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Abstract

Control barrier certificate generation is an effi-
cient and powerful technique for the safe control of
cyber-physical systems. Feed-forward neural net-
works (FNNs) are commonly used to synthesize
control barrier certificates and safe controllers, but
they struggle to effectively address the challenges
posed by high-dimensional complex systems. In
this paper, we propose a novel method for generat-
ing control barrier certificates and controllers using
Kolmogorov-Arnold Networks (KANs). Specif-
ically, it utilizes KANs to replace FNNs as the
template of control barrier certificates and contr-
llers. Since KAN has learnable activation func-
tions, it can efficiently improve the representation
power. Then, it leverages the pruning and sym-
bolization properties of KANs, which significantly
simplify the network structure, allowing for more
efficient formal verification of the simplified can-
didate KAN control barrier certificates and con-
trollers using Satisfiability Modulo Theories. We
implement the tool KAN4CBC, and evaluate its
performance over a set of benchmarks. The ex-
perimental results demonstrate that our method ad-
dresses the issues of system dimension expansion
and improved solution efficiency.

1 Introduction

Controller design and synthesis is a fundamental challenge in
control theory, particularly for complex and nonlinear sys-
tems. With the development of deep learning, neural net-
works have become widely used in controlling various cyber-
physical systems, such as unmanned aerial vehicles, au-
tonomous vehicles, and smart transportation [Andrychowicz
et al., 2020; Ding and Tomlin, 2010]. It is important to note
that many of these systems are safety-critical, meaning the
controller must ensure that the system never enter dangerous
or undesirable states during operation. However, synthesizing
safe controllers is inherently complex and presents a signifi-
cant challenge.

*Corresponding authors.

Control barrier certificate (CBC) generation is an efficient
and powerful technique often used for the formal synthesis
of safe controllers. The conditions of control barrier certifi-
cates impose certain constraints on the controllers. When a
control barrier certificate is identified, it divides the model’s
state space into two regions. This division ensures that any
system trajectory starting from a given initial set lies on one
side of the control barrier certificate, and cannot reach a given
unsafe set on the other side. Therefore, we formally prove the
safety of controlled dynamical systems by constructing a con-
trol barrier certificate, the existence of which is sufficient to
guarantee the safety of the controller.

Sum-of-squares (SOS) programming is a traditional
method for synthesizing polynomial barrier certificates [Pra-
jna, 2006; Legat er al., 2020]. But this method lacks scal-
ability and expressiveness. Based on the universal approxi-
mation theorem [Leshno et al., 1993], neural networks have
the capability to approximate any arbitrary function, making
them suitable for representing barrier certificates. Zhao et
al. [2020] first synthesized barrier certificates via neural net-
work training and verification. FOSSIL [Abate et al., 2021]
is a tool for the automated formal synthesis of barrier certifi-
cates, using neural networks as templates and Satisfiability
Modulo Theories (SMT) solvers as verification tools. How-
ever, traditional feed-forward neural networks (FNNs) often
use fixed activation functions, which can significantly impact
the efficiency of synthesizing barrier certificates. Moreover,
for controlled continuous dynamical systems, most meth-
ods tend to perform well on low-dimensional systems but
struggle to effectively address the challenges posed by high-
dimensional complex systems. This is mainly because high-
dimensional systems require more complex neural network
structures to design controllers and control barrier certifi-
cates, which causes general SMT verification methods to fail.

Liu et al. [2024] proposed Kolmogorov-Arnold Networks
(KAN?) as a promising alternative to multi-layer Perceptrons.
In contrast to traditional models, KANs use activation func-
tions on the connections between nodes, which can also learn
and adapt during the training process. This architectural
breakthrough enables KANSs to better capture complex, non-
linear relationships by directly optimizing univariate func-
tions. In addition, KANs have pruning properties that can re-
move unimportant edges and nodes from the network, signif-
icantly reducing its complexity. To address the issue of gen-
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eral SMT verification failure caused by neural controllers and
neural control barrier certificates in high-dimensional sys-
tems, in this paper, we propose a new framework using KAN's
instead of FNNs to formally synthesize safe controllers and
control barrier certificates. Specifically, our proposed frame-
work consists of two parts. In the first part, it uses KANs to
generate candidate control barrier certificates and controllers.
The B-spline-based learnable activation function enhances
the network’s representation power and effectively addresses
the issues of low success rates encountered when using fixed
activation functions in FNNs for safe controller synthesis. In
the second part, it prunes the candidate barrier certificate and
controller networks, allowing the networks to more efficiently
extract important features. Then, symbolization is applied to
the networks, resulting in simpler and more human-readable
expressions. Finally, it checks whether the candidates satisfy
all the requirements of control barrier certificates through the
SMT solver dReal. Overall, the main contributions of this
work are described as follows:

* We introduce a new type of control barrier certifi-
cates and controllers represented as KANs, which uses
learnable activation functions to enhance representation
power.

