Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

LPDetective: Dusting the LLLM Chats for Prompt Template Abusers

Yang Luo??, Qingni Shen'>? and Zhonghai Wu'-?>*

!National Engineering Research Center for Software Engineering, Peking University, Beijing, China
2School of Software and Microelectronics, Peking University, Beijing, China
3PKU-OCTA Laboratory for Blockchain and Privacy Computing, Peking University, Beijing, China

{luoyang, gingnishen, wuzh} @pku.edu.cn

Abstract

The abuse of LLM Chatbot interfaces by web
robots leads to a significant waste of GPU and
server resources, posing a serious security chal-
lenge. To address this issue, we propose LPDe-
tective, an unsupervised method for detecting robot
prompt templates. This method is based on the
assumption that robot-generated text repeatedly
uses the same or highly similar phrases and sen-
tence structures across multiple sessions, differing
from human natural conversations. We design a
multi-stage workflow, including message grouping,
text similarity measurement, hierarchical clustering
analysis, and regular expression extraction, to auto-
matically extract potential robot behavior patterns
from chat logs. LPDetective does not require pre-
defined templates or rely on training data, enabling
it to adaptively discover new, unknown patterns.
We conduct systematic experiments on three large-
scale real-world datasets: Bing Copilot, Wildchat,
and ChatLog. The results show that LPDetective
can efficiently and accurately detect robot prompt
templates in various scenarios, achieving a 7.5%
improvement in F1 score compared to the state-of-
the-art XLNet method and reducing detection la-
tency by 178 times on the Bing Copilot dataset.

1 Introduction

In recent years, chatbot technology driven by large language
models (LLMs) has made tremendous progress, such as Chat-
GPT [Ouyang et al., 2022; Wikipedia, 2022], GPT-4 [Ope-
nAl, 2023], etc., exhibiting near-human or even superhu-
man capabilities in natural conversation, question answering,
and content creation [Frieder et al., 2023; McGee, 2023].
These chatbots have been widely applied in customer ser-
vice [Fglstad and Skjuve, 2019], education [Wollny et al.,
2021], healthcare [Ayanouz et al., 2020], and other fields,
profoundly changing our work and lifestyles [Hussain et al.,
2019; Gupta et al., 2020; Paliwal er al., 2020].

However, the open interaction interfaces of LLM chatbots
also introduce new security risks. In 2023, OWASP listed

*Corresponding author

Model Denial of Service (MDoS) attacks as the 4th biggest
threat faced by LLM systems [OWASP, 2023]. In MDoS at-
tacks, malicious attackers can use automated tools to generate
conversation requests in bulk, rapidly consuming the comput-
ing and storage resources of LLM systems, affecting the ex-
perience of normal users, and even leading to complete ser-
vice unavailability. For example, in November 2023, Ope-
nATD’s ChatGPT service suffered a targeted distributed denial
of service (DDoS) attack, causing the system to be down for
an extended period [CNBC, 2023]. In August of the same
year, security researchers successfully constructed malicious
conversation requests by reverse engineering the API inter-
face of the new Bing Chat, confirming its risk of MDoS abuse
[Integration-Automation, 2023].

To counter LLLM robot abuse attacks, academia and indus-
try have proposed a series of detection and defense meth-
ods, mainly focusing on strategies such as adversarial train-
ing [Xu er al., 2021], access control [Gondaliya et al., 20201,
and anomaly detection [Qian er al., 2023]. However, these
methods struggle to cope with increasingly complex abuse
scenarios, especially the problem of Chatbot interfaces be-
ing massively abused by robots. Robots quickly call APIs
to generate harmful content, seriously wasting computing
power, a phenomenon that has become particularly promi-
nent after Chatbots opened their APIs [Economist, 2023;
Hurler, 2023]. To address this issue, this paper innova-
tively proposes utilizing unsupervised learning to automati-
cally mine robot Prompt templates from historical chat logs
and construct regular expressions for real-time detection.
This method can adaptively handle template syntax changes,
resist template obfuscation, and is computationally efficient,
overcoming the limitations of existing work.

This paper proposes LPDetective, an unsupervised LLM
robot detection method based on chat log mining. This
method leverages the fact that robots often reuse similar
prompt templates in bulk, leading to a certain level of sim-
ilarity and repetition in the syntactic and semantic structures
of conversations. We design a multi-stage chat log min-
ing framework, including message grouping, text similarity
calculation, hierarchical clustering, and regular expression
extraction, to automatically discover potential robot prompt
templates from massive human-machine conversation records
and generate corresponding detection rules. Unlike existing
methods, LPDetective does not require predefined template

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

libraries or manually labeled data and can adaptively mine
new, unknown patterns.

We evaluate the performance of LPDetective on three
real-world datasets: Bing Copilot, Wildchat [Zhao er al.,
2024], and ChatLog [Tu et al, 2023]. The experimental
results demonstrate that this method can effectively mine
high-frequency robot prompt templates in multiple scenar-
i0os. For example, on 118,000 chat records in the Bing
Copilot dataset, the regular expression rules generated by
LPDetective achieve an average accuracy of 94.6%, recall of
93.4%, and F1 score of 94.0%, outperforming the best base-
line method XLNet by 7.3%, 7.7%, and 7.5%, respectively, in
the same hardware environment. Moreover, the detection la-
tency is only 0.294 seconds, significantly lower than XLNet’s
52.438 seconds.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related work. Section 3 introduces the over-
all process and key algorithms of LPDetective. Section 4
presents the experimental results. Section 5 discusses limi-
tations and future work. Section 6 concludes the paper.

