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Abstract

This paper presents an evolvable conditional
diffusion method such that black-box, non-
differentiable multi-physics models, as are com-
mon in domains like computational fluid dynam-
ics and electromagnetics, can be effectively used
for guiding the generative process to facilitate au-
tonomous scientific discovery. We formulate the
guidance as an optimization problem where one
optimizes for a desired fitness function through
updates to the descriptive statistic for the denois-
ing distribution, and derive an evolution-guided ap-
proach from first principles through the lens of
probabilistic evolution. Interestingly, the final de-
rived update algorithm is analogous to the update as
per common gradient-based guided diffusion mod-
els, but without ever having to compute any deriva-
tives. We validate our proposed evolvable diffu-
sion algorithm in two AI for Science scenarios:
the automated design of fluidic topology and meta-
surface. Results demonstrate that this method ef-
fectively generates designs that better satisfy spe-
cific optimization objectives without reliance on
differentiable proxies, providing an effective means
of guidance-based diffusion that can capitalize on
the wealth of black-box, non-differentiable multi-
physics numerical models common across Science.

1 Introduction
Diffusion models have emerged as a powerful class of deep
generative models, demonstrating remarkable performance in
a variety of domains such as image synthesis [Rombach et
al., 2022], audio generation [Kong et al., 2021], biological
sequence generation [Avdeyev et al., 2023], and engineering
design problems [Liu and Thuerey, 2024; Xu et al., 2025].

While the original unconditional diffusion model generates
samples randomly, conditional diffusion models are a com-
mon variant that have been proposed to enable generation

∗Corresponding author

with a bias towards specific users’ requirements (e.g., aesthet-
ics and/or specific engineering performance criteria) [Yang et
al., 2023]. For example, molecular linker design leverages
conditioning on target protein pockets to advance drug dis-
covery [Igashov et al., 2024]. However, conditional diffusion
models require paired data-sets to be available a priori for
training, which can be difficult to obtain in large quantities.

In contrast, guided diffusion models and their variants
[Dhariwal and Nichol, 2021; Bansal et al., 2023; Mazé
and Ahmed, 2023; Chen et al., 2024] have been proposed
whereby the gradient of a regressor or classifier is used to
steer the denoising trajectory such that samples with specific
requirements are preferentially generated. Critically, guided
diffusion models offer flexibility in conditional generation as
they enable a pre-trained diffusion model to generate samples
which satisfy any post-hoc requirement, a notable advantage
as pre-trained diffusion models continue to proliferate and
scale in the era of foundation models [Li et al., 2024]. This
has already led to several exciting advances in AI for Science,
e.g., MatterGen [Zeni et al., 2025] demonstrates the ability of
guided diffusion to directly generate novel, stable, synthesiz-
able inorganic materials with specific target properties. The
integration of such automated candidate generation strategies
with autonomous laboratories of the future approach is key
to achieving the vision of end-to-end autonomous scientific
discovery [Szymanski et al., 2023].

Although promising, practical applications of guided dif-
fusion models still face certain challenges. One key issue is
the need for models that can evaluate the desired performance
to be differentiable in order for the gradient to be easily com-
puted and incorporated during the denoising process. How-
ever, this precludes the use of many established multi-physics
numerical models that have been developed for diverse sci-
entific applications as the majority of such models are non-
differentiable. These models are essentially black-boxes in
that users typically do not have the capability to interact in an
intrusive manner with the solver, e.g., molecular/protein de-
scriptors [Gainza et al., 2020; Ghiringhelli et al., 2015] and
physics-based simulators [Yuan et al., 2023]. Hence, this dis-
connect between the need for gradients and the limitations of
current state-of-the-art high-fidelity solvers has been a major
barrier to the applicability of performance-guided diffusion
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models in enabling major scientific transitions.
The methods of evolutionary computation offer a unique

pathway to overcome this barrier. In contrast to local
gradient-based guidance methods, the generative processes
of evolution are inherently derivative-free and exploratory,
driven by random genetic variation and guided by the prin-
ciple of survival of the fittest. Critically, evolutionary com-
putation’s independence from gradient information makes it
uniquely suited for exploiting the repertoire of existing black-
box solvers established in many scientific domain, facilitat-
ing automated scientific discovery as described above while
retaining compliance with existing known physics through
evaluation and verification with state-of-the-art numerical
solvers. Being a search-oriented approach, evolutionary
computation is particularly effective for global exploration
in complex, multi-modal landscapes, enabling it to tackle
discrete, discontinuous, and high-dimensional problems as
is common in many scientific domains, e.g., meta-surface
design, a pressing challenge in communications and next-
generation semiconductors. Moreover, its robustness in han-
dling multiple guidance signals (fitness functions) and noisy
environments reinforces its applicability to complex design
challenges of today [Bali et al., 2020].

It is worth highlighting that the stochastic nature of evo-
lutionary computation also promotes diversity and can un-
veil unexpected and innovative solutions, with prior literature
demonstrating how this can lead to the emergence of novel bi-
ological structures [Miikkulainen and Forrest, 2021]. Hence,
the incorporation of in silico evolution in generative AI meth-
ods like diffusion models also engenders a similar potential
to produce innovative, out-of-distribution solutions, making it
an exciting engine for scientific discovery [Wong et al., 2024;
Lyu et al., 2024; Lehman et al., 2020]. Overall, evolution-
ary computation is a compelling alternative to traditional,
gradient-based generative AI methods.

