaptive -

FedSD2C [Zhang er al., 2024b] Data Variational Autoencoder - -

One-shot FL [Guha et al., 2019] Model — - Static Public Dataset
FedKT [Li et al., 2021b] Model — - Static Public Dataset
FedKD [Gong et al., 2022] Model «+ - Static Public Dataset
Dense [Zhang et al., 2022] Model <~  Generative Adversarial Network Static -
Co-Boosting [Dai et al., 2024] Model <~  Generative Adversarial Network  Adaptive -

FedCVAE [Heinbaugh et al., 2023] Model Variational Autoencoder Static Data Labels

Table 1: A synoptic overview of the surveyed solutions includes Knowledge Distillation, Generative Models, Ensemble Methods, and
Hybrid Methods. The dashed line distinguishes between different categories. “Additional data” refers to the extra data requirements needed.

«

In the distillation column,
opposite, with distillation based on the ensemble model.

training on the distilled data at the server. FedD3 [Song
et al., 2023] operates in resource-constrained edge environ-
ments by collecting decentralized dataset distillation to train
the global model. Additionally, FedSD2C [Zhang et al.,
2024b] incorporates data distillation alongside other tech-
niques, which we will analyze in Section 3.5. Model Dis-
tillation. The methods utilize model distillation, and as
shown in Table 1, these often incorporate multiple tech-
niques, typically in combination with ensemble methods.
Generally, there are two approaches: (1) conducting model
distillation first and then ensembling [Guha er al., 2019;
Li et al., 2021b], (2) or vice versa—ensembling first and dis-
tilling the ensembled model afterward [Gong et al., 2022;
Zhang et al., 2022; Dai et al., 2024]. We will discuss these
methods in detail in Section 3.5.

Compared to parameter learning techniques, knowledge
distillation provides better privacy preservation. By allocat-
ing more computational resources to distillation, it iteratively
enhances the global model’s performance, yielding higher ac-
curacy and supporting model heterogeneity.

3.3 Generative Models

Generative models are a widely used class of techniques in
machine learning, designed to train synthetic samples that
closely resemble the original data, thereby ensuring similar
data distributions. Consequently, generative models can be
utilized in OFL to aid the server in training on the synthetic
datasets, which is an effective learning from local datasets.
Embedding/Feature Generation. In Fusion Learning [Kas-
turi et al., 2020], the distribution digest of client data and

—” indicates that distillation is performed before applying the ensemble method, whereas

“4—" suggests the

their local model parameters are sent to the server. The
server regenerates dataset based on these distribution digest,
integrates parameters from multiple devices to construct a
global model, trains the model using the combined dataset.
XorMixFL [Shin et al., 2020] assumes both the global server
and clients possess labeled samples from a global class.
The server collects encoded data samples (embeddings) from
other devices to construct the global data samples. It employs
the exclusive OR operation (XOR) to protect privacy during
the encoding process. FedOCD [Liu et al., 2024c] focuses
on cross-domain recommendation and applies local differen-
tial privacy for security while processing the generated user
embeddings. FedPFT [Beitollahi et al., 2024] utilizes a fea-
ture extractor to derive the corresponding Gaussian mixture
models (GMMs) to model synthetic sample features, transfer-
ring per-client parametric models. Generative Adversarial
Networks. OSGAN [Kasturi, 2023] further employs Gen-
erative Adversarial Networks (GANs) as a generative model
to enhance performance. Other uses [Zhang et al., 2022;
Diao et al., 2023; Zeng et al., 2024; Dai et al., 2024] of
Generative Adversarial Networks, along with additional tech-
niques, can be found in Table 1 and will be discussed in detail
in Section 3.5. Variational Autoencoder. Researchers have
further utilized Variational Autoencoders in approaches such
as FedCAVE [Heinbaugh et al., 2023] and FedSD2C [Zhang
et al., 2024b]. Stable Diffusion. FedDEO [Yang et al.,
2024c] initially adopts popular diffusion models, transmitting
image captions (local descriptions) to better capture the dis-
tribution of client local data. This assists the server in gener-
ating synthetic data that align more closely with the client’s
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data distribution. FedBiP [Chen et al., 2024] further utilizes
a better Stable Diffusion model, specifically the foundation
model (Latent Diffusion Model [Rombach et al., 2022]), to
improve performance. FedDISC [Yang er al., 2024b] lever-
ages a pre-trained model CLIP [Radford e al., 2021] with
prototype learning. It involves four steps: Prototype Extrac-
tion, Pseudo Labeling, Feature Processing, and Image Gen-
eration, which lead to improved outcomes. Model Inver-
sion. FedMITR [Hao et al., 2025] employs model inversion
techniques to obtain statistical information about some pri-
vate data within local models. Additionally, it uses a vision
transformer to perform token relabeling.

