Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

What Makes You Special? Contrastive Heuristics Based on Qualified Dominance

Rasmus G. Tollund, Kim G. Larsen, Alvaro Torralba
Aalborg University, Aalborg, Denmark
rgt@cs.aau.dk, kgl @cs.aau.dk, alto@cs.aau.dk

Abstract

In cost-optimal planning, dominance pruning meth-
ods discard states during the search that are dom-
inated by others. However, the binary nature of
pruning fails to exploit information when we can-
not prove that a state is fully dominated. To this
end, we introduce qualified dominance, an auto-
matic method that given a pair of states s,¢ syn-
thesizes a finite state automaton that represents a
language of plans from s that are dominated by t.
This not only explains why s cannot be pruned, but
can also be used to improve the heuristic function
to guide the search. This results in a new type of
heuristic, which we call contrastive heuristics, that
are dependent on the search performed so far. We
provide the theoretical foundation for showing that
such contrastive heuristics can be used to find op-
timal plans even when their more informative esti-
mates are not admissible.

1 Introduction

The most common approach for cost-optimal planning is to
use A* [Hart ef al., 1968] with a heuristic function that es-
timates the goal distance from each state. To ensure opti-
mality the heuristic should be admissible, meaning that the
real distance is never overestimated. However, the search ef-
fort can grow exponentially with almost perfect heuristics,
even for problems solvable in polynomial time [Pearl, 1984;
Helmert and Roger, 2008]. This naturally raises the question
of how to extend the notion of heuristics to gain more expres-
sive power.

We introduce contrastive heuristics, which estimate goal
distance by considering previously explored nodes. Similar
ideas appear in novelty heuristics [Katz et al., 2017; Lipovet-
zky and Geffner, 2017; GroB et al., 2020; Singh et al., 2021;
Rosa and Lipovetzky, 20241, which use state statistics to di-
versify search but lack formalization of the search and lose
optimality guarantees. In [Karpas and Domshlak, 2012] they
propose an inadmissible heuristic that retains optimality by
considering alternative paths. Contrastive heuristics provide
a formal framework for search-state-dependent heuristics that
retain optimality while relaxing admissibility. We prove that
A™ with contrastive heuristics remains optimal if for each

inadmissible node there is a better node that is admissible.
Thus, goal distance can be evaluated in contrast to other
nodes, i.e. through paths only available to this node.

We also show how to automatically construct contrastively
admissible heuristics for any planning task. To this end, we
extend dominance pruning, which prunes states s shown to
be at least as far from the goal as some ¢ [Torralba and Hoff-
mann, 2015]. But full dominance is often hard to guarantee.
Thus, our second contribution is qualified dominance. When
t does not dominate s, we ask: “Why? What can s do that
t cannot?” We characterize this as a set of plans from s for
which no equivalent from ¢ could be proven. We show how to
automatically synthesize a finite-state automaton whose lan-
guage captures plans from s that are dominated by t.

Finally, we show that qualified dominance information can
be encoded in the description of the planning task, so any
domain-independent admissible heuristic that can estimate
the goal-distance for any planning task can be used to com-
pute contrastive heuristic estimates. We provide a first imple-
mentation on top of the operator-counting framework [Pom-
merening et al., 2014]. Our experiments show that our quali-
fied dominance techniques are able to find information across
many tasks, even though this is not very complementary with
highly informative heuristics.

2 Background

A labelled transition system (LTS) is a tuple © = (S, L, T,
ST, SG), where S is a set of states, L is a set of labels with
cost cg) e R, !, T C S x L xS is atransition relation, and
S1, 8% C S are the set of initial and goal states, respectively.
Typically, there is a single initial state. However, considering
a set of initial states simplifies the notation [Biichner er al.,

2024]. We write s ¢ s’ whenever (s,4,8") € T, or simply

‘.)
s = s’ if the O is clear from context.

A path from sg to s, in © is a sequence of transitions

0 L . .
Sg — §1... = s,. L* is the set of finite sequences of

labels and ¢ is the empty sequence. A plan 7 € L* for a state
s € S'is a sequence of labels s.t. there exists a path from s to
sn € SY. The cost of 7 is ¢(m) = Y, c(£). We denote by

P(s) the set of all plans from s to a goal state, or by Pg(s)

"We assume non-zero cost labels to simplify the notation. But
we can support 0-cost labels by treating them as having e-cost.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

load A, unload A

load B, unload B

load A, unload A,
load B, unload B

load A, unload A,
load B, unload B

load A, unload A,
load B, unload B

Figure 1: Planning task of our running example with three factors, representing the position of the truck, the package, and the amount of fuel.

for a particular LTS ©. We denote h*(s)
A plan for s is optimal if ¢(77 = h*(s). We look for a plan
from sy € ST with cost h*(S!) = min,, e g1 h*(s0).

We consider planning tasks in factored transition system
(FTS) representation [Sievers and Helmert, 2021; Torralba
and Sievers, 2019; Biichner et al., 2024]. An FTS task
T = (©4,...,0,) is a tuple of LTSs, called factors, with a
common set of labels, such that ©; = (S;, L, T}, S!, S&). We
use a tuple, instead of a set, to refer to the individual factors
by their index. We denote by o tuple concatenation. States in
the individual factors s; € S; are called facts. A state in T is
a tuple of facts s = (s1, ..., s,), one for each factor, s; € O,.

The FTS task compactly describes the state space. This is
another LTS ©7 = 6, ® ... ® ©,, = (S, L, T'r, SF, 5%),
where S+ = S; X .-+ x S, is the Cartesian product of
each factor’s states, T = {((s1,...,8n), 4, (t1,...,tn) |
(siylyt;) € Tyforl < i < n}, ST = Sl X oo x S
and S? = 8¢ x

= mingep(s) ().

- x S%. Note that the order of the fac-
tors is fixed, but arbitrary, as the resulting products for differ-
ent orderings are isomorphic. Throughout the paper, we use
subscripts to differentiate states in S7 (e.g., s, s',t) and facts
from each factor ©; (e.g., s;, s}, t;) so that s; = s][i].