Given the gradient-free capabilities of evolutionary compu-
tation [Le et al., 2013; Sung et al., 2023], we seek to develop a
gradient-free approach to achieve guided generation through
the lens of evolvability [Valiant, 2009] of the diffusion model
as shown in Figure 1. This method enables generation of de-
signs that preferentially align with desired objectives even if
the evaluation tool (e.g., solver) is non-differentiable. The
contributions are summarized as follows:

• We propose an evolvable conditional diffusion method
inspired by evolutionary algorithms. This approach
treats the generation process as a black-box optimization
problem, whereby the probabilistic distribution obtained
from the pre-trained diffusion model is evolved to fa-
vor designs that maximize certain performance criteria.
Notably, the derived update algorithm can be seen to be
analogous to the update rule in conventional gradient-
based guided diffusion under specific assumptions.

• The proposed method eliminates the need for differ-
entiable models in the guided diffusion. Instead, the
gradient of the fitness function is directly estimated
from samples drawn from the evolved distribution,
with corresponding fitness values evaluated using non-
differentiable solvers.

• We successfully apply the proposed approach to two
generative design problems as examples of how this
method can be useful in the general area of AI for Sci-
ence, i.e., the design of fluidic channel topology and
frequency-selective meta-surface.

2 Background and Related Works
2.1 Diffusion Models
Diffusion models [Ho et al., 2020; Song et al., 2021; Song
and Ermon, 2019; Song and Ermon, 2020; Song et al., 2020]
are a class of probabilistic generative models that learn to
generate new samples by iteratively removing noise (denois-
ing) from a random input. They have demonstrated advan-
tages over other state-of-the-art methods like generative ad-
versarial networks (GANs) across various tasks such as com-
puter vision [Croitoru et al., 2023], natural language process-
ing [Li et al., 2022], and topology design [Mazé and Ahmed,
2023].

Taking the famous denoising diffusion probabilistic model
(DDPM) [Ho et al., 2020] as an example, the training process
consists of two main phases: a forward noising process and
a reverse denoising process. In the forward noising process,
data is progressively perturbed by adding Gaussian noise in
small steps, eventually transforming the data into pure noise
as per Eq. (1)

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)
where βt ∈ (0, 1) is a hyperparameter selected prior to model
training. In contrast, the denoising process gradually removes
the noise by running a learnable Markov chain to generate
new data as illustrated in Eq. (2)

pθ(xt−1|xt) = N (xt−1; µθ(xt), Σθ(xt)) (2)
where µθ(xt) and Σθ(xt) are the mean and covariance of
the denoising process, and are predicted through the trained
neural network parameterized by θ. In some instances, the
covariance Σθ(xt) can be simplified as a constant [Ho et al.,
2020]. Once learned, new samples (e.g., images) can be gen-
erated by sampling fromN (0, 1) and carrying out a denoising
process according to Eq. (2).

2.2 Guidance Methods
In practice, vanilla diffusion models produce plausible sam-
ples, but with no regard to specific user requirements or ob-
jectives. Thus, guidance in diffusion models is commonly in-
troduced to steer the generative process towards specific de-
sired outcomes during the denoising process [Dhariwal and
Nichol, 2021]. In this approach, a separate model (e.g., neu-
ral network) which is able to predict the objective value of the
condition is assumed to be available, such that its gradients
can be used to steer the denoising process towards a target
criteria. Some related research can be found in [Wallace et
al., 2023; Kim et al., 2022].

For a diffusion model with an unconditional denoising pro-
cess pθ(xt|xt+1), [Ho et al., 2020] shows that, under reason-
able assumptions, we can model the distribution as a Gaus-
sian pθ(xt|xt+1) = N (xt;µθ(xt+1),Σθ(xt+1)), where the
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t t tf f fΛ

SolverFitness 
shaping

Evolvable Conditional Diffusion: how xt-1 follows from xt

 tJ ω%
Estimation
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t t tr r rΛ

Evaluation

Population distribution Drawn samples

Actual fitness valuesRank values

 |t tp x tx

1tx
Distribution update

Target solution

Guided 
denoising      max |
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t
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

Denoising

Figure 1: Framework of the proposed evolvable conditional diffusion method. The entire process is framed through the lens of probabilistic
evolvability, transitioning from xT to x0 via a sequence of mutations [Valiant, 2009]. Notably, our derived update algorithm directly utilizes
evolved samples and corresponding fitness values, eliminating the need for differentiable evaluation models during guidance and extending
its applicability to non-differentiable solvers.

mean µθ(xt+1) and covariance Σθ(xt+1) are modeled by
two neural networks. Crucially, a guidance process can be in-
corporated to post hoc bias the denoising process, and [Mazé
and Ahmed, 2023] shows that the denoising guidance can in
turn be formulated as a gradient-based update to the denois-
ing Gaussian’s mean as

µc
θ(xt) = µθ(xt) + αΣθ(xt)∇xt

f(xt) (3)

where f is a differentiable guidance function (e.g., a regres-
sor) that evaluates the denoising outcome; and α is the gradi-
ent scaling factor.