* We leverage the pruning and network symbolization of
KANSs, improving both the efficiency and success rate of
SMT verification in high-dimensional systems.

e We implement our tool KAN4CBC and conduct a de-
tailed experimental evaluation on a set of benchmarks,
demonstrating that our approach is more effective in
generating safe controllers than the state-of-the-art tools.

2 Related Work

There are two main methods for analyzing and verifying
continuous dynamical systems: reachability computation and
barrier certificate synthesis. Reachability relies on over- and
under-approximations, but due to the lack of closed-form so-
lutions for ODEs and the computational cost of numerical
methods, its scalability is limited. The concept of barrier cer-
tificates was first introduced by Prajna [2006], dividing the
state space into safe and unsafe regions. This approach pro-
vides a more efficient and accurate proof of safety, particu-
larly for nonlinear and uncertain systems, and is especially
effective for verifying safety over an infinite time horizon.

In the field of control, researchers have explored various
forms of barrier certificates to accommodate different types
of dynamical systems. Many studies [Ahmadi and Majum-
dar, 2016; She et al., 2013] have employed SOS relaxation
and semidefinite programming methods to generate polyno-
mial barrier certificates. These approaches transform the bar-
rier certificate synthesis problem into constraints expressed
as linear or bilinear matrix inequalities, which are typically
solved through numerical optimization. Kong et al. [2014] in-
troduced a novel exponential condition barrier certificate that
maintains convexity while reducing conservativeness, provid-
ing a more precise and effective approach for safety verifi-
cation of semialgebraic hybrid systems. Zeng et al. [2016]
proposed a new verification condition and a novel compu-
tational method combining sampling-based relaxation with

least-squares and quadratic programming (LS-QP) alternat-
ing projection to find Darboux-type barrier certificates, en-
hancing the verification of nonlinear hybrid systems. So-
gokon et al. [2018] introduced a multi-dimensional frame-
work using vector barrier certificates, thereby extending their
applicability.

The emergence of neural networks has provided new pos-
sibilities for synthesizing barrier certificates. Researchers
have explored learning neural network certificate functions
and achieved encouraging results [Zhang er al., 2023b; Lin-
demann et al., 2021]. However, to ensure deterministic
guarantees, these methods must include a verification pro-
cedure to confirm the validity of the certificate. Some con-
tributions have employed counterexample-guided Inductive
Synthesis (CEGIS) procedure [Liu er al., 2023], where a
learner trains a neural network to meet barrier certificate re-
quirements over a finite set of samples, and a verifier either
proves validity of the barrier certificate or provides coun-
terexamples using an SMT solver [Kapinski et al., 2014;
Chang ef al., 2019]. However, the use of fixed activation
functions can significantly impact the efficiency and success
rate of generating barrier certificates. To address the non-
differentiability issue caused by ReLU, Zhang et al. [2023al]
proposed a piecewise linear optimization method combined
with Interval Bound Propagation for verification. Hu et al.
[2024] proposed using symbolic derivative boundary prop-
agation to verify ReLU-based neural CBCs. However, these
methods are not universally applicable and become inefficient
for high-dimensional systems. Therefore, in this paper, we
propose improvements to the network by using KAN, which
not only addresses the issues caused by fixed activation func-
tions but also ensures that SMT verification remains efficient
in high-dimensional systems.

3 Preliminaries

This section introduces the basic concepts used in the paper.

3.1 Continuous Dynamical System

Consider a controlled continuous dynamical system S

x = f(x,u), (D)

where x C R"™ represents the state of the system, x denotes
the derivative of x with respect to time ¢, u C R™ means a
control input, f = (f1, fa,- -+, fn)T is the vector field on the
state space 2 C R™. We define a feedback controller u =
h(x), which leads to the autonomous closed-loop dynamics
given by:

x = fh(x) := f(x,h(x)). (2)

Let X C R™ be a compact set denoting the state space of
the system, and X7, Xy C X represent the set of initial states
and unsafe states, respectively.