2 Related Work

In recent years, chatbot technology driven by large lan-
guage models (LLMs) has made tremendous progress, but its
rapid development has also brought numerous security risks
[Van Dis et al., 2023]. Malicious attackers may exploit Chat-
bots to generate harmful content, such as fake information
[Shu er al., 2020; Karanjai, 2022], malware [Mulgrew, 2023;
VARINDIA, 2022], phishing emails [Baki et al., 2017; Gi-
aretta and Dragoni, 2020], etc. [Point, 2023]. Mulgrew et
al. [Mulgrew, 2023] demonstrated how to use ChatGPT to
write an undetectable data-stealing virus. Baki et al. [Baki
et al., 2017] found that utilizing natural language generation
technology can automatically generate large-scale, personal-
ized spoof emails, greatly enhancing the power of phishing
attacks. Although Zellers et al. [Zellers et al., 2019] pro-
posed a defense method against neural fake news, and Stiff et
al. [Stiff and Johansson, 2022] attempted to detect fake con-
tent generated by Chatbots, there are currently no mature and
effective defense measures.

Furthermore, the security and privacy of Chatbots them-
selves are also threatened [Chung et al., 2017]. Chung et al.
[Chung et al., 2017] discussed the security risks of voice as-
sistants like Alexa. Some Chatbots have design flaws or soft-
ware vulnerabilities that can be exploited by attackers [Lei et
al., 2017, Security, 2018]. Lei et al. [Lei ef al., 2017] system-
atically analyzed the vulnerabilities of home digital voice as-
sistants using Alexa as an example. Moreover, users’ private
conversation data with Chatbots may be leaked [Agomuoh,
2022; Coles, 2023]. Recently, The Economist [Economist,
2023] reported that Samsung employees misused ChatGPT,
leading to the disclosure of commercial secrets. The ad-
vice provided by Chatbots also lacks security reviews and
may mislead users into dangerous behaviors [Prakken, 2020;
Mijwil and Aljanabi, 2023]. Prakken [Prakken, 2020] pointed
out that persuasive Chatbots may induce users to make inap-
propriate decisions when using crowd opinion graphs.

Existing work on Chatbot abuse mainly focuses on defense

strategies such as adversarial training [Xu et al., 2021], ac-
cess control [Gondaliya er al., 2020], and anomaly detection
[Qian et al., 2023]. Xu et al. [Xu et al., 2021] proposed a
method based on adversarial training to generate safer Chat-
bot responses. Qian et al. [Qian ef al., 2023] designed an
anomaly detection method to identify out-of-bounds answers
from Chatbots. However, these methods struggle to cope with
increasingly complex abuse scenarios. In contrast, we focus
on the problem of Chatbot interfaces being massively abused
by robots. Robots quickly call APIs to generate harmful con-
tent, seriously wasting computing power [Economist, 2023;
Hurler, 2023]. We innovatively propose utilizing unsuper-
vised learning to automatically mine robot Prompt templates
from historical chat logs and construct regular expressions for
real-time detection. This method can adaptively handle tem-
plate syntax changes, resist template obfuscation, and is com-
putationally efficient, overcoming the limitations of existing
work.

3 Methodology

3.1 Problem Definition

In this paper, we assume that the LLM chatbot platform to
be protected provides public API interfaces similar to Chat-
GPT and Bing Copilot, which can be accessed without user
login. The attacker has mastered the method of calling the
platform’s API and the parameter format, and their goal is to
maximize the consumption of the LLM system’s computing
resources by sending a large number of malicious requests in
batches, resulting in a decline in service quality or denial of
service. We focus on attackers using reusable prompt tem-
plates to implement MDoS attacks, i.e., using tools to auto-
matically generate a large number of homogeneous conver-
sation requests. This approach can simplify the attack pro-
cess and improve attack efficiency. Since the platform does
not require user login, attackers can easily change IP ad-
dresses, User Agents, and other request parameters frequently
to circumvent traditional rate limiting mechanisms. At the
same time, the behavior of batch reuse of prompt templates
also provides a unique entry point for our detection method.
This paper fully utilizes this feature to automatically iden-
tify potential robot prompt templates by mining real human-
machine conversation logs, thereby achieving efficient detec-
tion of MDoS attacks.

This paper proposes an innovative method based on LPDe-
tective for automatically detecting abnormal dialogue behav-
ior of chatbots. Our method is based on the assumption that
the prompt text generated by robots repeatedly uses the same
or highly similar phrases and sentence structures across mul-
tiple sessions, which is significantly different from the pattern
of human natural language. As shown in Figure 1, we de-
signed a multi-stage workflow, including message grouping,
text similarity measurement, hierarchical clustering analysis,
and regular expression extraction.

3.2 Message Grouping

We first group messages according to the user’s finger-
print features. Formally, given a set of messages M =
mi, M, ..., m, and a set of users U = wuq,uo,...,ux, we

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Cross-modal Interaction

Multi-modal Cross-modal
Prompt .
. = Feature — Attention
Categorization . .
Extraction Fusion

Hierarchical
- N
Indexing Online
— Matching &
raph Minin, X
Gy g Risk
Heterogeneous Meta-Path Assessment
™ Graph —{ Augmented [
Neural Network Clustering

Figure 1: Workflow of LPDetective.

define the fingerprint feature extraction function ¢ : U —
0,1%, which maps each user to a d-dimensional binary vec-
tor. We divide the messages into different groups G =
{G1,Ga,...,G;} according to the user’s fingerprint feature
vector, where GG; contains all messages sent by user u;.

To encode the fingerprint feature vector into a compact rep-
resentation, we use the SimHash algorithm [Sadowski and
Levin, 2007] for hashing. The SimHash algorithm maps high-
dimensional feature vectors to low-dimensional binary codes,
and the distance between codes is positively correlated with
the distance between the original feature vectors.