Note that the gradient-based guidance mechanisms typi-
cally require a differentiable proxy. However, models with
black-box characteristics, e.g., the finite element analysis
(FEA) software Abaqus and computational fluid dynamics
(CFD) software Ansys Fluent commonly used for struc-
tural and fluid analysis respectively, can evaluate objective
functions but are inherently non-differentiable. This lack
of differentiability makes them incompatible with gradient-
based guidance mechanisms and limits their integration into
classifier/regressor-guided diffusion frameworks. To address
this limitation, we propose an evolvable conditional diffusion
method to eliminate the need for differentiable proxies.

3 Gradient-Free Conditional Diffusion
Algorithm

3.1 Theoretical Background
In this section, we derive a gradient-free guidance ap-
proach from first principles through the lens of probabilis-
tic, population-based evolutionary computation. We formu-
late the guidance as an optimization problem where the de-
noising process is evolved to advance in the direction that

maximizes the fitness function f , thereby updating the pa-
rameters of the denoising distribution. In probabilistic evo-
lution, the optimization problem can be reformulated as
maximizing the following expected fitness under the under-
lying population distribution model [Ollivier et al., 2017;
Gupta et al., 2022]

J(ω) = Eω[f(xt)] =

∫
f(xt)p(xt|ω)dxt (4)

where f is the black-box guidance function; ω = (µθ,Σθ)
represents the denoising distribution parameters, which are
evolved to produce samples that are more desirable as as-
sessed by the fitness function; xt represents individual sam-
ples drawn from the denoising distribution. In our pro-
posed gradient-free approach where we maximize J(ω), f
no longer has the same requirements for differentiability as
the equivalent f in Eq. (3).
Proposition 1. Given the optimization objective J(ω) =
Eω[f(xt)]; ω = (µθ,Σθ). The gradient-free update rule
to the mean of the denoising distribution is given by

µc
θ = µθ + α∇̃µθJ(ω) (5)

where ∇̃µθJ(ω) denotes the natural gradient of J(ω) with
respect to the mean µθ . Then, when ||Σθ|| → 0, we have
∇̃µθJ(ω) = Σθ∇xtf(xt) which directly corresponds to the
gradient-based update in Eq. (3).

Proof. The natural gradient to the objective J(ω) can be for-
malized as the solution to the constrained optimization prob-
lem [Wierstra et al., 2014]

max
δω

J(ω + δω) ≈ J(ω) + δω⊤∇ωJ(ω) (6a)

s.t. D(ω + δω || ω) = ϵ (6b)
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where D is the Kullback-Leibler divergence between two
probability distributions, and ϵ is a small increment size. For
δω → 0, the solution to this can be found using a Lagrangian
multiplier, yielding the necessary condition

F δω = ϕ∇ωJ(ω) (7)

where F = E[∇ω log p(xt|ω)∇ω log p(xt|ω)⊤] is the
Fisher information matrix, and for some constant ϕ > 0. The
direction of the natural gradient ∇̃ωJ(ω) is thus given by δω

∇̃ωJ(ω) = F−1∇ωJ(ω). (8)

Given further that p(xt|ω) is a Gaussian distribution, the
Fisher information matrix for µθ is given by

Fµθ = E[∇µθ log p(xt|ω)∇µθ log p(xt|ω)⊤] (9a)

= E[(Σ−1
θ (xt − µθ))(Σ

−1
θ (xt − µθ))

⊤] (9b)

= Σ−1
θ E[(xt − µθ)(xt − µθ)

⊤]Σ−1
θ (9c)

= Σ−1
θ ΣθΣ

−1
θ (9d)

= Σ−1
θ . (9e)

Using this relation, the natural gradient to the objective
J(ω) can be expressed as

∇̃µθJ(ω) = F−1
µθ
∇µθJ(ω) (10a)

= Σθ∇µθ

∫
f(xt)p(xt|ω)dxt. (10b)

Note that as ||Σθ|| → 0, the density p(xt|ω) approaches
a Dirac delta function. Therefore, the translation property of
the Dirac delta function allows us to simplify Eq. (10) as

∇̃µθJ(ω) = Σθ∇µθ

∫
f(xt)p(xt|ω)dxt (11a)

= Σθ∇xt
f(xt). (11b)

Consequently, the derived gradient-free update mathemat-
ically corresponds to the gradient-based update used in con-
ventional guided diffusion models, i.e., Eq. (3).