We assume that f and h are Lipschitz continuous, ensuring
the existence of a time trajectory &1.° (), where &1, (t) starting
from xq denotes the value of the state x at time ¢ > 0.

In this paper, we focus on the problem of safe controller
synthesis, specifically designing a safe controller u = h(x)
that guarantees the controlled system (2) remains safe.
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Figure 1: The framework of safe controller synthesis

Definition 1 (safety). For a controlled continuous dynamical
system, a given initial region X; C X and a given unsafe
region Xy C X, the controller u = h(x) is a safe one if the
following condition holds:

wot) e X = &0(t) ¢ Xu,Vxo € X1,VE>0.  (3)

3.2 Control Barrier Certificate

Verifying the safety of the controller requires analyzing the
behavior of system (2) over an infinite time horizon. Follow-
ing [28], we aim to find a control barrier certificate as proof
of safety, with the existence of a control barrier certificate
implying the safety of the controller. For a controlled contin-
uous dynamical system (2), given the sets X, Xy and X7, if
there exists a continuous real-valued function B(x) : X — R
satisfying:

B(X)SO Vx € X7
B(x)>0 Vxe Xy

B(x) <0 VxeX

“
st.B(x) =0,
then B(x) is a control barrier certificate, and the safety of the

system is guaranteed. Here, B(x) is the Lie derivative of B
with respect to a vector field f, defined as follows:

: ", 9B dz;
B(X):Zaxi dr
=1

- oB
8%‘1'
1

fi(x,a). (5)

1=

Consider a trajectory &,.°(¢) and observe the evolution of
B(&°(t)) along this trajectory. The initial condition ensures
B(xg) < 0, and the final condition requires B(&:°(t)) to de-
crease alone the trajectory &,.°(¢). As a result, under inputs
provided by h, such a trajectory £.°(t) is prevented from en-
tering the unsafe region Xy;, where B(x) > 0, so the safety
of the controller is guaranteed.

3.3 Problem Statement

Previous works for constructing control barrier certificates
and safe controllers often represent them in the form of FNNs.
In high-dimensional systems, as the number of layers and

nodes in the network increases, the expressions become quite
complex, which significantly reduces the efficiency of gen-
eral SMT methods for verification. To effectively address the
challenges of high-dimensional complex systems, we propose
using KANs instead of FNNs because they have learnable
activation functions, which provide enhanced scalability and
expressive power. Additionally, their pruning and symboliza-
tion properties can generate simple expressions, making SMT
verification more efficient.

Problem 1. Given a controlled continuous dynamical system
S, the problem is to synthesize control barrier certificates and
safe controllers using KANSs to ensure the safety of the system,
achieving dimensional scalability and improved verification

efficiency.

4 Method

In this section, we introduce a novel framework for synthe-
sizing KAN controllers, which can guarantee the safety of the
continuous dynamical systems. The overview of the method-
ology is depicted in Figure 1. The complete process can be
divided into the following two stages.

* We devise a Learner component to synthesize candidate
control barrier certificates and controllers. This compo-
nent trains two KANs on a sampled dataset and learns
the networks’ activation functions by a special loss func-
tion.

* We design a Verifier component to formally verify the
validity of the candidate KAN control barrier certificates
and controllers. This component utilizes pruning and
symbolization to simplify the candidate networks, and
then uses the SMT solver to verify their validity.

4.1 Kolmogorov-Arnold Network (KAN)

Kolmogorov-Arnold Network (KAN) is a novel network ar-
chitecture inspired by the Kolmogorov-Arnold representation
theorem [Kolmogorov, 1961].

Theorem 1 (Kolmogorov-Arnold representation theorem).
For any continuous function [ mapping from [0,1]" to the
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real numbers R, there exists a set of continuous functions ¢; ;
(Wherei=1,2,....2n+1landj=1,2,..., n+ 1) such that

2n+1 n

fan,ma,.wn) = > 6D ¢ii(x5))- (©6)
i=1  j=1

According to Equation (6), KAN can be represented as a
nested combination of two layers of univariate functions. In
matrix form, KAN is defined as:

KAN(x) = @,y 0 ®;p, 0 %, 7

where ®;,, is a matrix composed of univariate functions, rep-
resented as:

$1,1(+) G1,n()
@in == : T . E : (8)
b2n+41,1(°) b2n+1,n(")
and ®,,,; is a row vector of univariate functions:
(I)out = (¢1() ¢2n+1('))’ (9)

So the KAN in Equation (7) are simply compositions of
two KAN layers. In practical applications, we can achieve
deeper KAN by simply stacking more KAN layers. Thus, a
L-Layer KAN can be constructed as follows:

KAN(X) = ((I)L—l e} (I)L—2 O---0 '1)1 (e} <I)0)x, (10)

where ®; is the matrix of activation functions corresponding
to the [* KAN layer. A simple KAN with two input neurons
and one output neuron is illustrated in Figure 2.