An LTS is deterministic if (s, ¥, s'), (s, ¢,s") € T implies
s’ = s, and |S| = 1. An FTS task 7 is deterministic if
all of its factors are deterministic, which implies that the state
space O is also deterministic. Tasks in other common plan-
ning formalisms such as STRIPS [Fikes and Nilsson, 1971]
and SAS™ [Bickstrom and Nebel, 1995] can be compiled into
a deterministic FTS task [Sievers and Helmert, 2021].

A heuristic is a function A7 : S — R that estimates the
cost of the cheapest path from a state to a goal state in a plan-
ning task 7. The planning task is omitted when it is clear
from context. A heuristic is admissible if it never overesti-
mates the cost, i.e. h(s) < h*(s) forall s € S.

The most common algorithm for optimal planning is
A* [Hart et al., 1968]. A search node n, represents a path
from the initial state to the state s, and g(ns) denotes the cost
of the path. We denote by A the set of all search nodes for a
state space. A* maintains a closed and an open list of all the
search nodes seen so far. The open list is initialized with a
node for each sy € S’, representing the empty path from s.
A node is expanded by removing it from the open list, adding
it to the closed list, and adding all of its successors to the open
list. A* iteratively expands a node with minimal f-value until
a goal state is reached, where f(ns) = g(ns) + h(s). When
h is admissible, A is guaranteed to find the optimal plan. We
also define f*(ns) = g(ns) + h*(s).

A dominance relation is a relation T C S x S, s.t. s T
t = h*(t) < h*(s) [Torralba and Hoffmann, 2015]. In-

tuitively, s C ¢ means that ¢ is at least as close to the goal as
s. In dominance pruning, a node ns can be pruned whenever
there exists a node n; in the open or closed list s.t. s C ¢ and
g(nt) < g(ns), thus guaranteeing that there is a plan through
n; that is no more expensive than any plan through ns. A*
with dominance pruning (A;T) always finds an optimal plan.

To find dominance relations, we draw on the concept of
simulation relations [Milner, 1971]. Specifically, a relation C
is a cost- szmulatzon for S 1f s C timplies that (i) ¢ 6 SCvs ¢
SCand (i) Vs & 8" 3t St/ v () < c() As' T t'. We
always consider a noop transformation, adding a 0-cost label
noop with a transition s 22?2y s for all s € S. This allows
to reply to any transition s 4 ¢ with ¢ 2925 ¢ whenever
s’ C t. Any cost-simulation on ©7 is a dominance relation.
This can be computed in polynomial time in the size of O,
but this is still exponential in the size of the planning task 7.

To address this, one can compute a fact-dominance relation
for each factor. For each ©;, we define a relation C; C S; X S;
that allows us to express that a fact is as good as another.

We also construct a label-relation <; = {(4,¢) | Vs; L@i

)+ 3s; Z—>@i th.s, Tt Ae(l') < e(f)} expressing that,
on factor ©;, any time that ¢ can be applied, one can apply
/" instead. Based on this, we can reason which labels can
be applied without negative side effects on any other factor,
==/ i =;. Finally, the label-dominance simulation tech-

nique computes a tuple (C4,...,C,,) of relations for each
factor such that whenever S; E t; thent; € S Vs;m € SG
and Vs; 5 s/ . 3t £, thash T th AL =5 3 Despltebe-
ing a very recursive deﬁmtlon the coarsest label dominance
simulation (C5P, ... CLP) can be computed in polynomial
time in the size of the planning task [Torralba and Hoffmann,
2015]. Furthermore, one can compute a dominance relation
for O as s CP tiff s; CEP ¢, foralli € {1,...,n}.
Figure 1 shows the planning task of our running example,
where a truck with limited amount of fuel delivers a pack-
age. It consists of 3 factors, representing the location of the
truck, the package, and the amount of fuel. The initial state
is (T, Pp, F») and the goal states are of the form (-, Py, -).
Here, label-dominance simulation discovers that having more
fuel is always better (Fy, C F; C F5). We also consider
scaled versions of the task, e.g., with more fuel available.

3 Contrastive Heuristics

We generalize the notion of heuristics to contrastive heuris-
tics, which evaluate states in the context of the search tree
explored so far. Unlike traditional heuristics that estimate
the cost to a goal independently for each state, a contrastive

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

heuristic considers the relationship between states. In our
running example (with many more than three fuel levels),
suppose we have two states, s = (T, Pg, F79) and t =
(T4, Pp, F5p), which are identical except that s has more fuel
than ¢. If ¢ has an optimal plan with cost 4, then this plan is
also optimal for s, so the optimal heuristic value for both,
when evaluated independently, is 4. However, when evaluat-
ing s in contrast to ¢, the heuristic value for s should be larger.
This is because any plan for s that uses no more fuel than the
plan for ¢ could also be applied to ¢. If a drive action that
consumes 1 fuel has cost 1, then the heuristic value of s in
contrast to ¢ should be at least 51. Any plan for s that uses
less than 51 drive actions would also be valid for ¢. Thus, in
this sense, the contrastive heuristic for s relative to ¢ exceeds
the independent heuristic value. Importantly, this heuristic is
inadmissible since ¢ has a plan, s has the same plan and thus
the same goal distance. However, as we will show, this inad-
missibility does not compromise optimality.

In this section, we formally define contrastive heuristics
and demonstrate how they can be used in A* search to obtain
optimal solutions.

Definition 1. A contrastive heuristic is a function n : N x
2N 5 R{, s.t. n(n, N) defines the heuristic value of node n
in contrast to the nodes in N.

In contrast to a normal heuristic, a contrastive heuristic
is defined for search nodes, and not states. This allows for
even more information to be considered for heuristic evalua-
tion, as the path to the node can also be taken into account,
i.e. when considering N = (it reduces to path-dependent
heuristics [Bagchi and Mahanti, 1983; Richter et al., 2008;
Karpas and Domshlak, 2009]. We call N the contrastive set.