Based on the above discussion, we find that compared
to parameter learning, knowledge distillation and genera-
tive models offer advantages beyond higher accuracy when
given more computational resources. We observe that both
techniques address data and model heterogeneity challenges.
Additionally, they enhance security by not directly sharing
client parameters. Since both techniques aim to statisti-
cally approximate the true local datasets without exposing
actual data, as local models also reflect local datasets. Thus,
they enhance the global model’s capability with similar ap-
proaches to learning client-specific features, which enables
the global model to train more effectively while mitigating
out-of-distribution (OOD) issues.

These two techniques also have their differences. Model
distillation improves methods by distilling parameter infor-
mation from clients rather than using their raw data. In con-
trast, generative models enhance learning by generating syn-
thetic data that capture the characteristics of clients’ private
datasets. Although data distillation also emphasizes the data
aspect, generative models can address the inefficiencies asso-
ciated with knowledge distillation methods, often leading to
superior performance. As a result, numerous researchers are
actively pursuing advancements in methods that better reflect
local data distributions, especially through generative mod-
els. This progression is evident as the focus has shifted from
GANSs to VAEs, then to Stable Diffusion, and finally to in-
creasingly sophisticated diffusion models.

3.4 Ensemble Methods

Ensemble methods represent one of the most straightforward
solutions to addressing OFL challenges (data heterogeneity
and model heterogeneity). The most naive ensemble ap-
proach involves aggregating global models obtained from lo-
cal clients. However, ensemble models can actually be com-
bined with a wide range of other techniques. Currently, these
combinations are mainly categorized into two types: static
and adaptive ensemble methods.

Static. Static ensemble methods are typically used to per-
form operations like averaging (DeDES [Wang et al., 2023])
or taking the maximum based on the outputs from local
clients. FedTMOS [Qi e al., 2025] enhances this approach
by integrating a lightweight reinforcement learning model,
Tsetlin Machine, with prototype learning. Each client can
train a different Tsetlin Machine for each class. Due to
the unique nature of the Tsetlin Machine, which employs
Boolean feature representation, it is well-suited for handling
sparse or high-dimensional data. This leads to improved re-

sults on the server side. Adaptive. FENS [Allouah et al.,
2024] balances communication rounds and accuracy by ad-
justing the ensemble weights based on the similarity between
global and local models. From the causality perspective,
FuseFL [Tang et al., 2024b] identifies that the performance
drop comes from the isolated training problem. Then, FuseFL
proposes a bottom-up approach that trains and merges sub-
models adaptively to enhance invariant feature learning, thus
alleviating spurious fitting. HPFL [Shen et al., 2025] pro-
poses regarding the personalized modules as hot pluggable
plug-ins which can be selected according to the input data
during inference. The plug-ins only need to be sent to server
once. Mediator [Lai er al., 2025] aggregates different fine-
tuned LLMs that can be trained by different parties with low
memory occupation and adaptive routing and compression.
Other methods [Guha et al., 2019; Li et al., 2021b;
Gong et al., 2022; Zhang et al., 2022; Heinbaugh et al., 2023;
Diao et al., 2023; Zeng et al., 2024; Dai er al., 2024] that
utilize ensemble techniques are listed in Table 1 and will be
discussed in Section 3.5. While ensemble methods directly
leverage local models, they can be combined with other tech-
niques to ensure privacy and improve accuracy. We also find
that adaptive ensemble methods typically yield better results.