Given a fingerprint feature vector x € 0, 1%, the i-th bit of
its SimHash code ¢ € 0, 1° is calculated as follows:

1, if Z;‘izl Wi T4 >0
¢ = (D

0, otherwise

where b is the number of bits in the SimHash code, and
w;j ~ N (0, 1) is an element of the random projection matrix.

3.3 Text Similarity Measurement

After obtaining the message groups G = {G1,Ga,..., G},
we calculate the normalized Levenshtein distance [Leven-
shtein, 1966] for each pair of messages within each group
to measure their text similarity. The normalized Levenshtein
distance maps two strings to their edit distance under unit
length:

lev(sy, s2)

d(s1,82) = @

max(|s1], [s2])

where lev (-, -) is the Levenshtein distance, representing the
minimum number of edit operations required to convert one
string to another.

Based on the normalized Levenshtein distance, we can de-
fine the similarity matrix S € [0,1]™*" for messages
within group 4, where SJ(L) =1- d(my),m;;)) represents
the text similarity between messages my) and m\"
group i.

within

3.4 Hierarchical Clustering

Based on the similarity matrix {S*), S ... S(®} for mes-
sages within each group, we use hierarchical clustering al-
gorithms to further group messages at a finer granularity.

Hierarchical clustering algorithms generate a clustering tree
TG = (VO E® W) by iteratively merging the most
similar clusters.

During the construction of the clustering tree, we use the
Complete Linkage method [Defays, 1977] to measure the dis-
tance between clusters. Given two clusters CJ(-Z) and C
within group ¢, their distance is defined as:

@) ~@y _ (8) 4 (@)
5(Cj ,CY) = m(“ecg}a;f“)ec“) d(m{, m{i E))
P j Mg k
which takes the maximum distance among all pairs of mes-
sages between the two clusters.
The hierarchical clustering algorithm proceeds as follows:

1. Initialization. Treat each message within group ¢ as an
independent cluster, forming the initial cluster set.

2. Iteration. Find the two closest clusters and merge them,
while updating the clustering tree.

3. Termination. The algorithm terminates when there is
only one cluster left in the cluster set.

To obtain the final clustering result, we need to cut the clus-
tering tree. A common strategy is to set a distance threshold
6, and stop merging when the weight of an edge exceeds
6. The choice of threshold §(?) affects the granularity of
clustering.

To intuitively evaluate the quality of clustering results, we
introduce Silhouette Coefficient [Rousseeuw, 1987] as an un-
supervised evaluation metric. Given the clustering result
cl) = {sz), Cél), ce C,iz)} for group 1, the Silhouette Co-
(@)

efficient of data point m ;" is defined as:

b(m!") — a(m”)

max{a(m{"), b(m'")}

s(m\”) = “)

where a(my)) represents the average distance between
my) and other points within the same cluster, and b(my))
represents the minimum average distance between m§i) and
points in other clusters.

We can calculate the average value of Silhouette Coeffi-
cients for all data points within group ¢:

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

—T120
r19
r18

401 117
r16
r1l5

20 t14

~ rl3

s 12
2 |

5 o7 t10
£ t9
o r8
—201 r7
ré

r5

—40+ r4
r3

r2

=

-40 -20 0 20 40 60
Dimension 1

Figure 2: t-SNE visualization for the largest 20 clusters.

) 1 & i
50 = —>"s(m) 5)

n:
)

The average Silhouette Coefficient 5(*) reflects the overall
quality of the clustering result for group i and can be used to
compare the performance of different clustering algorithms
or parameter settings.

Figure 2 shows the result of sampling and visualization of
Bing Copilot’s chat data on a workday. It can be seen from
the figure that different clusters form several compact clusters
in the low-dimensional space, with high semantic similarity
within clusters and large semantic differences between clus-
ters. We calculated the average Silhouette Coefficient of these
20 clusters to be 0.713, further verifying the high quality of
the clustering results.

3.5 Regular Expression Extraction

From the clustering results, we need to extract regular expres-
sions that can match most messages. We designed a differ-
ence comparison algorithm LCS-Diff based on the Longest
Common Substring (LCS), which automatically generates
regular expressions that match the cluster by comparing the
differences between messages within the cluster. Algorithm 1
shows the complete process of regular expression extraction,
where n is the size of cluster C, [is the average length of
strings, k is the number of regular expression clusters.

3.6 Matching Optimization

To achieve real-time robot detection, we store the extracted
regular expressions in a template database. We designed a
matching algorithm based on inverted indexing and regular
expression optimization to efficiently match new messages
with a large number of regular expressions.

Inverted Index Design. We first build an inverted index
for the keywords (ordinary strings) of each regular expres-
sion. Keywords can be generated by word segmentation al-
gorithms. Given a new message M, we quickly find the can-
didate regular expression set R 5; through the inverted index.
This step can avoid the expensive overhead of matching with

Algorithm 1 Regular rxpression extraction

Require: Cluster C' = {s1, s2, ...
Ensure: Regular expression r

I: R+ 0

2: fori <+ 1ton —1do

78”}

3 diff < LCS-DIff(SZ7 Si+1)
4 ri 4+ €

5: for (op, ¢, p,,t) in diff do
6: if t = O then

7. Ty 4 T;0C

8 else

9: ri & 1; 0.%

10: end if

11: end for

12: r; <— Optimize(r;, A)
13: R+ RU{r:}

14: end for
15: {R1, Ra, ..
16: r <€

17: for j < 1to k do

18: r;j <= MSA(R;).replace(’,.*")
19: r4-rorjo—’

20: end for

21: v <[—1]

22: return r

., Ri} < Cluster(R,)

Algorithm 2 Optimized regex matching

Require: Message M, inverted index Z, regular expression set R
Ensure: Matching result Rmatch

1: Ky <+ ExtractKeywords(M)
2: RM < @

3: for k € Ky do

4: Rum + Rav UZ(k)

5: end for

6: R + SortByHitRate(Ras)
7: Rum <+ SortByLength(Ras)

8: Rmalch — @

9: for R; € R do

10: if Match(M, R;) then

11: Rmatch — Rmalch U {RZ}
12: end if
13: end for

14: return Rmacch

all regular expressions, significantly improving matching ef-
ficiency.