Usually, admissibility of a heuristic is used to guarantee
optimality of the search algorithm. However, in order to en-
sure the optimality of A*, it suffices that the heuristic always
assigns an admissible value to at least one optimal node in
the open list. We will consider a stricter requirement that is
easier to reason about.

Definition 2. A contrastive heuristic 1) is contrastively admis-
sible if for all ng, n(ns, N) < h*(s) or there exists ny € N
st g N) < B(0) A frng) < f(ns) A (F(ne) <
[r(ng) VR (t) < B (s)).

Intuitively, a contrastively admissible heuristic guarantees
that a node is assigned an inadmissible value only if there is
a better node with an admissible value estimate. The contra-
positive is that if there is no better node, then the node has an
admissible value. Here, betfer means it has a lower f*-value,
or it has the same f*-value but it is closer to the goal. The
latter condition ensures for an optimal node in the open list,
any better node must be in the open list as well.

Lemma 1. Let) be a contrastively admissible heuristic, and
N C N anon-empty set of nodes, Ny« = arg minpen f*(n)
and N* = argmin, en,. h*(s). There exists a node ns €
N* s.t. n(ns, N) < h*(s).

Proof. Let nys € N*. From Definition 2, if n(ns, N) >
h*(s), then there exists another node n; in N, that by con-
struction is in N*, such that n(n;, N) < h*(t). O

In order to utilize contrastive heuristics in A* search, we
make a small modification to the search algorithm. Instead
of expanding a node with minimum f-value, we expand the
node with minimal f-value, given by fy(n) = g(n) +
n(n, N). We denote by fo.(n) = g(n)+n(n, openU closed)
the f—value that uses the union of the open and closed list as
the contrastive set. We denote this version of A* as A7_.

Theorem 2. Let 1) be a contrastively admissible contrastive
heuristic. A%, guarantees an optimal solution.

Proof. The proof is a modification of the proof of the opti-
mality of A* from [Pearl, 1984, p. 78]. The optimal solution
cost is f*(ns,). We first show that there is always a node
ne € open s.t. foc(ne) < f*(nt) = f*(ns,). By Lemma
1, there is a node n; with minimum f*-value and minimum
h*-value that is admissible. This node must be in open, other-
wise its children would be in open and have smaller ~*-value.
Now, suppose A’ expands a goal node n,. We know that it’s

foc-value is minimal among all nodes in open. Therefore,
foc(ns) < f*(ny), and ng is optimal. O

The theorem above even holds when using a subset of
openUclosed, because for a contrastive heuristic, if there is no
better node in the contrastive set, then it must be admissible.

In practice, requiring the f-value of each node in the open
list to be dependent on the current open and closed list is
infeasible, as it requires recomputing the heuristic value for
all nodes in the open list whenever a node is expanded. In-
stead, we evaluate each node upon generation, and keep the
value fixed afterwards, resulting in different contrastive sets
for each node. The algorithm is still optimal, as long as the
heuristic cannot decrease when evaluated in a larger context.

Definition 3. A contrastive heuristic 1 is monotonic if for all
neNand NNN' CN NCN = n(n,N)<n(n,N).

The monotonicity property of the heuristic ensures that the
f-value of a node will not decrease when increasing the con-
trastive set. This restriction is quite sensible, as it means that

the heuristic value does not decrease when considering more
information.

Theorem 3. Let 1) be a contrastively admissible monotonic
heuristic and v = N x 2NV — 2N be any mapping s.1.
vin,N) C N. A" with f,(n) = g(n) + n(n,v(n,open U
closed)) guarantees an optimal solution.

Proof. From the monotonicity property, 71(n,v(n,open U
closed)) < n(n,open U closed) and thus f,(n) < foc(n).
Thus, we can consider f, to be an under-approximation of

foc. With this, the same proof as of Theorem 2 is applica-
ble.

4 Qualified Dominance

A dominance relation provides information about whether
one state is at least as good as another. However, previous
work only considers when a state is completely dominated
and can be entirely removed from the search. Let us revisit
the running example. The reason we could assign the state

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

s = (Ta, Pp, Fro) a higher heuristic value in contrast to
t = (Ta, P, F50), is that we knew that if s does not use
the additional fuel, ¢ is just as good as s. This is a form of
partial-dominance relation, where ¢ dominates all plans of s
that do not use more fuel than ¢ has. In this section, we extend
the notion of dominance to include some middle ground: the
label sequences under which a state is dominated by another
state. In this sense, we cannot completely prune the state, but
we can disconsider these label sequences that can be simu-
lated by the other state when computing heuristics.

Definition 4. A qualified dominance function is a function

D : S xS — 2L from a pair of states to a language over the
labels, s.t. ¥ € D(s,t).m € P(s) = h*(t) < c(m).

A qualified dominance function describes a subset of s-
plans where ¢ is guaranteed to have a no more expensive
plan. Additionally, any label sequence that is not a plan of
s is trivially dominated by ¢. Observe that a qualified dom-
inance function does not need to be maximal, so the set of
dominated plans can be arbitrarily underapproximated.

Qualified dominance generalizes the previous notion of a
dominance relation, where ¢ dominates s only if h*(t) <
h*(s). For any dominance relation C, we can con-
struct a qualified dominance function Dc(s,t) = L*
if s C ¢t and Dc(s,t) = 0 otherwise. D and
C are equivalent as D(s,t) = L* means that all s-
plans are dominated by t. But qualified dominance can
also express that certain paths are dominated even when
a state is not fully dominated. In our running exam-
ple, we can assign D((Ta, Pg, Fro),(Ta, Pp, Fs0)) =
{m € L* | m has less than 51 drive actions }.

4.1 Inference of Qualified Dominance

Next, we consider how to represent and compute a quali-
fied dominance function. We begin by describing how it can
be defined over the entire state space of the planning task—
though this offers little practical value, as it is as hard as solv-
ing the task itself. We then show how it can be approximated
by computing it over the factored task instead.