3.5 Hybrid Methods

As previously mentioned, current papers do not adequately
classify methods addressing one-shot Federated Learning.
Table 1 illustrates the challenges of classification and high-
lights the effectiveness of our unique classification approach.
This paper thoroughly examines all current methods of OFL
from a technical contribution perspective. A single method
can employ multiple techniques. The three techniques that
can tackle model heterogeneity—knowledge distillation, gen-
erative models, and ensemble methods, are often integrated
to enhance performance and privacy. These methods can be
combined in pairs or even all three together. Based on this,
and following our detailed discussions of each technique, we
summarize these methods, providing an in-depth analysis of
how their integration enhances performance.

Integrating Generative Models with Ensemble Meth-
ods. FedOV [Diao er al., 2023] addresses the open-set prob-
lem with an OOD perspective, where some classes may be
missing on certain clients due to label skew. To handle this,
it uses GAN to generate outliers with feature corruption and
employs adversarial training techniques. The generated data
samples serve as additional unknown classes during local
training, and the results are obtained by ensemble methods
from local clients. IntactOFL [Zeng et al., 2024] also em-
ploys GANs to generate synthetic data samples but adopts
a more flexible approach by utilizing a mixture of experts
(MoE) model [Jacobs et al., 1991]. This allows for dynamic
adjustment of the ensemble weights for each local client, tai-
lored specifically to each data instance, which greatly im-
proves the performance.

Integrating Generative Models with Distillation.
FedSD2C [Zhang et al., 2024b] begins by using a pretrained
Autoencoder to extract distillate synthesis. To reduce com-
munication costs and enhance the privacy of the distillates,
clients perturb the distillates using the Fourier transform. To
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ensure that the distillates fully encompass local information,
clients perform a V-information based Core-Set selection
when utilizing the encoder. Finally, the server collects all the
distillates and uses the pretrained autoencoder’s decoder to
train an accurate global model.

Integrating Ensemble Methods with Distillation. One-
shot FL [Guha et al., 2019], particularly in the context of
semi-supervised learning, leverages distillation to reduce the
size of the global model and enhance privacy guarantees.
The approach then applies average ensemble methods to dis-
tilled local models to achieve favorable results. FedKT [Li et
al., 2021b], while using a similar approach, extends previous
methods from support vector machines (SVMs). It incorpo-
rates a hierarchical knowledge transfer framework with a two-
tier privacy aggregation of teacher ensembles (PATEs) struc-
ture to improve accuracy and introduces the concept of con-
sistent voting to strengthen the ensemble. Both of these meth-
ods utilize publicly available datasets to further enhance pre-
cision. FedKD [Gong et al., 2022] makes use of unlabeled,
cross-domain public data and requires transferring products
of these. To address privacy concerns, it incorporates a quan-
tized and noisy ensemble into local models. Following the en-
semble process, it applies distillation to derive the final global
model. Notably, by employing a combination of both shared
techniques and additional public datasets, the results demon-
strate that first ensembling and then distilling yields better
outcomes. This is likely because, as mentioned, distillation
can be inherently inefficient and may result in some loss of in-
formation. Distilling before ensembling might lead to models
that are not as accurate prior to aggregation.

Combination with Three Techniques. Dense [Zhang er
al., 2022] uses an ensemble of local models uploaded by
clients to train a GAN-type generator, which then gener-
ates synthetic data samples. The knowledge from the en-
semble models is distilled into the global model, which is
also trained using the synthetic data to enhance the accuracy.
Co-Boosting [Dai er al., 2024] employs a similar generator
and also follows the process of ensembling before distilla-
tion. However, it extends Dense by introducing a reinforcing
approach. This method continuously adjusts the weights of
the ensemble model’s local models based on synthetic data,
and through this process, it finetunes over multiple iterations.
Similar to FuseFL [Tang er al., 2024b], although model pa-
rameters are uploaded only once, the method undergoes sev-
eral iterations of optimization, achieving high accuracy. Un-
like the previous two methods, in FedCVAE [Heinbaugh et
al., 2023], each local client trains an Autoencoder and trans-
mits the local label information and decoder. The server then
uses the uploaded client decoder parameters and local label
distributions to train a server decoder. Ultimately, synthetic
samples from the server decoders are used to train the global
model. FedCAVE-KD employs knowledge distillation of lo-
cal decoders to train the server decoder, while FedCAVE-Ens
ensembles client decoders and trains the server decoder.