Regular Expression Optimization. To further accelerate
the matching process, we executed a series of optimization
strategies on the candidate regular expression set R j;, such as
sorting according to historical hit rate, prioritizing matching
shorter expressions, structurally preprocessing and indexing
regular expressions, etc.

After optimization, we obtained a refined and efficient reg-
ular expression matching workflow. Algorithm 2 shows the
optimized matching process.

Finally, we comprehensively calculate the risk score
Risk(M) of the message according to the matching results:

Risk(M) = > w; - Match(M, R;) (6)
R;€ERMm

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

where w; is the risk weight of regular expression ;. When
Risk(M) > 1, we can directly execute an interception opera-
tion, i.e., refuse to provide service, to quickly filter out high-
risk messages and improve the system’s security.

4 Experiments

4.1 Dataset

We obtained real chat log data of Bing Copilot on a certain
day in March 2024 from the Bing platform for analysis in
this study. We randomly sampled 118,000 messages and la-
beled each message as either bot or human using Bing’s exist-
ing hundreds of mature detection rules. These detection rules
include various types such as fake User-Agent detection, IP
reputation, mouse trajectory, JavaScript fingerprinting, and
JA3 fingerprinting. Ultimately, we identified 33,294 bot-
generated messages out of the 118,000 messages, accounting
for 28.2% of the total. During the preprocessing stage, we
grouped all messages using user fingerprint features. Table
1 shows the top 10 most frequent regex templates extracted
from the dataset. It can be seen that these templates cover var-
ious types, including translation, text rewriting, e-commerce
promotion, etc. At the same time, most templates have an av-
erage intra-class distance (Distance) less than 0.1, indicating
that the internal consistency of the corresponding message
clusters is high, and the extracted regular expressions can ef-
fectively summarize these messages.

We observed some typical prompt templates, as shown in
Figure 3. These two cases demonstrate an Amazon seller-
based promotional bot and a history event-based Q&A bot,
respectively. It can be seen that although there are certain dif-
ferences in the details within each cluster of messages, they
all follow obvious structured patterns. LPDetective can auto-
matically extract highly generalized regular expressions from
these similar texts, thereby effectively identifying the corre-
sponding types of bot messages.

We evaluated the performance of LPDetective on three
datasets: Bing Copilot, WildChat [Zhao et al., 2024], and
ChatLog [Tu er al, 2023]. Among them, Bing Copilot
contains real conversation data from Bing AI, WildChat se-
lects 15,783 ChatGPT interaction data, and ChatLog extracts
28,412 conversations. We manually annotated the prompt
abuse in WildChat and ChatLog and found that bot-generated
messages accounted for 15.8% and 14.0%, respectively. The
annotation work was completed by 27 experienced engineers,
all with more than 2 years of relevant work experience. Each
message was independently annotated by 3 engineers to en-
sure accuracy and consistency. Fleiss’ Kappa [Fleiss, 1971]
evaluation showed high consistency among annotators, with a
Kappa value of 0.93. The annotators were mainly 25-35 years
old, with a bachelor’s degree or above in computer-related
majors and more than 2 years of relevant work experience.
In this paper, these final labels are assumed to be accurate
benchmark ground truth. We randomly divided each web-
site’s dataset into training set (70%), validation set (10%),
and test set (20%). We ran each experiment 10 times and re-
ported the average and standard deviation of the metrics. The
standard deviation of all experiments was guaranteed to be
within 0.5%. Unless otherwise specified, all experimental re-

Message 1: When you are an amazon seller. You plan to run
a cpc campaign for product:Bingo G

Message 2: When you are an amazon seller. You plan to run
a cpc campaign for product:Pet U S

Message 3: When you are an amazon seller. You plan to run
a cpc campaign for product:Lucky C

Extracted regex: When you are an amazon seller. You plan
to run a cpc campaign for product:.*

Message 1: 10 phrasal verbs with N different from the
above searched

Message 2: 17 phrasal verbs with Q different from the
above searched

Message 3: 10 phrasal verbs with K different from the
above searched

Extracted regex: .* phrasal verbs with .* different from
the above searched*

Figure 3: Examples of typical prompt templates extracted by LPDe-
tective.

sults reported in this section were obtained using this method.
All experiments were conducted on an Ubuntu 20.04 server
equipped with an Intel Xeon 8369B CPU, 96 GB memory,
and an NVIDIA V100 GPU. The experimental code was im-
plemented based on PyTorch 2.2.0.

4.2 Baseline Comparison

We implemented several baseline models, including: LSTM
[Hochreiter, 1997], N-gram [Cavnar et al., 1994], FastText
[Joulin ez al., 2016], TextCNN [Kim, 2014], XLNet [Yang
et al., 2019], DRNN [Wang, 2018], and HIAGM [Zhou et al.,
2020]. All models used the Adam optimizer, and we searched
for the learning rate initial value between 0.0001 and 0.1, the
batch size between 16 and 128, and the number of training
iterations between 10 and 1000. We selected the hyperparam-
eter combination with the highest F1 value on the validation
set as the final setting. The learning rate initial value for all
models was 0.001, the batch size was 64, and the number of
training iterations was 100.