Definition 5. A function D : S x S — 2L is a qualified
=<-simulation for © if for all s,t € S (i) € € D(s,t) only if
t € 8¢V s ¢ SYand (i) (103 ... ¢, € D(s,t) only if

Vs Ay o/ o3t Ly ! o0y <0 ALy . 4, € D(s 1)

Intuitively, a <-simulation allows only to simulate a label
with another label according to the label relation <. An im-
portant special case is £ <. ¢ iff ¢(¢') < ¢(¢) which we call
a qualified cost-simulation.

Theorem 4. A qualified cost-simulation function is a quali-
fied dominance function.

Proof. Let D be a cost-simulation function and 7 € D(s, t).
We show that either m ¢ P(s) or h*(t) < ¢(m) by induction
on the length of . Base case (|w| = 0): from (i) of Def-
inition 5, if s is not a goal, then 7 = ¢ ¢ P(s). If s and
t are goals, then h*(t) = 0 = ¢(w). Induction step: As-
sume that the induction hypothesis holds for all |7'| = n. Let

m = {10y ... l,41. By (ii) of Definition 5, if s Ly ¢ then

there is ¢ 2 ¢’ s.t. c(ly) <c(ty)and ¥y ...l € D(,).
By the induction hypothesis, h*(t') < c({3...4,41), and
thus h*(t) < c(€)) + h*(t') < c(lyly ... Lyyr). O

A qualified cost-simulation is a type of qualified domi-
nance function. It enforces a simpler version of qualified
dominance, where the plan of ¢ must step-wise simulate the
plan of s, possibly using noop. Note that, whenever ¢; is not
applicable on s, the for all expression is trivially true. Oth-
erwise, ¢t must have a transition with some label ¢} that is as
good as ¢; in terms of cost. We now show how to encapsulate
a qualified simulation for an LTS © in a domination LTS I'.

Definition 6 (Domination LTS). Let © = (S, L, T, ST, S%)
be a deterministic LTS, and < C L x L be a la-
bel relation. The domination LTS w.rt. © and =< is
I = ((SxS)U{T},L,Tr,0,5F), where S¢ = {T} U

{(s,) €S xS |teSCVsgSCY, and (s,t) S (,¢)
iff s i>(_) s'At ['—>@ AL 24 (s,1) £>p Tiff s 7[@@; and
T 50 Tforallt e L.

Each state in I" will represent a pair of states in the origi-
nal LTS s.t. Pr((s,t)) = D(s,t). Additionally, we introduce
the universal goal state, T, which is used to represent that ¢
dominates s if s performs an inapplicable action. We do not
define initial states as we will only be concerned with goal
distances. The transition relation simply encodes the prop-
erties of Definition 5, adding non-determinism to handle the
existential quantification of t. We avoid having to support
non-determinism for the universal quantification of s by as-
suming the input LTS to be deterministic, so the choices of s
can be encoded in the labels of I'. Finally, the goal states are
those states where D(s,t) contains the empty sequence, i.e.
T and when goal status of ¢ is as good as s.

I" can be interpreted as a finite-state automata that recog-
nizes the language D(s,t). Therefore, it is clear that any
dominance function represented as a domination LTS assigns
a regular language to each pair of states. It is worth noting
that, when minimizing these automata, T and all states of the
form (s, s) will be reduced to a single state that represents
L*.

Theorem 5. Let I" be a domination LTS w.r.t. a deterministic
LTS © and =, where { <. ' iff c(¢') < c(¥). The function
Dr(s,t) = Pr((s,t)) is a qualified cost-simulation for ©.

Proof. Letm € Pr((s,t)). We prove this by induction on the
length of 7. Base case (|| = 0): This implies that (s,t) €
Slg , which by definition of the goal states, means that ¢ €
Sg Vs ¢ Sg. Induction step: Let l10y ... 0,1 € Pr((s,t)).
Then, there is some transition from (s, ¢) with label ¢; either
to T or to some (s',t') s.t. o... 011 € Pr((s,t)). In the

L 0 e
former case, this implies s g, and thus fulfils condition (ii)
in Definition 5 vacuously. In the latter case, by construction

of I" there are transitions s e—1>@ s’ and t £—1>@ t’ where
c(}) < ¢(£1). By the assumption that © is deterministic, we
know that there is at most one transition of s with label /1,
thus there is a response from ¢ for all transitions of s. O

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

4.2 Qualified Fact-Dominance

Constructing the domination LTS for the entire state space is
senseless. However, we can utilize the label-dominance sim-
ulation [Torralba and Hoffmann, 2015] concept and compute
a qualified dominance function by constructing it per factor.
We first use label-dominance simulation to compute a fact-
dominance relation for each factor (Z4P, ... CLP). Recall
that the fact-dominance relation is defined as s; 1P ¢; only

i Vs; 5). 3t S5 t.8) TP £ AV # 0.0 <LP ¢ and the
label dominance relation as ¢ <P ¢ only if ¢(¢") < ¢(¢) and

for all s; i)@i s there exists s; P—>(_) st st st CEP sl We
then construct for each factor ©; the domination LTS I'; w.r.t.
©; and the label relation <; =1, ; ijD . Intuitively, we do
the same construction as previously, but with the restriction
that we only allow substituting a label £ for ¢ if it is at least
as cheap and whenever £ is applicable in all other factors, ¢
is also applicable and leads to a state that is at least as good.
The intersection of the qualified cost-simulations in each
factor is not necessarily a qualified cost-simulation for the
state space. This is because the plans from ¢; that dominate
s; in each factor may be disjoint, i.e. there are plans for each
factor but no shared plan of all factors. However, we can still
extract information when ¢ dominates s in all but one factor.