■

3.2 Implementation Details
In practice, the gradient-free update term in Eq. (5) is esti-
mated by Monte Carlo sampling of a population of candidate
solutions. By the Leibniz integral rule, we express ∇̃µθJ(ω)
in Eq. (10) as

∇̃µθJ(ω) = Σθ ∇µθ

∫
f(xt)p(xt|ω)dxt (12a)

= Σθ

∫
f(xt)∇µθp(xt|ω)dxt. (12b)

By applying the log-likelihood trick, i.e., ∇µθp(xt|ω) =
∇µθ log p(xt|ω)p(xt|ω), Eq. (12) is reformulated as

∇̃µθJ(ω) = Σθ

∫
f(xt)∇µθ log p(xt|ω)p(xt|ω)dxt

(13a)

≈ Σθ
1

Ns

Ns∑
i=1

f(xi
t)∇µθ log p(x

i
t|ω) (13b)

= Σθ
1

Ns

Ns∑
i=1

f(xi
t)Σ

−1
θ (xi

t − µθ) (13c)

=
1

Ns

Ns∑
i=1

f(xi
t)(x

i
t − µθ). (13d)

Note that Eq. (13b) is approximated by the Monte Carlo es-
timate of the search gradient, which is obtained without ever
having to compute the derivatives of the guidance signal f .

Since Eq. (13d) is sensitive to the magnitude and extreme
values of the fitness function, a fitness shaping [Wierstra et
al., 2014] approach is applied to transform the actual fitness
values into rank values. This replaces f with a rank-based
function r as

r(xt) = a+ b · rank(f(xt)) (14)

where rank(xt) denotes the rank values of all samples in
xt, determined based on the actual fitness value f(xt), and
a lower rank value indicates a smaller actual fitness value;
a and b are constants used for rescaling. It is evident that
Eq. (14) controls the range of fitness values and thereby en-
sures the invariance of our method to order-preserving fitness
transformations. As the fitness function f is now replaced by
a rank-based function r, the natural gradient in Eq. (13d) can
be further expressed as

∇̃µθJ(ω) ≈ 1

Ns

Ns∑
i=1

r(xi
t)(x

i
t − µθ) (15a)

=
1

Ns
M tRt (15b)

where M t = [mni]N×Ns
with mni := xi

tn − µn
θ , where

N is the dimensionality of the samples, and Ns is the
number of samples drawn from the current distribution
(µθ(xt), Σθ(xt)); Rt = [r1t , · · · , r

Ns
t ]⊤.

3.3 Algorithm
The steps of the evolvable conditional diffusion method are
outlined in Algorithm 1, assuming that a pre-trained diffusion
model parameterized by θ that predicts (µθ, Σθ) is avail-
able.

The initial distribution for the evolutionary optimization
problem is given by ω = ωt = (µθ(xt), Σθ(xt)),
and Ns samples are drawn from the distribution
N (µθ(xt), Σθ(xt)) in Line 4. The actual fitness val-
ues for these samples are computed accordingly in Line 5. To
decrease the influence of extreme values, rank-based fitness
shaping as per Eq. (14) is applied to transform the actual
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Algorithm 1 Evolvable conditional diffusion method
Input: number of denoising step T , number of samples for
gradient estimation Ns, dimensionality of the noised sample
N , gradient scaling factor α, unconditional diffusion model
(µθ, Σθ), and model for evaluating the fitness f(·)
Output: final guided sample x0

1: xT ← sampling from N (0, I)
2: for t ∈ [T, T − 1, · · · , 1] do
3: for i ∈ [1, 2, · · · , Ns] do
4: xi

t ← sampling from N (µθ(xt), Σθ(xt))
5: f i

t ← f(xi
t)

6: end for
7: r1t , r

2
t , . . . , r

Ns
t ← FitnessShaping(f1

t , f
2
t , . . . , f

Ns
t )

8: M t ← [mni]N×Ns with mni := xi
tn − µn

θ

9: Rt ← [r1t , · · · , r
Ns
t ]⊤

10: µc
θ(xt)← µθ(xt) + αM tRt

11: xt−1 ← sampling from N (µc
θ(xt),Σθ(xt))

12: end for
13: return x0

fitness values to rank values. A single gradient ascent step
at ωt based on Eq. (15b) is then performed with a gradient
scaling factor α to update the denoising distribution in the
direction of higher fitness values in Line 10. The conditional
denoising mean µc

θ(xt) is now obtained. With conditional
sampling, a new sample for the next denoising step is gen-
erated in Line 11. Subsequently, the distribution parameters
for the next denoising step ωt−1 = (µθ(xt−1), Σθ(xt−1))
are determined, and the initial ω for this step is then set
using ωt−1. This process is repeated iteratively until the final
denoising state x0 is reached.

As the updates are approximated directly through the use
of drawn samples from the evolved distribution and corre-
sponding rank values, this method is applicable even when
the gradients of the fitness function evaluator are difficult to
obtain (e.g., in the use of non-differentiable, black-box nu-
merical solvers).

4 Experiments

4.1 Design of Fluidic Channel Topology

Problem Statement. In this section, we validate the effec-
tiveness of our proposed evolvable conditional diffusion on
the design of fluidic channel topology, a fundamental prob-
lem with implications on the performance of heat exchangers
across multiple domains, including semiconductor chip cool-
ing, battery pack liquid cooling, and chemical reactor cool-
ing. Specifically, we seek to optimize the geometry of fluid
channels to minimize pressure drop across the inlet and out-
let (∆p) as pressure drop is a proxy for the amount of energy
required to drive flow through the system, and designs with
reduced pressure drop typically have superior performance in
terms of energy efficiency.