Table 2 shows the performance comparison of LPDetec-
tive with baseline methods on the three datasets. Traditional
machine learning methods such as N-gram have an F1 value
not exceeding 0.70. Deep learning-based methods such as
LSTM, FastText, TextCNN, etc. have improved F1 values,
but they are still not sufficient to effectively characterize the
prompt text features, and their inference latency is high. XL-
Net outperforms other methods in F1 value, but its infer-
ence latency is as high as tens of seconds. The F1 values
of DRNN and HiAGM increase to around 0.80, but inference
speed is still a bottleneck. LPDetective achieves F1 values as
high as 0.940, 0.931, and 0.947 on the three datasets, respec-
tively, with Latency controlled within 0.3 seconds. We used

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

CR Distn LR R

1319 0.0629 59

.*] example sentences, translate the example sentences into modern Chinese.

Return JSON, with keys: “example” and “example_explanat.*

448 0.0683 36
171 0.0781 75
117 0.0744 75

97 0.0306 57

Answer the number I send: .*, only reply with number, don’t answer anything else, be concise
“#\Rewrite This Article in simple english language with unique keywords:n.*

shorten the paragraph below without losing important information!nn\.*

*#) Reply in Chinese n This image contains fabric, please help me describe the fabric in detail,

including pattern, color, etc. n Not needed

77 0.0789 75
65 0.0645 77

When you are an amazon seller. You plan to run a cpc campaign for product:.*
Please generate a list of 30 companies in China related to the .* industry. Output the results

in json format, including the following json keys: company_id.*

51 0.0816 68
47 0.0641 66

44 0.0846

nNot answered, Scored 1.00, Not flagged, Flag, Paragraph question.
*ive answer in points*20 points*+conclusion.*+way forward.*
*], please generate an “attractive introduction that makes people who have never been there

want to go”. n. Word count should be under 200 characters and in one .*

Cr: Number of matched messages; Distr: Intra-cluster average distance; L: Regex length; R: Regular expression

Table 1: Top 10 most frequent regex templates, sorted by the number of matched messages

the Wilcoxon signed-rank test to compare the differences in
F1 values between LPDetective and each baseline method at
a significance level of p;j0.01, and the results showed that
the superiority of LPDetective was statistically significant
(pi0.01), rather than random noise. The excellent perfor-
mance of LPDetective is attributed to: 1. Automatically min-
ing key patterns from massive real data to construct a highly
structured and fine-grained prompt template database; 2. Sys-
tematic exploration in matching optimization and introduc-
tion of a risk scoring mechanism to balance precision and re-
call.

4.3 Prompt Language Analysis

We sorted the regular expressions extracted from the dataset
in descending order of length. Table 3 shows the distribu-
tion of regular expressions in various languages. It can be
seen that English is the most widely used language for prompt
templates, accounting for 40.84%. For languages with larger
character lengths such as Chinese and Japanese, the P; length
of their regular expressions is significantly higher than other
languages, reaching 142, 145, and 148, respectively. In con-
trast, for languages such as Indonesian and Portuguese, the
P length of their regular expressions is relatively shorter, at
117 and 122, respectively. This indicates that bots in these
regions tend to use shorter prompt templates.

4.4 Prompt Topic Analysis

We used the GPT-4 model to classify the content topics of
the extracted regular expressions. We divided the regular ex-
pressions into 9 topic categories, as shown in Table 4. It can
be seen that Programming is a key area of bot applications,
accounting for 8.40%. This indicates that some developers
are trying to leverage Bing Copilot’s code generation capa-
bilities to assist with programming or debugging tasks. The
proportion of the Math Problems topic is also relatively high,
reaching 5.73%, and the P; value of the regular expression
length is as high as 162. This may be due to the complex-
ity of mathematical problems themselves, resulting in a rela-
tively large length of the corresponding regular expressions.
Additionally, we found that 54.19% of the regular expressions
were difficult to classify into existing topics and were marked

as the Others category. We also discovered that some regu-
lar expressions involved pornographic and gambling content,
highlighting the necessity of strengthening content modera-
tion.

4.5 Ablation Study

We conducted ablation experiments on three datasets to ex-
amine the following variants:

* w/o Grouping. Remove the message grouping step and
directly cluster and extract regular expressions.

* w/o Clustering. Remove the hierarchical clustering step
and directly compare messages within each group to ex-
tract regular expressions.

* w/o Optimization. Do not optimize during regular ex-
pression extraction and retain all non-wildcard parts.

* w/o Index. Do not use inverted index during matching
and match with all regular expressions.

Table 5 shows the results of the ablation experiments. Re-
moving message grouping (w/o Grouping) reduces the F1
value by 0.085, indicating that pre-clustering using user fin-
gerprints can improve the cohesion of prompt templates. Re-
moving hierarchical clustering (w/o Clustering) leads to a de-
crease of 0.124 in F1, indicating that two-stage clustering can
effectively organize similar messages and facilitate the ex-
traction of more accurate regular expressions. Removing reg-
ular expression extraction optimization (w/o Optimization)
generates lengthy expressions, reduces interpretability, and
increases detection latency by 3.628 seconds. Removing the
inverted index (w/o Index) increases the detection latency
from 0.294 seconds to 8.947 seconds.

We also analyzed the impact of key parameters: the mini-
mum non-wildcard substring length threshold L and the clus-
tering stop distance threshold 6 on LPDetective. Table 6
shows that increasing L. makes regular expressions more con-
cise, but when L exceeds 5, overly simple expressions in-
stead cause the F1 value to decrease, dropping to 0.820 at
L = 10. This indicates that excessive simplification of regu-
lar expressions loses important pattern information and leads

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Method Bing Copilot Wildchat ChatLog