Lemma6. Let T = (©4,...,0,) be a planning task and D;
be qualified <;-simulations for ©;, respectively. Then,
Di(s(1],t[1]) if Da(s[2],t[2]) = L~

Dy (s[2],t[2]) if Di(s[1],¢[1]) = L~

0 otherwise

DLQ(S, t) =

is a qualified <1=-simulation for ©12 = 01 ® Oy where
=1 U =5

Proof. When Dy 5(s,t) = (, there is nothing to prove. As-
sume W.L.O.G. that Dy(s,t) = L*. Letw = l14y... 4, €
D1 2(s,t). We prove this by induction on the length of .
Base case (|m| = 0): By (i) of Def. 5, ¢[1] € S v s[1] ¢ S¢
and t[2] € S$ Vv s[2] ¢ S§, and this implies thatt € SV s &
SC. Inductive step: We show that 7 € D (s[1], t[1]) implies

that 7 is in a qualified cost-simulation of s, ¢. If s[1] 7@> or
s[2] f@ then s fg and thus (ii) of Def. 5 holds vacuously.

¢
Otherwise, there exists s[1] 4, s[1]/,t[1] = t[1]’, and since

Dy satisfies <1, there also exists s[2] 4, s2])', s[2] 4, s[2])”
such that Da(s[2], s[2]”) = L*. Since D3(s[2],t[2]) = L*,

1

there also exists ¢[2] 4, t[2] st. Do(s[2),t[2)) = L*.

From label dominance, we again have that ¢[1] 4, t[1]”
s.t. D1(t[1],¢[1]") = Lx. Now observe that if Dy 5(b,c) =
L* then Dj2(a,b) € Dis(a,c) is valid. Therefore, for
s 4 (s[1]’,s]2]") then there exists ¢ 4, (t[1]7,t]2]) s.t.
by .. 4y € Dyo((s[1),s[2]"), (¢[1]”,t[2]")). Thus, this is a
=q5-simulation because {1 <3 2. O

Theorem 7. Let T = (©1,...,0,) be a determinis-
tic planning task. Let D; be a qualified =;-simulation

load A, load B, drive,
load A, load B,

unload A, unload B

drive, load A, load B,

load A, load B, unload A, unload B unload A, unload B
unload A, unload B

Figure 2: Minimized domination LTSs for the fuel factor in our run-
ning example. T also represents all states (F;, ;) where ¢ < j.

for each factor ©;. Then, the function D(s,t) =
{’ﬂ' c nZDZ(S“tl) | J1 <3< TL-V‘] ;Ai.'Dj(sj,tj) =L
is a qualified cost-simulation for ©.

Proof. We prove by induction on the planning task size.
Base case (n = 1): Follows from =<X7C=.. Inductive
step: By Lemma 6 we construct 7/ = (01,2,03,...,0,)
and Dy 5. Since Dy is a jﬁ—simulation for ©1 2, =<

MNjg(1.0y =57 and |[T'| = n — 1 we can apply the induction
hypothesis. O

Figure 2 shows the minimized domination LTSs for the fuel
factor. The language accepted by starting in a state (s;, ;)
corresponds to the plans in the domination LTS of that factor.
Many cases are fully dominated (e.g. s; CLP ¢;), and thus are
associated with the T state. The rest are named as the state
pairs it is associated with. In the figure, we can see the pattern
that was explained before, any state is dominated by a state
with less fuel, unless it drives more times than the amount of
fuel. For instance, F» is dominated by F1, unless it does two
drive actions. This shows us that the technique discovers the
information of the motivating example, as this generalises to
more fuel. In particular, the problem might be solvable with
one fuel, but the contrastive heuristic will discover that if you
have the same state but with one fuel, then the heuristic can
be raised to the cost of two drive actions.

5 Qualified Dominance Heuristics

We now consider how to leverage qualified dominance to con-
struct contrastively admissible heuristics. First, we construct
a contrastive heuristic based on a node ordering and the per-
fect heuristic, h*. Then, we provide a framework for using
any domain-independent heuristic for planning tasks.

5.1 Combining Qualified Dominance Information

Intuitively, we use qualified dominance to exclude plans when
estimating the goal-distance of a state. E.g., when computing
the heuristic of n, in contrast to n; € IV, we want to estimate
the goal distance of s excluding the paths in D(s, t).

The first consideration is which nodes from /N we can com-
pare to while remaining contrastively admissible. Consider
search nodes ns, n; and a path m € D(s, ¢). We can only dis-
consider 7 if we can guarantee that a plan of n; produces a no
worse overall plan, i.e. g(ns) + ¢(m) > g(ny) + h*(¢). Since
c(m) > h*(t) this simplifies to g(ns) > g(n;). Taking cost
difference into account requires additional analysis. Thus, we
use qualified dominance information for a node when consid-
ering in contrast to nodes with lower or equal g-value.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

We must also avoid circular reasoning. For example, con-
sider search nodes ng and n; with equal g-value, let 7 €
D(s,t) and ©' € D(t,s). Crucially, we cannot disconsider
both; it may be that = and 7’ are the only optimal plans of
s and t, respectively. Therefore, we impose an ordering on
the search nodes. Whenever, g(ns) # g(n;) the ordering is
easy because the node with larger g-value depends on the one
with lower g-value. When g(ns) = g(n;), we assume some
arbitrary ordering. In practice, we use the order in which the
states are evaluated.

Let < be any strict total order on N satisfying g(n) <
gn') = n<nandn <n' = g(n) < g(n),ie.
< respects the g-value ordering and totally orders the nodes.
The set of dominated plans for a search node n in contrast to
N given D and < is

Dip(n,N)= | Dis1),

ne € N<ns
where N2, = {n/ € N | n’ < n}isthelowerset of N w.r.t.
=< and n. The importance of < is that it guarantees that some
better plan is always preserved.
Lemma 8. For all 1 € D p(ng, N), there exists a node
ny € Nop, and aplan ' € P(t) s.t. ©' & D2 p(ng, N) and
e(r") < e(m).