This pressure drop can be obtained conventionally by
solving the steady-state incompressible Navier-Stokes (N-S)
equations as per Eq. (16) [Wei et al., 2023]

∇ · u⃗ = 0 (u⃗ · ∇)u⃗ =
1

Re
∇2u⃗−∇p (16)

where u⃗ represents the velocity vector; p denotes the pressure;
Re = 500 is the Reynolds number under investigation.
Implementation Details. For demonstration of the evolv-
able conditional diffusion model, we first assume availability
of a black-box solver that can provide evaluations of the pres-
sure drop when provided a specific channel topology and a
pre-trained diffusion model that can generate random fluidic
channel topologies. Examples of such black-box solvers in-
clude CFD numerical solvers such as Ansys Fluent. During
the denoising process, evaluations of the objective (i.e., ∆p)
corresponding to the final denoising state x0 can be obtained
by calling this black-box solver. Figure 2 presents sample
CFD results for a representative fluidic topology. As a proof-
of-concept, a regressor was trained to provide the black-box
fitness evaluation using a paired dataset comprising topology
designs and their corresponding ∆p. Using the pre-trained
diffusion model, guidance is applied for the second half of
the denoising process with 30 samples evaluated per denois-
ing step for gradient estimation. The entire denoising process
consists of 100 steps, and the input design representation has
a spatial resolution of 64× 64.
Results. We generate 1000 samples for assessment of the ef-
fectiveness of our proposed method. The histogram of ∆p
obtained with and without gradient-free guidance during de-
noising across these 1000 samples is presented in Figure 3
(a). The results indicate that the distribution of ∆p of the
samples generated with guidance is significantly lower com-
pared to the baseline generated samples. Figure 3 (b) further
illustrates that all 1000 samples obtained via conditional dif-
fusion have reduced ∆p relative to the corresponding sample
generated without guidance in the denoising process. Further-
more, increasing the gradient scaling factor α clearly biases
the denoising process towards designs with even lower ∆p,
demonstrating the potential for generating designs which bet-
ter satisfy one’s criteria. The results highlight the effective-
ness of the proposed evolvable conditional diffusion in sce-
narios where the solver is non-differentiable.

Two representative samples from the 1000 generated sam-
ples are presented in Figure 4 to illustrate the final images
(i.e., x0) generated with and without guidance. Notably,
when α = 5, the outlet area is observed to be widened, caus-
ing a reduction in ∆p compared to the baseline design. ∆p
curves for the final 50 denoising steps of conditional and un-
conditional diffusion are presented in Figure 5. When the
guidance is applied during denoising, ∆p decreases as de-
noising progresses, with a more significant drop observed for
larger α. In contrast, ∆p in the baseline denoising process
remains fairly consistent, further illustrating the effectiveness
of the proposed evolvable conditional diffusion.

To further demonstrate the effectiveness of the proposed
approach, we applied guidance for a smaller fraction of the
denoising steps in the generation process. Specifically, the
gradient-free guidance was applied only for the last 10 steps
(as opposed to the previously presented 50 steps). The his-
togram of ∆p and difference in ∆p between samples gener-
ated with and without guidance are presented for 1000 gen-
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Figure 2: CFD results for a representative topology. (a) Channel topology (i.e., the final denoising state x0 generated by the diffusion model).
(b) u-velocity contour obtained by CFD. (c) v-velocity contour obtained by CFD. (d) p contour obtained by CFD.

Figure 3: Histograms of ∆p and the difference in ∆p between sam-
ples generated with 50-step guidance and without guidance for 1000
test samples in fluidic channel topology design. During the denois-
ing process, ∆p is normalized by ln∆p/5. (a) Histogram of ∆p.
“CD-5-0” represents ∆p for samples generated with guidance and
α = 5. “CD-1-0” represents ∆p for samples generated with guid-
ance and α = 1. “UD-0” represents ∆p for samples generated with-
out guidance. (b) Histogram of the difference in ∆p across paired
samples generated with and without guidance. “∆CD-5-0” repre-
sents the difference in ∆p between “CD-5-0” and “UD-0”. “∆CD-
1-0” represents the difference in ∆p between “CD-1-0” and “UD-0”.

erated samples in Figure 6. The results show that ∆p for
the 1000 samples generated with guidance applied during de-
noising for just 10 steps remain significantly lower than the
baseline, further demonstrating the method’s effectiveness.