The shape of a KAN can be represented as an integer array
[ro,m1, -+ ,nr] , where n; denotes the number of nodes in
the i-th layer. Let z;; denote the i** neuron in the I*" layer.
There are n;n;4; activation functions between the [-th layer
and the (! + 1)-th layer. Let ¢; ; ; denote the activation func-
tion that connects x; ; and x;41 ;. The value of x;; ; can be
calculated as follows:

ny
Tit1,j = Z¢l,i,j(ml,i) J=1 . (11)
=1

Different from FNNs, KAN employs learnable activation
functions ¢(x) at the network’s edges:

d(x) = wpb(x) + wgspline(x), (12)
which is the sum of the basis function b(x):
b(x) = silu(x) = 1_’)_(6)(, (13)
and the spline function spline(x):
spline(x) = Z ¢iBi(x), 14)

where c¢; is trainable, and B;(x) are B-spline basis functions,
and w;, and w, are trainable.

By observing the network structure of KAN, it can fit com-
plex nonlinear relationships with fewer parameters using B-
spline functions. This is because B-splines represent global

Figure 2: A 2-Layer KAN with shape [2, 2, 1].

functions through local control, reducing the need for a large
number of parameters compared to FNN. By flexibly adjust-
ing the degree k and grid size g, which determine the number
of B-splines, KAN can adapt to complex patterns in differ-
ent data and systems, ensuring the model has strong expres-
siveness while avoiding overfitting. While maintaining the
model’s representation power, a smaller grid size can signif-
icantly reduce computational complexity, allowing KAN to
efficiently handle large-scale datasets. As training progresses,
the grid size can also be dynamically adjusted to improve
model accuracy without the need to retrain the entire network.
Therefore, it is reasonable to use KANSs as the networks for
synthesizing control barrier certificates and controllers. For
the controlled dynamical system .S, we use two KANs to sep-
arately train a control barrier certificate and a controller. The
input dimension of both networks matches the system’s di-
mension, with the output dimension of the barrier certificate
network set to 1, and the output dimension of the controller
network corresponding to the control input dimension.

4.2 Training of the KAN Barrier and Controller

In this subsection, we will introduce the method for synthe-
sizing KAN control barrier certificates and controllers. Based
on the control barrier certificate conditions, we design a loss
function for the training dataset. During the training process,
the B-spline functions in KANs are updated by minimizing
the loss function value of sampled data points.

Training Dataset Construction. Without loss of general-
ity, consider a state set X. We divide X into a finite number
of cells X, Xo,..., Xy by choosing a discretization param-
eter . From each of these cells, we then select sample points
x; € X; such that [|[x —x;|| <, forallx € X;. Let D denote
the set of all these sampled points. Using this method, we can
construct the dataset D7, Dy and D p, with each batch being
sampled from X;, Xy and X.

Loss Function. We formally define the loss function be-
low:

Lp= Z max{B(x) + 77} + Z max{—B(x) + v}

x€EDy x€Dy

+ Z max{B(x)+ 7p},
x€Dp,B(x)=0
15)
where 77, 77, Tp serve as offsets that are included to enhance
the numerical stability during training. Note that the terms in
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Figure 3: An example of how to do network symbolization.

(15) correspond to the three control barrier certificate condi-
tions, respectively.

To generate a KAN control barrier certificate candidate
B(x) and a KAN controller h(x), we employ gradient de-
scent techniques to minimize L. When the loss decreases to
0, it indicates that the learned KANs can serve as a candidate
control barrier certificate and a candidate controller, respec-
tively.

4.3 KAN Barrier and Controller Verification

In this subsection, we will introduce SMT solving for for-
mally verifying candidate control barrier certificates and con-
trollers represented by KANSs, as those generated through gra-
dient descent techniques do not provide formal safety guaran-
tees. Before SMT verification, we will prune and symbolize
the networks to accelerate the verification process.