Proof. Let n; be the minimal node in N, wrt =< s.t.
h*(t) < ¢(m). By Definition 4, such a node exists. Let
7w’ € P(t) be a plan s.t. ¢(n’) = h*(¢). Assume that
7' € D p(ng, N). Then there exists n, € Nz, C Nxp,
s.t. 7' € D(t,u). However, this means that h*(u) < ¢(n’) =
h*(t) and n, < n; which contradicts the minimality of n,
w.r.t. <. Thus, 7’ & D p(ng, N). O

We will now define the best possible heuristic for a domi-
nance function and an ordering <.

Definition 7. Let D be a qualified dominance function, ns €
N and N C N. The optimal contrastive heuristic w.r.t. D is
0 p(ne, N) = min {e(m) | 7 € P(s)\ D= p(ne, N)}
if the minimum exists and 1", ,(ns, N) = oo otherwise.

Theorem 9. 1% , is contrastively admissible.

Proof. Let n, be a node in N with minimal f*(n,) and
among those minimal h*(u). Let ns be a node s.t. ng is
better than n, (see Def. 2). Since, ni)p takes the mini-
mum over a subset of all plans of s, n% p(ns, N) > h*(s).
Assume 7% p(ns,N) > h*(s), then there exists a plan
m € Dop(ng,N) st c(m) = h*(s). From Lemma 8,
we know that there must then exist a node n; < ng with
a plan 7 ¢ D p(ng, N) with ¢(n’) < ¢(n) and thus
g(n) < glny) and h*(8) < h*(s). If f*(ny) < f*(na)
then f*(n:) < f*(n,), which contradicts the minimality of
ny. Otherwise, h*(s) < h*(u) and thus h*(t) < h*(u), con-
tradicting the minimality of n,. Thus, any node better than
1., 1S admissible, and n,, € N is admissible. Thus, nin is
contrastively admissible.

Importantly, any under-approximation of 7% , is also con-
trastively admissible. 7% p is also monotonic, however, any
under-approximation of 7%, 5, is not necessarily monotonic.

Algorithm 1: Qualified Dominance Heuristic

t Input: A planning task 7 = (©1, ..., ©,) and heuristic h
2 Output: A contrastive heuristic function

/* Precomputation %/

3 (CYP, ..., C5P) < compute LD simulation on 7
4 (T'1,...,T,) < compute domination LTSs w.r.t. C"P
s (T'1,...,I';) < determinize, then minimize, and then

complement I'y, ...,
6 Func Qualified-Dominance—-Heuristic (ns,N):
7| T (01, ,00)
8 §« s

9 forall ny € Ny, where 3i .Vj # i.s; E;D t; do
10 7- < 7-0 l:l

11 §<—§O({(Si,ti)})

2 return i (3)

—

5.2 Computation in Planning Tasks

We now show how to utilize qualified dominance LTSs to
compute heuristics. With a planning task 7 = (©1,...,0,)
and a domain-independent admissible heuristic function h,
which can be applied to any planning task so that hy(s) is
an admissible estimate from s = (s1,..., s,) to the goal in
©7. The idea is that, for each node n and set of nodes IV,
we will compute a new planning task 7 = (©1,...,0,,...)
and state § = (s1,...,8p,...) extending 7 and s with ad-
ditional factors that encode information about the qualified
dominance of ng compared to N. Then, we can use the con-
trastive heuristic 1) , (ns, N) = h-(3).

Algorithm 1 shows the overall process. First, there is a pre-
processing phase before the search starts, where we compute
a label-dominance simulation, (Z1P ... CLP) and a domi-
nation LTS for each factor (I'1,...,T',), as described in Sec-
tion 4.2. In each T, the plans for the state (s;, t;) represent the
plans of s; which are dominated by plans of ¢;. When com-
puting a heuristic for ns, we will compare it against states ¢
where s; C t; for all j # 4, i.e., states ¢ that dominate s in
all factors except ©;. There, we are interested in extracting
information about the plans of s; that are nor dominated by
t;. Therefore, we need the complement of T';.

Unfortunately, I'; may be non-deterministic. Therefore, we
must do a determinization of the transition system first, and
then complement the goal states. This is identical to the com-
plementation of a non-deterministic finite automaton, which
can be achieved through the power set construction and then
swapping goal and non-goal states [Sipser, 2013, p. 55].

The determinization can cause an exponentially larger
number of states in the LTS. This can be a bottleneck in some
cases, because the heuristic is not computable in polynomial
time. A solution is to determinize the LTS by underapprox-
imating it, e.g. by only encoding one response of ¢. In this
paper, we use the full determinization, which is still viable
as this is only done once as precomputation. We leave it to
future research to study practical methods of approximation.

We have shown how to construct I'; for each factor <. For
anode n,, let ng! ...n;" be a sequence of nodes where ng €

N.p, and Vi’ # i;.Dr, (54, ty) = L*. We can now take any

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

domain-independent heuristic h that works on factored tasks,
and construct the state-contrastive heuristic

n<,f,h(nsa N) = hf’(é)a
where 7 = T o (Ty,...,T;) and 5 = s o
((s[ix], talia]), - - -, (s[ix], tk[ix]))- In other words, we create
a copy of fij for each node nz;, and we add it as a factor to
the planning task. We then evaluate the heuristic for the state
where s is concatenated with (s[i,], t;[i,]) for each nij .
Theorem 10. Let T be a planning task, < a g-value respect-

ing total order of N, and h an admissible heuristic. The
heuristic n_, § ,, is contrastively admissible.

Proof. From Theorem 5, we know that Dr(s,t) = Pr((s,t))
is a qualified dominance function. We prove that
n.f, 1s contrastively admissible by showing that
norn(ns,N) < 0% p.(ns,N). Let ny € N st all
factors other than ¢ are dominated. An admissible heuris-
tic means that hr(s) < min{c(w) | 7w € Pr(s)}, if s
has a plan. For a planning task 7 and LTS ©, it holds
that Proo(s o s') = Pr(s) N Po(s’) for all states
s of T and s of ©. Thus, Pr s (s o (s[i],t[i]))
Pr(s) \ D<pr, (s[il,t[i]) and Ay (s o (s[i], 2[i]))
min{c(7) | 7 € Pr(s) \ D pr, (s[i], tld]) }

n%r,(s;{t}). This argument can be used inductively
for each node in N, _.