4.2 Meta-Surface Design
Problem Statement. In this section, we demonstrate the ef-
fectiveness of the proposed guidance for design of frequency-
selective meta-surfaces. Meta-surface design plays a crucial
role in modern electronic devices, including 5G telecommu-
nications. Electrical engineers typically rely on high-fidelity
electromagnetic simulation tools (e.g., Ansys HFSS) in or-
der to obtain and analyze electromagnetic behavior of these
complex surfaces [Yang et al., 2022]. These simulators
solve Maxwell’s equations to provide the transmission and
reflectance responses of various meta-surface designs. As an
example, a meta-surface can be designed to match a given
profile of the real (Tr) and imaginary (Ti) components of
the transmission. A sample band-pass-type profile, where the
magnitude of Tr and Ti must resemble the parabolic profile

Figure 4: Examples of fluidic channel topologies generated with and
without guidance.

y = 1−2×(x−0.5)2 across a specific frequency range, is one
of many possible common design specifications engineers en-
counter. In this instance, the mean absolute error (MAE) be-
tween the predicted and target magnitudes of Tr and Ti is a
key design goal, and minimizing MAE can be a key metric
for guiding the design process. We present two representa-
tive meta-surface designs along with their corresponding Tr,
Ti, and magnitude of Tr and Ti curves in Figure 7.
Implementation Details. Following the previous example,
we assume the availability of a black-box solver capable of
evaluating the transmission profile for a given meta-surface
design, as well as a pre-trained diffusion model that can gen-
erate random meta-surface designs. Examples of such black-
box solvers include typical computational electromagnetics
numerical solvers such as Ansys HFSS. During the denois-
ing process, evaluations of the objective (i.e., MAE relative
to the desired target profile) corresponding to the final design
x0 can be obtained by calling this black-box solver. As a
proof-of-concept, a regressor is trained to provide the black-
box fitness evaluation using a paired dataset comprising meta-
surface designs and their corresponding transmission profiles.
Using the pre-trained diffusion model, guidance is applied for
the second half of the denoising process with 30 samples eval-
uated per denoising step for gradient estimation. The entire
denoising process consists of 100 steps, and the input design
representation has a spatial resolution of 64× 64.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 5: Curves illustrating the change in ∆p for the final 50 de-
noising steps of generation with and without guidance. “CD-5”,
“CD-1” and “UD” indicate ∆p is plotted for the scenarios where
guidance with a scaling factor of α = 5, α = 1, and α = 0 respec-
tively, are applied.

Figure 6: Histograms of ∆p and the difference in ∆p between sam-
ples generated with 10-step guidance and without guidance for 1000
test samples in fluidic channel topology design. During the denois-
ing process, ∆p is normalized by ln∆p/5. (a) Histogram of ∆p.
“CD-50-0” represents ∆p for samples generated with α = 50. “UD-
0” represents ∆p for samples generated without guidance. (b) His-
togram of the difference in ∆p across the paired samples generated
with and without guidance. “∆CD-50-0” represents the difference
in ∆p between “CD-50-0” and “UD-0”.

Results. We generate 1000 samples to evaluate the effective-
ness of the proposed evolvable conditional diffusion method.
The histogram of the MAE and the difference in MAE be-
tween samples generated with and without guidance is pre-
sented in Figure 8. Figure 8 (a) clearly shows that the sam-
ples generated with guidance during denoising better match
the target profile (i.e., show lower MAE values) than samples
generated without guidance. The median MAE of samples
generated with guidance is ≈ 0.1, indicating a good match to
the target profile. Figure 8 (b) further shows that the MAE
of meta-surface designs generated with guidance is consis-
tently lower than the baseline samples across all 1000 gener-
ated samples, emphasizing the effectiveness of the proposed
gradient-free guidance.

Two samples from the 1000 test samples are selected for
detailed analysis. Figure 9 illustrates that the MAE between
the transmission profile for samples generated with guidance
during denoising and the target profile steadily decreases to
a small value, whereas the MAE remains large in the base-
line case. Similarly, in Figure 10, the transmission profile of
a generated meta-surface design aligns closely with the target

Figure 7: Two representative meta-surface designs along with curves
depicting the real and imaginary components of their transmission
profiles (i.e., Tr and Ti respectively), and the corresponding trans-
mission magnitudes.

profile. In contrast, the transmission profile of the baseline
design generated without guidance exhibits significant dis-
crepancy from the target. These results highlight the effec-
tiveness of the proposed evolvable conditional diffusion.

5 Discussion
Guidance-based generation with diffusion models offers the
advantage of seamless integration of desired performance or
criteria into the diffusion denoising process using pre-trained
diffusion models. However, a significant drawback is the re-
liance on differentiable proxies, a rule that precludes the use
of many real-world black-box, non-differentiable simulators.
This limitation is particularly critical in scientific domains,
where accurate evaluation is best achieved by the use of estab-
lished, physics-based simulators. While a common paradigm
is to train a surrogate model of the guiding objective to pro-
vide a differentiable approximation of the objective, this of-
ten requires thousands of labeled samples which can be pro-
hibitively expensive, particularly for high-dimensional design
spaces (e.g., pixel-level geometry parameterizations or meta-
surface unit cell designs). While it is possible to utilize finite
difference, such approximations are known to scale poorly for
high-dimensional inputs common in physical systems. Alter-
native scalable gradient-free approaches such as the simul-
taneous perturbation stochastic approximation (SPSA) pro-
posed in [Shen et al., 2025] are also known to suffer from
high variance (noise) in high-dimensional spaces.