Prec. Rec. F1 Latency Prec. Rec. F1 Latency Prec. Rec. F1 Latency
LSTM 0.762 0.742 0.752 15283 0.749 0.728 0.738 18419 0.756 0.736 0.746 16.852
N-gram 0.698 0.676 0.687 2.617 0.674 0.652 0.663 3.140 0.686 0.664 0.675 2.879
FastText 0.735 0.715 0.725 1.536 0.718 0.698 0.708 1.844 0.729 0.709 0.719 1.690
TextCNN 0.793 0.775 0.784 5.201 0.772 0.752 0.762 6.242 0.783 0.763 0.773 5.722
XLNet 0.873 0.857 0.865 52.438 0.860 0.842 0.851 62927 0.867 0.851 0.859 57.683
DRNN 0.807 0.789 0.798 12.456 0.795 0.775 0.785 14948 0.802 0.784 0.793 13.702
HiAGM 0.835 0.819 0.827 10.175 0.821 0.803 0.812 12211 0.828 0.810 0.819 11.193
LPDetective 0.946 0.934 0.940 0.294 0.938 0.924 0.931 0.253 0.952 0942 0.947 0.265

Prec.: Precision, Rec.: Recall, F1: Fl-score, Latency: Processing time in seconds per 1,000 messages

Table 2: Performance of different prompt abuse detection methods on datasets: Bing Copilot, Wildchat, and ChatLog

Regex Length

Language Percentage
Pi Pso Py
English 135 62 28 40.84%
Spanish 128 58 25 7.25%
Indonesian 117 51 22 5.73%
Chinese 142 68 31 5.34%
Italian 131 60 27 4.58%
Japanese 145 71 33 4.20%
Vietnamese 127 57 24 3.82%
Portuguese 122 54 23 3.44%
Others 133 61 27 24.80%

Table 3: Prompt template languages

Regex Length

Topic Percentage
P Pso Py
Programming 138 64 29 8.40%
Medicine & Health 131 60 27 7.25%
Education & Exams 134 62 28 6.87%
Math Problems 162 88 41 5.73%
Daily Life 119 52 23 4.96%
Travel 123 55 24 4.58%
Social Chat 140 66 30 4.20%
Sports & Fitness 133 61 27 3.82%
Others 132 61 27 54.19%

Table 4: Prompt template topics

to a decrease in generalization ability. 6 controls the granu-
larity of clustering, and as 6 increases from 0.01 to 0.3, the
F1 value generally decreases, reaching 0.762 at § = 0.3. The
larger 6 is, the coarser the clustering, the greater the differ-
ence within clusters, and the worse the generalization abil-
ity of the extracted regular expressions. When @ is less than
0.05, the clustering is too fragmented, slightly improving the
F1 value but significantly reducing detection efficiency. Rea-
sonable selection of L and 6 is crucial for LPDetective, and
experiments show that L = 5 and 6 = 0.05 is the optimal
parameter combination.

5 Discussion

Although LPDetective demonstrated superior performance in
our experiments, it still has some limitations. First, LPDe-
tective mainly relies on prompt templates mined from his-
torical conversation data, and it may be difficult to identify

Method F1 Latency (s/1k messages)
LPDetective 0.940 0.294

w/o Grouping 0.855 0.372

w/o Clustering 0.816 0.453

w/o Optimization 0.902 3.922

w/o Index 0.940 8.947

Table 5: Ablation analysis for LPDetective

(@) 0 = 0.05 ®L=5
L Fl L FI g FI 0 F1
I 0852 6 00903 00l 0943 012 0865
2 0893 7 0874 003 0941 0.15 0841
3 0912 8 0852 005 0940 02 0.809
4 0928 9 0835 007 0926 025 0783
5 0940 10 0820 0.1 0887 03 0762

Table 6: Parameter sensitivity analysis

new, unseen abnormal conversation patterns in a timely man-
ner. Second, LPDetective has been primarily optimized for
English conversation data, and its adaptability to other lan-
guages needs further verification. Third, LPDetective needs
to match a large number of regular expressions during in-
ference. Although we have reduced the matching overhead
through optimization measures such as inverted indexes, the
inference latency may still fail to meet real-time requirements
in scenarios with an extremely large number of templates.

6 Conclusion

To address the threat of bot abuse faced by large language
model-driven dialogue systems, this paper proposes LPDe-
tective, a novel unsupervised detection framework. Our large-
scale experiments on three real-world datasets, Bing Copilot,
Wildchat, and ChatLog, show that LPDetective significantly
outperforms existing methods in terms of accuracy, recall,
and real-time performance. For example, on the Bing Copi-
lot dataset, LPDetective achieves an F1 score of 94.0%, an
improvement of 7.5% over the best baseline XLNet, with a
detection latency of only 0.294 seconds, which is 1/178 of
XLNet. In the future, we plan to explore combining few-
shot learning, multilingual optimization, hierarchical index-
ing, and other techniques to enhance its practicality.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Acknowledgments

This work was supported by the National Key R&D Program
of China under Grant No. 2022YFB2703301.

Ethical Impact

During the development of LPDetective, we placed great em-
phasis on protecting user privacy and data security. We en-
sure that all data used for analysis has been desensitized and
anonymized.

References

[Agomuoh, 2022] F. Agomuoh. Your siri conversa-
tions may have been recorded without your per-
mission. https://www.digitaltrends.com/computing/

developer-finds-apple-bluetooth-security-flaw-worth-7000/,

2022.

[Ayanouz et al., 2020] Soufyane Ayanouz, Boudhir Anouar
Abdelhakim, and Mohammed Benhmed. A smart chatbot
architecture based nlp and machine learning for health care
assistance. In Proceedings of the 3rd international confer-
ence on networking, information systems & security, pages
1-6, 2020.

[Baki et al., 2017] Shahryar Baki, Rakesh Verma, Arjun
Mukherjee, and Omprakash Gnawali. Scaling and effec-
tiveness of email masquerade attacks: Exploiting natural
language generation. In Proceedings of the 2017 ACM on
Asia conference on computer and communications secu-
rity, pages 469-482, 2017.