IANIA

O

Theorem 11. Let h be a domain-independent heuristic and <
a g-value respecting total order of N. If he(s) < heoer(s o
s') for all LTSs ©,©" and states s,s', then n_ 1 ,, is mono-
tonic. o

Proof. Recall Def. 3 and the definition of 7 ,. It follows
that if he (s) < heoer(so '), thenn_ § , is also monotonic,
because adding more nodes to [V causes more LTSs for h. [

Clearly, there are practical concerns to consider here as
well. Extending the planning task with a number of factors on
the order of the nodes expanded so far is too cumbersome in
practice. It remains an open research question how to choose
the most informative factors to add.

In principle, any domain-independent heuristic can be used
with our method. However, heuristics with heavy preprocess-
ing are undesirable, as the planning task changes for each
search state. Operator-counting heuristics [Pommerening et
al., 2014] are well-suited for this purpose. They model oper-
ator usage as a linear program and solve for the minimum-
cost assignment. Each transition system of the extended
task can be encoded as flow constraints and combined with
other constraints [Bonet, 2013; Pommerening et al., 2013;
Imai and Fukunaga, 2015] to integrate information from new
factors with heuristics for the original task.

6 Experiments

We implemented our approach on top of Fast Downward
[Helmert, 2006], as a constraint generation method for op-
erator counting heuristics. We complement them with con-
straints from LM-cut [Helmert and Domshlak, 2009] on the

uns.

Qual. Dom.
=
o
N
° N

T TSI TTy T Ty T Ty

LM-Cut & Qual. Dom.

10°10'10%10310*1"¢-
LM-Cut & Dom. Pruning

10°10'10210%10%UNS-

Dom. Pruning

Figure 3: Expansions until last f-layer of A* w.o. heuristic (left) and
LM-cut (right) using qualified dominance vs. dominance pruning.

original planning task. Computing the LM-cut constraints for
the transformed tasks is not possible in the current implemen-
tation, so we use only flow constraints for the new factors.
Our technique should be understood as a proof of concept.
We do not yet have a practical way to exploit the qualified
dominance information. Therefore, we disregard runtime, as
that will require further research into practical exploitation
methods. Our main objective is to determine whether quali-
fied dominance can produce more useful information to guide
search than dominance pruning, which can be understood as
a special case of qualified dominance that prunes (assigns a
value of infinity) to any state fully dominated in all factors.

We run experiments with Lab [Seipp et al., 2017] on AMD
EPYC 7551 CPUs with memory/time cut-offs of 4 GBs and
30 minutes. We use the Autoscale benchmark set [Torralba et
al., 2021], consisting of 42 domains with 30 tasks in each. All
tasks are automatically transformed into deterministic FTS
tasks [Helmert, 2009; Sievers and Helmert, 2021]. Code and
experiment data will be made available upon publication.

The results show that qualified dominance is found on most
tasks. The precomputation finishes in 81% of instances, and
among those in 93% of cases, we find information over label-
dominance simulation (i.e. having more than 3 nodes in the
minimal domination LTS). In 79% of the instances where the
precomputation finishes, the precomputation time is within a
factor of 2 of dominance, and in >99% within a factor of 10.
Fig. 3 compares the expansions compared to dominance prun-
ing with the same heuristic. We see a reasonable decrease of
expansions in many tasks (e.g., of a factor of 2). Therefore,
this can potentially be used for improving heuristic estimates.
The combination with LM-cut shows that, even though they
are not entirely redundant, the additional constraints are not
very complementary to this highly-informed heuristic. This
points out the need for further research in how to extract con-
straints from the additional factors.

7 Conclusion

In this paper, we made two main contributions. First, we
introduced contrastive heuristics, which consider the entire
search to estimate goal distance from each node, in opti-
mal planning. Second, we presented qualified dominance, a
method to identify plans of a state that are dominated by an-
other. We showed how this can be used to enhance heuristics
into their contrastive counterpart. While contrastive heuris-
tics based on qualified dominance are not yet practical, this
invites further research on extracting heuristic information.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Acknowledgements

This research was partly supported by the Independent Re-
search Fund Denmark through a Sapere Aude: DFF-Starting
Grant under reference number 3120-00063B.

References

[Biickstrom and Nebel, 1995] Christer Bickstréom and Bern-
hard Nebel. Complexity results for SAS™ planning. Com-
putational Intelligence, 11(4):625-655, 1995.

[Bagchi and Mahanti, 1983] Amitava Bagchi and Ambuj
Mahanti. Search algorithms under different kinds of
heuristics — a comparative study. Journal of the ACM,
30:1-21, 1983.

[Bonet, 2013] Blai Bonet. An admissible heuristic for SAST
planning obtained from the state equation. In Proceedings
of the 23rd International Joint Conference on Artificial In-
telligence (IJCAI 2013), pages 2268-2274. AAAI Press,
2013.

[Biichner et al., 2024] Clemens Biichner, Patrick Ferber,
Jendrik Seipp, and Malte Helmert. Abstraction heuris-
tics for factored tasks. In Proceedings of the Thirty-
Fourth International Conference on Automated Planning
and Scheduling (ICAPS 2024), pages 40-49. AAAI Press,
2024.

[Fikes and Nilsson, 1971] Richard E. Fikes and Nils J. Nils-
son. STRIPS: A new approach to the application of the-
orem proving to problem solving. Artificial Intelligence,
2:189-208, 1971.

[GroB et al., 2020] Joschka Gro8, Alvaro Torralba, and Max-
imilian Fickert. Novel is not always better: On the relation
between novelty and dominance pruning. In Proceedings
of the Thirty-Fourth AAAI Conference on Artificial Intelli-
gence (AAAI 2020). AAAI Press, 2020.