Pruning and Symbolization. To facilitate verification, we
prune the trained networks into smaller subnetworks. We per-
form sparsification [Liu et al., 2024] at the node level, and for
the ¢-th neuron in the [-th layer, we define its incoming and
outgoing scores as:

I, = mgx(|¢l—1,k,¢|1), O = mﬁx(\¢z+1,i,j|1)- (16)

If both the incoming and outgoing scores are greater than
the threshold, the node is retained, and the remaining unim-
portant nodes are pruned. We take node z; ; in Figure 2 as an
example, its incoming scores I; 1 = maz{|do.1.1], |¢o.2,1]}
and outgoing scores O11 = |[¢1.1,1]. If the score of either
11,1 or Oy 1 is less than the threshold, the node, along with its
connected edges and activation function, will be removed.

Because B-spline functions are generated recursively, they
cannot be formally expressed with explicit expressions, mak-
ing verification challenging. Since the essence of KAN is
to approximate arbitrary functions through the superposition
of multiple nonlinear functions, we can transform the activa-
tion functions from numerical forms of B-spline to symbolic
forms (such as sin, tanh, etc.). In Figure 3, we show the
symbolization process through a regression task f(x,y) =
sin(rx) + mexp(y). A one-layer KAN with shape [2,1] is
initialized and trained using a dataset (x;,y;, f;) wherei =
1,2,...,n. Then, the activation functions are set to sin and
exp, respectively. At this stage, an accurate symbolic for-
mula cannot be obtained because the input and output of the

Algorithm 1 Learning Formally Verified CBC and controller

Input: System S = (f, Xp, X, Xy), a discretization pa-
rameter €
Output:control barrier certificate B and a safe controller h

function LEARNER(S, €)
repeat
D < SampleData(S, €)
compute loss L 5, update KANs
until Lz =0
return candidate KAN barrier B and controller h
end function

function VERIFIER(B, h, iter)
if iter = 1 then
B, h + Pruning and Symbolification(B, h)
end if
B, h + encoding_dReal(B, h)
Cex + verify_dReal(B, h)
if Cex = None then
return True
else
D+ DUCex
end if
end function

function CEGIS(S)
initialise KAN B and h, S, €
repeat
iter < iter + 1
B, h < LEARNER(S, €)
Flag < VERIFIER(B, h, iter)
until Flag = True
return B, h
end function

activation functions may have shifts and scalings. There-
fore, after further fitting, the coefficient for = and exp is both
set to 3.14. The final output symbolic formula f(z,y) =
sin(3.14x) + 3.14exp(y) closely matches the expression of
the regression task.

In this way, we simplify candidate barrier certificates and
controllers through pruning and symbolization for SMT veri-
fication.

SMT Verification. We design a counterexample-guided
framework based on the SMT solver for verification, which
is designed to find states that violate the barrier conditions in
(4). To achieve this, we formulate the negation of the three
conditions and verify the conditions are unsatisfiable, as fol-
lows:

0
0 7)
0
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We choose dReal as our SMT verifier, which ensures the
correctness of its unsat decisions. Therefore, when dReal re-
turns unsat for the given formula (17), it confirms that no so-
lution exists within the specified precision, and the simplified
candidate control barrier certificate B(x) and controller h(x)
are valid. Otherwise, it means that dReal has found a coun-
terexample that violates the safety properties of the control
barrier certificate.

During the verification process, dReal can only find one
counterexample at a time. To improve the efficiency of ver-
ification, points around the counterexample will be sampled
and added to the dataset to help the learner refine the con-
trol barrier certificate and controller. We repeat this process
of refinement and verification until no counterexamples are
found.

Our main algorithm is illustrated in Algorithm 1.

S Experiments

We have implemented a tool named KAN4CBC using Py-
Torch platform for synthesizing KAN control barrier certifi-
cates and safe controlllers. We compare our tool against
the latest version of FOSSIL2.0 [Edwards et al., 2024] and
nncontroller [Zhao er al., 2021]. To compare and illustrate
the performance differences between the automatic learning
of activation functions and the manual selection of activation
functions, we choose sigmoid function as the activation func-
tion for FOSSIL2.0, bent-relu function for nncontroller. For
each case, we ensure that the number of sampling points is
consistent between the three tools. Besides, we use AdamW
as the optimization algorithm whose learning rate is 0.001
with 81 = 0.9, B2 = 0.999 and ¢ = 1078, and the loss func-
tion in Equation (15) with 7; = 7y = 7p = 0. We set the
hyper-parameter grid size in KAN to 5, and the degree k to 3.
The timeout is set to 1 hour, meaning that if a real control bar-
rier certificate and safe controller are not synthesized within 1
hour, the attempt is considered a failure. All experiments are
performed on a machine running Ubuntu 24.04 with AMD
Ryzen 5 5600G and 16GB memory.