To avoid repetition in Section 3.4, we address the privacy
issues associated with ensemble methods here, as they often
combine with other techniques. For example, using distilla-
tion before ensembling can effectively enhance privacy. Con-
versely, ensembling first and then distilling can achieve secu-

rity by adding noise to the uploaded local models, similar to
parameter learning. Therefore, regardless of how these tech-
niques are combined, we find they all can ensure privacy.

4 Discussions and Future Directions

In this section, having discussed all the current techniques,
we note that these methods have successfully implemented
one-shot learning, reduced communication overhead, and en-
sured data privacy. We will summarize the findings based on
these methods from the perspective of improving accuracy.
Following this, we will present a blueprint for future direc-
tions that focuses not only on test accuracy but also considers
other aspects, grounded in practical guidance.

4.1 Findings

Prototype learning has a bright future. Parameter learn-
ing faces challenges in addressing model heterogeneity and is
generally limited by the method’s capacity to fully capture the
weights in local parameters and discard spurious correlations
caused by data heterogeneity, which can restrict accuracy.
Consequently, compared to other methods, parameter learn-
ing does not demonstrate significant advantages. However,
fine-grained approaches such as prototype learning within pa-
rameter learning show substantial potential. They enable fea-
ture extraction by class, thereby enriching the global model’s
information. These approaches can be readily integrated with
other methods, as seen with FedTMOS, which employs an
ensemble method, and FedDISC, which utilizes generative
model diffusion. Thus, employing prototype learning or con-
ducting more granular analyses of local models or class fea-
tures in OFL holds significant promise.

Better Generative Model is needed. Generative models
tend to perform better compared to knowledge distillation
methods, primarily because they typically operate directly
on the data rather than the model. Even when considering
data distillation as opposed to model distillation, it becomes
challenging to compare with generative methods due to the
compression involved in distillation, which limits accuracy.
We also observe that the academic community is striving for
improved generative models. Therefore, if better generative
models become available, they should be utilized in the OFL
method. Of course, it is also worth experimenting with im-
proved distillation methods for one-shot Federated Learning.
Adaptive ensemble method shows great potential. Com-
pared to static ensembles, adaptive ensembles achieve bet-
ter results. Both FENSE [Allouah et al., 2024] and Co-
boosting [Dai et al., 2024] consider the differences between
global and local models, allowing for a refinement of ensem-
ble weights for local models to enhance accuracy. However,
these dynamic methods still struggle to adjust according to
specific data samples. Due to data heterogeneity, the dis-
parity between data samples across different clients can be
significant, necessitating varied weight distributions for dif-
ferent samples. IntactOFL [Zeng et al., 2024] significantly
improves accuracy using an MoE approach, although it uses
a basic generative model like GAN and does not use distil-
lation. Its accuracy surpasses both Dense and Co-boosting.
Consequently, a better adaptive ensemble method in OFL that
accounts for data samples will likely yield better results.
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Uploading once but updating multiple iterations. We
found that although OFL restricts the upload to a single
round, performing multiple local updates can better lever-
age the upload. Aside from Co-boosting [Dai et al., 2024],
FuseFL [Tang et al., 2024b] updates one block (one or mul-
tiple layers) per iteration from the bottom up view, thereby
updating from a causal perspective, ultimately achieving ex-
cellent results. These findings suggest that a multi-shot ap-
proach should be favored over a one-shot approach on the
server while keeping the same communication costs.
Aggregating more techniques is preferable. The results
from the papers we previously discussed demonstrate that,
beyond employing a better model within various techniques,
there is no single “silver bullet” for improving one-shot Fed-
erated Learning outcomes. Instead, integrating multiple tech-
niques can lead to better results. In detail, incorporating pro-
totype learning when training local models can significantly
refine their representation capabilities. Utilizing more fine-
grained knowledge distillation when distilling adaptive en-
semble models can further enhance the precision and effec-
tiveness of the ensembles. Additionally, training the distilled
global model with synthetic datasets generated by superior
generative models can improve its robustness and generaliza-
tion, thereby contributing to enhanced overall performance.
Besides these approaches, an ideal method should involve
conducting multiple iterations of local updates. In this sce-
nario, the uploaded statistical information can be maximized,
leading to the best possible results.