[Hart et al., 1968] Peter E. Hart, Nils J. Nilsson, and Bertram
Raphael. A formal basis for the heuristic determination
of minimum cost paths. [EEE Transactions on Systems
Science and Cybernetics, 4(2):100-107, 1968.

[Helmert and Domshlak, 2009] Malte Helmert and Carmel
Domshlak. Landmarks, critical paths and abstractions:
What’s the difference anyway? In Proceedings of the
Nineteenth International Conference on Automated Plan-
ning and Scheduling (ICAPS 2009), pages 162-169. AAAI
Press, 2009.

[Helmert and Roger, 2008] Malte Helmert and Gabriele
Roger. How good is almost perfect? In Proceedings of the
Twenty-Third AAAI Conference on Artificial Intelligence
(AAAI 2008), pages 944-949. AAAI Press, 2008.

[Helmert, 2006] Malte Helmert. The Fast Downward plan-
ning system. Journal of Artificial Intelligence Research,
26:191-246, 2006.

[Helmert, 2009] Malte Helmert. Concise finite-domain rep-
resentations for PDDL planning tasks. Artificial Intelli-
gence, 173:503-535, 2009.

[Tmai and Fukunaga, 2015] Tatsuya Imai and Alex Fuku-
naga. On a practical, integer-linear programming model
for delete-free tasks and its use as a heuristic for cost-
optimal planning. Journal of Artificial Intelligence Re-
search, 54:631-677, 2015.

[Karpas and Domshlak, 2009] Erez Karpas and Carmel
Domshlak. Cost-optimal planning with landmarks. In
Proceedings of the 21st International Joint Conference
on Artificial Intelligence (IJCAI 2009), pages 1728-1733.
AAALI Press, 2009.

[Karpas and Domshlak, 2012] Erez Karpas and Carmel
Domshlak. Optimal search with inadmissible heuristics.
In Proceedings of the Twenty-Second International Con-
ference on Automated Planning and Scheduling (ICAPS
2012), pages 92—-100. AAAI Press, 2012.

[Katz et al., 2017] Michael Katz, Nir Lipovetzky, Dany
Moshkovich, and Alexander Tuisov. Adapting novelty
to classical planning as heuristic search. In Proceedings
of the Twenty-Seventh International Conference on Au-
tomated Planning and Scheduling (ICAPS 2017), pages
172-180. AAAI Press, 2017.

[Lipovetzky and Geffner, 2017] Nir Lipovetzky and Hector
Geffner. Best-first width search: Exploration and exploita-
tion in classical planning. In Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence (AAAI
2017), pages 3590-3596. AAAI Press, 2017.

[Milner, 1971] Robin Milner. An algebraic definition of sim-
ulation between programs. In Proceedings of the 2nd In-
ternational Joint Conference on Artificial Intelligence (1J-
CAI 1971), pages 481-489. William Kaufmann, 1971.

[Pearl, 1984] Judea Pearl.
Strategies for Computer Problem Solving.
Wesley, 1984.

[Pommerening et al., 2013] Florian Pommerening, Gabriele
Roger, and Malte Helmert. Getting the most out of pat-
tern databases for classical planning. In Proceedings of
the 23rd International Joint Conference on Artificial In-
telligence (IJCAI 2013), pages 2357-2364. AAAI Press,
2013.

Heuristics: Intelligent Search
Addison-

[Pommerening et al., 2014] Florian Pommerening, Gabriele
Roger, Malte Helmert, and Blai Bonet. LP-based heuris-
tics for cost-optimal planning. In Proceedings of the
Twenty-Fourth International Conference on Automated
Planning and Scheduling (ICAPS 2014), pages 226-234.
AAAI Press, 2014.

[Richter et al., 2008] Silvia Richter, Malte Helmert, and
Matthias Westphal. Landmarks revisited. In Proceedings
of the Twenty-Third AAAI Conference on Artificial Intelli-
gence (AAAI 2008), pages 975-982. AAAI Press, 2008.

[Rosa and Lipovetzky, 2024] Giacomo Rosa and Nir
Lipovetzky. Count-based Novelty Exploration in Clas-
sical Planning. In Proceedings of the 27th European
Conference on Artificial Intelligence (ECAI 2024), pages
4181-4189. 10S Press, 2024.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

[Seipp et al., 2017] Jendrik Seipp, Florian Pommerening,
Silvan Sievers, and Malte Helmert. Downward Lab. https:
//doi.org/10.5281/zenodo.790461, 2017.

[Sievers and Helmert, 2021] Silvan Sievers and Malte
Helmert. Merge-and-shrink: A compositional theory of
transformations of factored transition systems. Journal of
Artificial Intelligence Research, 71:781-883, 2021.

[Singh et al., 2021] Anubhav Singh, Nir Lipovetzky, Miquel
Ramirez, and Javier Segovia-Aguas. Approximate nov-
elty search. In Proceedings of the Thirty-First Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2021), pages 349-357. AAAI Press, 2021.

[Sipser, 2013] Michael. Sipser. Introduction to the theory of
computation. Cengage Learning, 2013.

[Torralba and Hoffmann, 2015] Alvaro Torralba and Jorg
Hoffmann. Simulation-based admissible dominance prun-
ing. In Proceedings of the 24th International Joint Confer-
ence on Artificial Intelligence (IJCAI 2015), pages 1689—
1695. AAAI Press, 2015.

[Torralba and Sievers, 2019] Alvaro Torralba and Silvan
Sievers. Merge-and-shrink task reformulation for classical
planning. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence (IJCAI 2019), pages
5644-5652. IICAL, 2019.

[Torralba et al., 2021] Alvaro Torralba, Jendrik Seipp, and
Silvan Sievers. Automatic instance generation for clas-
sical planning. In Proceedings of the Thirty-First Interna-
tional Conference on Automated Planning and Scheduling

(ICAPS 2021), pages 376-384. AAAI Press, 2021.

https://doi.org/10.5281/zenodo.790461
https://doi.org/10.5281/zenodo.790461