5.1 Case Studies

We evaluate the effectiveness of our tool with examples that
include both polynomial and non-polynomial cases. The Ex1
is a 2-dimensional inverted pendulum system [Zhu et al.,
2019], the Ex2 is a 3-dimensional ACAS Xu system [Claviere
et al., 2021], where a controller is used to control the flight
angle of the airplane to prevent collision. The Ex3 is a unicy-
cle system [Yang et al., 2023], where a controller is used to
control the unicycle’s speed and the angle. The Ex4 [Chesi,
20041, Ex5 [Sassi and Sankaranarayanan, 2015], Ex6 [Zeng
et al., 20161, Ex7 [Klipp et al., 2005] and Ex8 [Klipp et al.,
2005] are systems with four, five, six, seven, and nine di-
mensions, respectively. And the Ex1 to Ex3 include non-
polynomial terms in the dynamics.

Example 1 (Inverted Pendulum). The continuous dynamical
system is as follows:

— L2

2] = [osuinten o]

The domain is X = {x € R? | -5 <xm < §,-F <
wy < T} Our goal is to generate a safe controller that en-
sures all trajectories starting from the initial region X; =

2 .
xeR | - <21 < f5,—7 < 2 < ) owill

never enter the unsafe region Xy, which is the complement
of x| -F <o <§, gl grinX.

We sample 16 points from the initial region, 256 points
from unsafe region, and 1024 points from domain region. Us-
ing a two-layer KAN with shape [2, 5, 1], KAN4CBC success-
fully synthesized the KAN barrier certificate and the safety
KAN controller; as illustrated in Figure 4, in which initial re-
gions X1 and unsafe sets X5 are represented in green and
red respectively, and the blue line outlines the level curve
B(x) = 0. The expressions for the KAN control barrier cer-
tificate B(x) and the safe controller h(x) are as follows:

B(x) = 0.726 - (0.038 — 1)? — 0.63 - (—z — 0.491)3
—0.468 - (0.49 - x5 — 0.522 - (—x; — 0.32)* +1)2
+0.275,

h(x) = 26.963 - (0.331 — x2) + 9.01 - (0.345 — z5)?

+0.911- (1 —0.989 - 1) +4.147 - (1 — 0.984 - 21)?
—9.656.

0.6
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Figure 4: The learned barrier and controller for Example 1

Example 2 (ACAS Xu system). The continuous dynamical
system is as follows:

T —0.1sin(0)
T = |f).1cos(t9) - 0.1] .
0 —u

The domainis X = {x e R3 | -1 <21 <1,-1 <25 <
1,0 < 0 < w}. Our goal is to generate a safe controller that
ensures all trajectories starting from the initial region X| =
{x € R3 | 29 + 22 < 0.25,0 < 0 < 7} will never enter
the unsafe region Xy = {x € R3 | 0.5 < xy < 0.75,0.5 <
29 <1,0<6 <7}

We sample 125 points each from the initial region and the
unsafe region, and 1000 points from the domain region. Us-
ing a two-layer KAN with shape [3, 5, 1], KAN4CBC success-
fully synthesized the KAN barrier certificate and safety KAN
controller, as illustrated in Figure 5, in which the zero level
set of learned barrier certificate (the yellow surface) sepa-
rates Xy (the red cuboid) from simulated trajectories start-
ing from X (the green ellipsoid). The expressions for the
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cases | shape |- FOSSIL 2.0 ' nncontroller ‘ KAN4CBC
iter T, T, Teum | iter T, T, Teum | iter T, T, Teum