To address this challenge, we propose an evolvable con-
ditional diffusion method which is fundamentally different
from the current paradigm. By integrating evolution strate-
gies directly into the denoising process, we eliminate the need
for any a priori surrogate model. Further, this approach is
more robust to noise as it derives stochastic gradient estimates
from a population of sample evaluations.
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Figure 8: Histograms of MAE and the difference in MAE between
samples generated with 50-step guidance and without guidance for
1000 test samples in meta-surface design. (a) Histogram of MAE.
“CD-5-0” represents MAE of meta-surface designs generated using
α = 5. “UD-0” represents MAE of meta-surface designs generated
without any guidance during the denoising process. (b) Histogram
of the difference in MAE across the paired samples generated with
and without guidance. “∆CD-5-0” represents the difference in MAE
between “CD-5-0” and “UD-0”.

Figure 9: Curves illustrating the change in MAE for the final 50
denoising steps of generation with and without guidance. “CD-5”
and “UD” indicate MAE is plotted for the scenarios where guidance
with a scaling factor of α = 5 and α = 0 respectively are applied.

More critically, the scalability of our evolvable conditional
diffusion algorithm depends on the “intrinsic” dimensionality
of the problem, which is often low even for high-resolution
images where only a small number of pixel values affect the
target objectives. Empirically, this conforms with our pro-
posed method’s strong performance in high-dimensional set-
tings, as the evolution strategies appear to effectively exploit
key informative dimensions of the optimization problem, al-
lowing their performance to scale with the intrinsic complex-
ity or effective dimensionality of the task, rather than with
the full dimensionality of the input search space [Salimans et
al., 2017]. While the scalability of such evolution strategies
was prominently demonstrated by OpenAI in their seminal
work [Salimans et al., 2017], our method further extends this
observation by explicitly incorporating the covariance matrix
into the diffusion denoising process. Note that the ability to
scale efficiently to high dimensions is yet another explana-
tion of how our method fundamentally departs from recent
surrogate-guided diffusion methods [Tan et al., 2025], where
the amount of data needed to train a differentiable surrogate
model becomes intractable with increasing problem dimen-
sionality.

Figure 10: Predicted transmission profiles of designs generated with
and without guidance in the denoising process. “Target” indicates
target profile which was used as guidance during denoising. “CD-5”
indicates the predicted profile is obtained through denoising with a
guidance of α = 5. “UD” indicates the predicted profile is obtained
with no guidance during denoising.

Lastly, while [Shen et al., 2025] derive their gradient-free
guidance algorithm by adopting and building upon the up-
date rule in [Mazé and Ahmed, 2023], Proposition 1 shows
that this update rule actually emerges from first principles
as a mathematical consequence of the probabilistic evolution
method, without requiring any prior assumptions. This posi-
tions our method as a more principled and scalable alternative
for high-dimensional inverse design and optimization tasks,
including but not limited to the two examples of fluidic chan-
nel topology and meta-surface design as demonstrated in this
work.

6 Conclusion
In this work, we propose an evolvable conditional diffusion
method by harnessing the generative capacity of probabilistic
evolutionary computation. This approach evolves the diffu-
sion process towards denoising distributions with higher fit-
ness, thereby improving the conformance of generated sam-
ples to specified, desirable criteria. Notably, the derived up-
date algorithm is provably analogous to the update in standard
gradient-based guided diffusion models, but without the need
for computing derivatives of the guidance signal.

We validate the effectiveness of the proposed evolvable
conditional diffusion method through two design applica-
tions common in engineering: fluidic channel topology de-
sign and frequency-selective meta-surface design. Results
demonstrate that the proposed method can effectively gen-
erate high-quality designs better aligned with desired perfor-
mance criteria. Furthermore, the proposed method is highly
adaptable and can be easily extended to other domains that re-
quire optimization through non-differentiable evaluations, as
evidenced by our demonstrations in the two distinct fields of
fluid dynamics and electromagnetic. This significantly broad-
ens the applicability of diffusion models for design across a
multitude of scientific and engineering domains.

Acknowledgments
This research is partially supported by the National Research
Foundation, Singapore, and Civil Aviation Authority under

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

the Aviation Transformation Programme - “ATM-Met Inte-
gration of Convective Weather Forecast and Impact Fore-
cast Solutions Supporting Singapore Air Traffic Operations”
(Award No. ATP2.0 ATM-MET I2R) and A*STAR under
BMRC CSF (Award No. C240314053). This research is par-
tially supported by the National Research Foundation, Singa-
pore and DSO National Laboratories under the AI Singapore
Programme - “Design Beyond What You Know: Material-
Informed Differential Generative AI (MIDGAI) for Light-
Weight High-Entropy Alloys and Multi-functional Compos-
ites (Stage 1a)” (AISG Award No. AISG2-GC-2023-010).
This research is also partially supported by the Ramanu-
jan Fellowship from the Science and Engineering Research
Board, Government of India (Grant No. RJF/2022/000115).

References
[Avdeyev et al., 2023] Pavel Avdeyev, Chenlai Shi, Yuhao

Tan, Kseniia Dudnyk, and Jian Zhou. Dirichlet diffu-
sion score model for biological sequence generation. In
Proceedings of the International Conference on Machine
Learning, pages 1276–1301. PMLR, 2023.