4.2 Future Directions

In addition to the findings we have uncovered that can guide
enhancements in the accuracy of OFL methods, this subsec-
tion will provide a practical roadmap for the future develop-
ment of one-shot Federated Learning.

Data-free Requirement. XorMixFL [Shin et al., 2020]
and FedCAVE [Heinbaugh et al., 2023] both require the
transmission of local clients’ data labels, posing a risk of
data privacy leakage. On the other hand, methods like One-
shot FL [Guha et al., 2019], FedKT [Li et al., 2021b], and
FedKD [Gong et al., 2022] depend on additional public
datasets; similarly, approaches such as FedPFT [Beitollahi et
al., 2024], FedBiP [Chen et al., 2024], and FedDISC [Yang et
al., 2024b] utilize foundation models, leveraging extra public
datasets as well. However, OFL ideally should be data-free;
using additional datasets might lead the global model to learn
biased information that does not align with the target dataset,
such as certain industrial or biological datasets, which may
ultimately reduce accuracy. Therefore, data-free operation
should be one of the key objectives for OFL methods.

Scalability for LLMs. Training LLMs in FL. with mul-
tiple rounds requires significant communication costs be-
cause of the enormous model sizes [Ye et al., 2024; Tang
et al., 2024a]. OFL has significant potential to reduce this
communication cost, thus implementing training or finetun-
ing LLMs across different geo-distributed clients. How-
ever, most current experimental approaches for OFL meth-
ods primarily focus on models like LeNet, VGGNet, and
ResNet, with datasets mostly comprising MNIST, CIFAR,
Tiny ImageNet, or simple medical datasets and etc. There

is some work trying to merge different finetuned LLMs [Lai
et al., 2025] only once. Besides, state-of-the-art OFL meth-
ods can accommodate model heterogeneity [Li et al., 2021c¢;
Shen et al., 2025], knowledge distillation between hetero-
geneous LLMs [Gu et al., 2024] and collaboration between
LLMs [Wang er al., 2024a] can be implemented in OFL. In
the future, the FL. community could explore OFL methods to
enable more practical training of LLMs with different parties.

Practical Applications. Based on the experimental con-
siderations mentioned above, besides the LLM field, these
methods should be applicable to more practical applications.
For instance, combining them with vertical federated learn-
ing (VFL) could result in one-shot VFL methods. The OFL
approach can be seen in applications like FedISCA [Kang et
al.,2023] with biomedical data, FedD3 [Song ef al., 2023] fo-
cusing on resource-constrained edge environments, and OFL-
W3 [Jiang et al., 2024] integrated with blockchain and Web
3.0 technology. Given the one-shot nature of OFL, which
eliminates the need for synchronization, it can also be widely
utilized in cloud-edge collaborative frameworks. Addition-
ally, there is potential for application in emerging fields like
sequential federated learning [Wang er al., 2024b]. These
highlight the broad application prospects of OFL.

Advanced Optimizations. Although OFL significantly
reduces communication overhead, integrating it with LLMs
and cloud-edge collaborative frameworks presents additional
challenges. These challenges arise because such models are
large and often support numerous services, leading to sub-
stantial parameter sizes even in a single round of interaction.
Therefore, further optimization is required, such as imple-
menting model compression [Hu ef al., 2024] or acceleration
techniques [Liu and Zeng, 2024].

In summary, while OFL methods demonstrate tremendous
practical potential, improvements should not be limited to en-
hancing accuracy. Consideration should also be given to the
aspects we mentioned. By addressing these considerations
and integrating our findings, we outline a clear direction for
the future development of OFL methods.

5 Conclusion

In this paper, we focus on the novel distributed machine learn-
ing paradigm, one-shot Federated Learning. We provide a
detailed analysis of the challenges faced within one-shot Fed-
erated Learning, propose an innovative taxonomy, and thor-
oughly discuss the specifics of various methods based on this
classification. Our paper comprehensively covers all exist-
ing OFL literature, comparing the advantages, developmental
trajectories, and areas for improvement across different tech-
niques. Based on this analysis, we discuss our findings and
offer numerous future directions from a practical standpoint
for this rapidly evolving field. This survey aims to consoli-
date existing knowledge and lay a foundation for future work
in the promising one-shot Federated Learning area.
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