Ex1 [2,5,1] | 41 | 61.10 0.09 61.19 X X X X 1 199.41 0.13 199.54
Ex2 | [3,5,1] | 41 | 63.67 | 31.87 95.54 8 14.02 | 70.17 | 84.19 3 130.08 1.44 131.52
Ex3 | [4,5,1] X X X X X X X X 50 | 1206.08 | 14.70 | 1220.77
Ex4 | [4,3,1] | 10 | 20.55 | 152.69 | 173.23 X X X X 2 149.86 1.21 151.07
Ex5 | [5,2,1] X X X X X X X X 187 | 2566.12 | 39.51 | 2605.63
Ex6 | [6,2,1] X X X X X X X X 2 368.33 | 45.84 | 414.17
Ex7 | [7,2,1] X X X X X X X X 2 112.48 8.84 121.32
Ex8 | [9,1,1] X X X X X X X X 2 1363.12 | 0.21 | 1363.33

Table 1: Comparative results of the solution in different cases.

KAN control barrier certificate B(x) and the safe controller
h(x) are as follows:

B(x) = 1.265 - 21 — 0.072 - 23 — 0.634(0.18 - 25 + 0.096

-3 +0.654 - (0.045 — 21)? — 1)? 4 0.014c0s(8.623
-y +2.267) — 0.235,

h(x) = —0.28 - 71 — 1.01 - 23 + 0.658 - (1 — 0.997 - z2)?
—0.212 - cos(0.119 - 71 + 1.485 - 23 + 1.899 - (1
—29)? — 9.11) + 0.436.

Figure 5: The learned barrier and controller for Example 2

5.2 Results Analysis

Table 1 summarizes the results of our KAN4CBC compared
to FOSSIL2.0 and nncontroller in eight different cases. The
shape represents the KAN structures corresponding to the
control barrier certificate and safe controller. To compare
the performance between learnable activation functions and
fixed activation function, the number of layers and nodes per
layer in the neural network within two other methods are kept
consistent with those in KAN. The iter, 13, Ty, Tsym repre-
sent the number of iterations, training time, verification time
and the total time required for the method to generate a safe
controller in the corresponding case, respectively. And the
symbol x indicates the synthesis of the safe controller failed
within one hour.

From Table 1, we conclude that our tool KAN4CBC can
successfully synthesize safe controllers for all cases. In con-
trast, FOSSIL2.0 can only synthesize safe controllers for
three cases, and nncontroller succeeds in just one case. Our
tool is more scalable because KAN has learnable activation
functions, which enhance its expressive power compared to

neural networks, enabling it to synthesize safe controllers
with fewer network nodes. However, the other two tools lack
this capability.

Considering efficiency, our tool generally outperforms in
the majority of cases because it controls network complexity
through its pruning feature, achieving higher computational
efficiency, especially in verification. On average, KAN4CBC
has a longer training time per iteration, but a shorter ver-
ification time, and the total number of iterations is fewer
than FOSSIL2.0 and nncontroller, so its total synthesis time
ends up being shorter than two other methods. Only for
Ex1 and Ex2 do FOSSIL2.0 and nncontroller synthesize safe
controllers faster than our tool, because training neural net-
works is easier than training KAN’s B-spline functions for
low-dimensional simple systems. Our method outperforms
FOSSIL2.0 and nncontroller on high-dimensional examples,
because traditional safe controller synthesis using neural net-
works requires complex structures for high-dimensional sys-
tems, resulting in lengthy expressions that hinder SMT solv-
ing. In contrast, the KAN achieves strong expressiveness with
fewer layers and nodes, and its pruning and network symbol-
ization significantly improve SMT solving efficiency.

In summary, Table 1 indicates that our method success-
fully synthesizes safe controllers to ensure the system’s safety
across all eight benchmark experiments, but FOSSIL2.0 and
nncontroller fail. Besides, KAN4CBC requires fewer itera-
tions and less time compared to FOSSIL2.0 and nncontroller
in most cases. The results demonstrate that our method ex-
hibits superior efficiency and versatility in synthesizing safe
controllers in high-dimensional systems.

6 Conclusion

In this paper, we have proposed a novel and efficient method
for formally synthesizing control barrier certificates and con-
trollers to verify the safety of controlled continuous dynam-
ical systems. Our synthesis process consists of two stages:
First, it generated candidate control barrier certificates and
controllers using KAN which can improve representation
power. Second, it simplified the candidate barrier certificates
and controller networks through pruning, and then output the
candidate expressions by symbolizing the networks which
makes SMT verification more efficient and overcomes the
limitation of SMT verification failure when applying neural
barrier certificates to high-dimensional systems. We demon-
strated the effectiveness of our tool using several case studies.
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