[Bali et al., 2020] Kavitesh Kumar Bali, Abhishek Gupta,
Yew-Soon Ong, and Puay Siew Tan. Cognizant
multitasking in multiobjective multifactorial evolution:
MO-MFEA-II. IEEE Transactions on Cybernetics,
51(4):1784–1796, 2020.

[Bansal et al., 2023] Arpit Bansal, Hong-Min Chu, Avi
Schwarzschild, Soumyadip Sengupta, Micah Goldblum,
Jonas Geiping, and Tom Goldstein. Universal guidance
for diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 843–852, 2023.

[Chen et al., 2024] Minshuo Chen, Song Mei, Jianqing Fan,
and Mengdi Wang. An overview of diffusion models:
Applications, guided generation, statistical rates and op-
timization. arXiv preprint arXiv:2404.07771, 2024.

[Croitoru et al., 2023] Florinel-Alin Croitoru, Vlad Hondru,
Radu Tudor Ionescu, and Mubarak Shah. Diffusion mod-
els in vision: A survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(9):10850–10869,
2023.

[Dhariwal and Nichol, 2021] Prafulla Dhariwal and Alexan-
der Nichol. Diffusion models beat GANs on image synthe-
sis. Advances in Neural Information Processing Systems,
34:8780–8794, 2021.

[Gainza et al., 2020] Pablo Gainza, Freyr Sverrisson, Fred-
erico Monti, Emanuele Rodola, Davide Boscaini,
Michael M Bronstein, and Bruno E Correia. Decipher-
ing interaction fingerprints from protein molecular sur-
faces using geometric deep learning. Nature Methods,
17(2):184–192, 2020.

[Ghiringhelli et al., 2015] Luca M Ghiringhelli, Jan Vybiral,
Sergey V Levchenko, Claudia Draxl, and Matthias Schef-
fler. Big data of materials science: Critical role of the de-
scriptor. Physical Review Letters, 114(10):105503, 2015.

[Gupta et al., 2022] Abhishek Gupta, Lei Zhou, Yew-Soon
Ong, Zefeng Chen, and Yaqing Hou. Half a dozen real-
world applications of evolutionary multitasking, and more.
IEEE Computational Intelligence Magazine, 17(2):49–66,
2022.

[Ho et al., 2020] Jonathan Ho, Ajay Jain, and Pieter Abbeel.
Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851,
2020.

[Igashov et al., 2024] Ilia Igashov, Hannes Stärk, Clément
Vignac, Arne Schneuing, Victor Garcia Satorras, Pascal
Frossard, Max Welling, Michael Bronstein, and Bruno
Correia. Equivariant 3d-conditional diffusion model for
molecular linker design. Nature Machine Intelligence,
6:417–427, 2024.

[Kim et al., 2022] Heeseung Kim, Sungwon Kim, and Sun-
groh Yoon. Guided-TTS: A diffusion model for text-to-
speech via classifier guidance. In International Confer-
ence on Machine Learning, pages 11119–11133. PMLR,
2022.

[Kong et al., 2021] Zhifeng Kong, Wei Ping, Jiaji Huang,
Kexin Zhao, and Bryan Catanzaro. Diffwave: A versa-
tile diffusion model for audio synthesis. In International
Conference on Learning Representations, 2021.

[Le et al., 2013] Minh Nghia Le, Yew Soon Ong, Stefan
Menzel, Yaochu Jin, and Bernhard Sendhoff. Evolu-
tion by adapting surrogates. Evolutionary Computation,
21(2):313–340, 2013.

[Lehman et al., 2020] Joel Lehman, Jeff Clune, Dusan Mi-
sevic, Christoph Adami, Lee Altenberg, Julie Beaulieu,
Peter J Bentley, Samuel Bernard, Guillaume Beslon,
David M Bryson, et al. The surprising creativity of digital
evolution: A collection of anecdotes from the evolution-
ary computation and artificial life research communities.
Artificial Life, 26(2):274–306, 2020.

[Li et al., 2022] Xiang Li, John Thickstun, Ishaan Gulrajani,
Percy S Liang, and Tatsunori B Hashimoto. Diffusion-LM
improves controllable text generation. Advances in Neural
Information Processing Systems, 35:4328–4343, 2022.

[Li et al., 2024] Xiner Li, Yulai Zhao, Chenyu Wang,
Gabriele Scalia, Gokcen Eraslan, Surag Nair, Tommaso
Biancalani, Shuiwang Ji, Aviv Regev, Sergey Levine, et al.
Derivative-free guidance in continuous and discrete dif-
fusion models with soft value-based decoding. arXiv
preprint arXiv:2408.08252, 2024.

[Liu and Thuerey, 2024] Qiang Liu and Nils Thuerey.
Uncertainty-aware surrogate models for airfoil flow
simulations with denoising diffusion probabilistic models.
AIAA Journal, 62(8):2912–2933, 2024.

[Lyu et al., 2024] Yueming Lyu, Kim Yong Tan, Yew Soon
Ong, and Ivor Tsang. Covariance-adaptive sequential
black-box optimization for diffusion targeted generation.
arXiv preprint arXiv:2406.00812, 2024.
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