[Cavnar et al., 1994] William B Cavnar, John M Trenkle,
et al. N-gram-based text categorization. In Proceedings
of SDAIR-94, 3rd annual symposium on document anal-

ysis and information retrieval, volume 161175, page 14.
Las Vegas, NV, 1994.

[Chung et al., 2017] Hyunji Chung, Michaela Iorga, Jeffrey
Voas, and Sangjin Lee. Alexa, can i trust you? Computer,
50(9):100-104, 2017.

[CNBC, 2023] CNBC. Openai says chatgpt downtime
caused by targeted attack, 2023.

[Coles, 2023] C Coles. 11% of data employees paste into
chatgpt is confidential. Cyberhaven. Accessed: May, 1,
2023.

[Defays, 1977] Daniel Defays. An efficient algorithm for a
complete link method. The computer journal, 20(4):364—
366, 1977.

[Economist, 2023] T. Economist. Concerns turned into re-
ality... as soon as samsung electronics unlocks chatgpt,
‘misuse’ continues. https://economist.co.kr/article/view/
ecn202303300057?s=31, 2023.

[Fleiss, 1971] Joseph L Fleiss. Measuring nominal scale
agreement among many raters. Psychological bulletin,
76(5):378, 1971.

[Fglstad and Skjuve, 2019] Asbjorn Fglstad and Marita
Skjuve. Chatbots for customer service: user experience
and motivation. In Proceedings of the Ist international

conference on conversational user interfaces, pages 1-9,
2019.

[Frieder et al., 2023] S. Frieder, L. Pinchetti, R.-R. Griffiths,
T. Salvatori, T. Lukasiewicz, P. C. Petersen, A. Chevalier,
and J. Berner. Mathematical capabilities of chatgpt. arXiv
preprint arXiv:2301.13867, 2023.

[Giaretta and Dragoni, 2020] Alberto Giaretta and Nicola
Dragoni. Community targeted phishing: A middle ground
between massive and spear phishing through natural lan-
guage generation. In Proceedings of 6th International
Conference in Software Engineering for Defence Applica-
tions: SEDA 2018 6, pages 86-93. Springer, 2020.

[Gondaliya et al., 2020] Krishna Gondaliya, Sergey Bu-
takov, and Pavol Zavarsky. Sla as a mechanism to man-
age risks related to chatbot services. In 2020 IEEE 6th Intl
Conference on Big Data Security on Cloud (BigDataSe-
curity), IEEE Intl Conference on High Performance and
Smart Computing,(HPSC) and IEEE Intl Conference on
Intelligent Data and Security (IDS), pages 235-240. IEEE,
2020.

[Gupta et al., 2020] Aishwarya Gupta, Divya Hathwar, and
Anupama Vijayakumar. Introduction to ai chatbots. In-

ternational Journal of Engineering Research and Technol-
0gy, 9(7):255-258, 2020.

[Hochreiter, 19971 S Hochreiter. Long short-term memory.
Neural Computation MIT-Press, 1997.

[Hurler, 2023] K. Hurler. Amazon warns employ-
ees to beware of chatgpt. https://gizmodo.com/
amazon-chatgpt-ai-software-job-coding- 1850034383,
2023.

[Hussain ef al., 2019] Shafquat Hussain, Omid
Ameri Sianaki, and Nedal Ababneh. A survey on
conversational agents/chatbots classification and design
techniques. In Web, Artificial Intelligence and Network
Applications: Proceedings of the Workshops of the
33rd International Conference on Advanced Information
Networking and Applications (WAINA-2019) 33, pages
946-956. Springer, 2019.

[Integration-Automation, 2023] Integration-Automation.
Reedgegpt - the reverse engineering the chat feature of the
new version of bing, 2023.

[Joulin et al., 2016] Armand Joulin, Edouard Grave, Piotr
Bojanowski, and Tomas Mikolov. Bag of tricks for effi-
cient text classification. arXiv preprint arXiv:1607.01759,
2016.

[Karanjai, 2022] R. Karanjai. Targeted phishing campaigns
using large scale language models. arXiv preprint
arXiv:2301.00665, 2022.

[Kim, 2014] Yoon Kim. Convolutional neural networks for
sentence classification. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1746-1751, 2014.

[Lei et al., 2017] X. Lei, G.-H. Tu, A. X. Liu, K. Ali, C.-
Y. Li, and T. Xie. The insecurity of home digital voice

https://www.digitaltrends.com/computing/developer-finds-apple-bluetooth-security-flaw-worth-7000/
https://www.digitaltrends.com/computing/developer-finds-apple-bluetooth-security-flaw-worth-7000/
https://economist.co.kr/article/view/ecn202303300057?s=31
https://economist.co.kr/article/view/ecn202303300057?s=31
https://gizmodo.com/amazon-chatgpt-ai-software-job-coding-1850034383
https://gizmodo.com/amazon-chatgpt-ai-software-job-coding-1850034383

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

assistants—amazon alexa as a case study. arXiv preprint
arXiv:1712.03327, 2017.

[Levenshtein, 1966] VI Levenshtein. Binary codes capable
of correcting deletions, insertions, and reversals. Proceed-
ings of the Soviet physics doklady, 1966.

[McGee, 2023] Robert W McGee. What will the united
states look like in 20507 a chatgpt short story. A Chat-
gpt Short Story (April 8, 2023), 2023.

[Mijwil and Aljanabi, 2023] M. Mijwil and M. Aljanabi.
Towards artificial intelligence-based cybersecurity: The
practices and chatgpt generated ways to combat cyber-

crime. [Iraqi Journal For Computer Science and Mathe-
matics, 4:65-70, 2023.

[Mulgrew, 2023] Aaron Mulgrew. I built a zero day virus
with undetectable exfiltration using only chatgpt prompts.
Forcepoint. Retrieved May, 17:2023, 2023.

[OpenAl 2023] OpenAl. Gpt-4 technical report. https:
/larxiv.org/abs/2303.08774, 2023.
[Ouyang et al., 2022] L. Ouyang, J. Wu, X. IJiang,

D. Almeida, C. Wainwright, P. Mishkin, C. Zhang,
S. Agarwal, K. Slama, and A. Ray. Training language
models to follow instructions with human feedback. In

Advances in Neural Information Processing Systems,
volume 35, pages 2773027744, 2022.

[OWASP, 2023] OWASP. OWASP top 10 for LLM, 2023.

[Paliwal et al., 2020] Shweta Paliwal, Vishal Bharti, and
Amit Kumar Mishra. Ai chatbots: Transforming the digi-
tal world. Recent trends and advances in artificial intelli-

gence and internet of things, pages 455-482, 2020.

[Point, 2023] Check Point. Opwnai: Cybercriminals start-
ing to use chatgpt. Check Point. Retrieved May, 15:2023,
2023.

[Prakken, 2020] H. Prakken. A persuasive chatbot using a
crowd-sourced argument graph and concerns. Computa-
tional Models of Argument, 326:9, 2020.

[Qian et al., 2023] C. Qian, H. Qi, G. Wang, L. Kunc, and
S. Potdar. Distinguish sense from nonsense: Out-of-
scope detection for virtual assistants. arXiv preprint
arXiv:2301.06544, 2023.

[Rousseeuw, 1987] Peter J Rousseeuw. Silhouettes: a graph-
ical aid to the interpretation and validation of cluster anal-
ysis. Journal of computational and applied mathematics,

20:53-65, 1987.

[Sadowski and Levin, 2007] Caitlin Sadowski and Greg
Levin. Simhash: Hash-based similarity detection. In Tech-
nical report, Google, 2007.

[Security, 2018] P. Security. Cortana security flaw means
your pc may be compromised. https://www.pandasecurity.
com/mediacenter/mobile-news/cortana-security-flaw/,
2018.

[Shu er al., 2020] Kai Shu, Suhang Wang, Dongwon Lee,
and Huan Liu. Mining disinformation and fake news: Con-
cepts, methods, and recent advancements. Disinformation,

misinformation, and fake news in social media: Emerging
research challenges and opportunities, pages 1-19, 2020.

[Stiff and Johansson, 2022] Harald Stiff and Fredrik Jo-
hansson. Detecting computer-generated disinformation.
International Journal of Data Science and Analytics,
13(4):363-383, 2022.

[Tu et al., 2023] Shangging Tu, Chunyang Li, Jifan Yu, Xi-
aozhi Wang, Lei Hou, and Juanzi Li. Chatlog: Record-
ing and analyzing chatgpt across time. arXiv preprint
arXiv:2304.14106, 2023.

[Van Dis et al., 2023] Eva AM Van Dis, Johan Bollen,
Willem Zuidema, Robert Van Rooij, and Claudi L Bock-
ting. Chatgpt: five priorities for research. Nature,
614(7947):224-226, 2023.

[VARINDIA, 2022] VARINDIA. Chatgpt produces ma-
licious emails and code. https://varindia.com/news/
chatgpt-produces-malicious-emails-and-code, 2022.

[Wang, 2018] Baoxin Wang. Disconnected recurrent neural
networks for text categorization. In Proceedings of the
56th Annual Meeting of the Association for Computational
Linguistics (ACL 2018), pages 2311-2320, 2018.

[Wikipedia, 2022] Wikipedia. Chatgpt. https://en.wikipedia.
org/wiki/ChatGPT, 2022.

[Wollny et al., 2021] Sebastian Wollny, Jan Schneider,
Daniele Di Mitri, Joshua Weidlich, Marc Rittberger,
and Hendrik Drachsler. Are we there yet?-a systematic
literature review on chatbots in education. Frontiers in
artificial intelligence, 4:654924, 2021.

[Xueral,2021] Jing Xu, Da Ju, Margaret Li, Y-Lan
Boureau, Jason Weston, and Emily Dinan. Bot-adversarial
dialogue for safe conversational agents. In Proceedings
of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human
Language Technologies, pages 2950-2968, 2021.

[Yang et al., 2019] Zhilin Yang, Zihang Dai, Yiming Yang,
Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V. Le.
Xlnet: generalized autoregressive pretraining for language
understanding. In Proceedings of the 33rd International

Conference on Neural Information Processing Systems,
2019.

[Zellers et al., 2019] R. Zellers, A. Holtzman, H. Rashkin,
Y. Bisk, A. Farhadi, F. Roesner, and Y. Choi. Defending
against neural fake news. In Advances in neural informa-
tion processing systems, volume 32, 2019.

[Zhao et al., 2024] Wenting Zhao, Xiang Ren, Jack Hessel,
Claire Cardie, Yejin Choi, and Yuntian Deng. Wildchat:
Im chatgpt interaction logs in the wild. arXiv preprint
arXiv:2405.01470, 2024.

[Zhou et al., 2020] Jie Zhou, Chunping Ma, Dingkun Long,
Guangwei Xu, Ning Ding, Haoyu Zhang, Pengjun Xie,
and Gongshen Liu. Hierarchy-aware global model for hi-
erarchical text classification. In Proceedings of the 58th

Annual Meeting of the Association for Computational Lin-
guistics (ACL 2020), pages 1106-1117, 2020.

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://www.pandasecurity.com/mediacenter/mobile-news/cortana-security-flaw/
https://www.pandasecurity.com/mediacenter/mobile-news/cortana-security-flaw/
https://varindia.com/news/chatgpt-produces-malicious-emails-and-code
https://varindia.com/news/chatgpt-produces-malicious-emails-and-code
https://en.wikipedia.org/wiki/ChatGPT
https://en.wikipedia.org/wiki/ChatGPT

