
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

DGExplainer: Explaining Dynamic Graph Neural Networks via Relevance
Back-propagation→

Yezi Liu , Jiaxuan Xie , Yanning Shen†

University of California, Irvine
{yezil3, yannings}@uci.edu, Knxie@outlook.com

Abstract
Dynamic graph neural networks (dynamic GNNs)
are highly effective for analyzing time-varying
graph-structured data. However, their black-box
nature often makes it difficult for users to under-
stand the reasoning behind their predictions, which
can limit their applications. Although recent years
have seen increased research on explaining GNNs,
most existing studies focus on static graphs. Ex-
plaining dynamic GNNs is uniquely challenging
due to their spatial and temporal structures. Di-
rectly applying methods designed for static graphs
to dynamic graphs is not feasible, since these meth-
ods overlook temporal dependencies. To address
this gap, we propose DGExplainer, a novel ap-
proach that provides reliable explanations for dy-
namic GNN predictions. DGExplainer uses rel-
evance back-propagation across both time-wise and
layer-wise. First, it captures temporal informa-
tion by tracking the relevance of node representa-
tions backward through time. Then, at each step,
layer-wise relevance within the graph module is
calculated by redistributing node representation rel-
evance along the back-propagation path. Quantita-
tive and qualitative experiments on six real-world
datasets demonstrate that DGExplainer effec-
tively identifies critical nodes for link prediction
and node regression tasks in dynamic GNNs.

1 Introduction
Dynamic GNNs have achieved significant success in practi-
cal applications such as social network analysis [Zhu et al.,
2016], transportation forecasting [Gui et al., 2020], and pan-
demic forecasting [Kapoor et al., 2020]. However, since
most of the dynamic GNNs [Ma et al., 2020; Li et al., 2017]
are developed without interpretability, they are treated as
black-boxes. Without understanding the underlying mech-
anisms behind their predictions, dynamic GNNs cannot be
fully trusted, preventing their use in critical applications. In

→Appendix available at https://github.com/yezil3/DGExplainer
IJCAI/blob/main/IJCAI appendix.pdf

†Corresponding author.

(a) Traffic flow prediction.

Time

1

2 3

15:00
PM

1

2 3

12:00
PM |

|
|

1.0

0.0

-1.0

Relevance

1

2 3

21:00
PM

(b) Explaining traffic-flow prediction of dynamic GNNs.

Figure 1: The diagram of the explanation task of dynamic GNNs on
traffic flow data.

order to safely and trustworthily employ dynamic GNN mod-
els, it is important to provide both accurate predictions and
human-understandable explanations.

Recent studies have extensively explored explanation
techniques for static GNNs. These techniques include
approximation-based methods [Baldassarre and Azizpour,
2019; Pope et al., 2019], which use gradients or surro-
gate functions to approximate the output of a local model.
Perturbation-based approaches [Ying et al., 2019; Luo et al.,
2020] explain static GNNs by masking specific features to
observe their impact on the model’s output. Gradient-based

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

methods [Selvaraju et al., 2017] adopt the additive assump-
tion of feature values or gradients to measure the importance
of input features. Further relevant research on explaining
static GNNs can be found in Appendix A.13. However, these
methods overlook the critical temporal dimension crucial for
explaining dynamic GNNs. Applying static-graph explana-
tion frameworks to dynamic graphs yields discrete, snapshot-
based explanations that ignore temporal context.
Explaining dynamic GNNs can be challenging. We illus-

trate this process in Figure 1. The prediction task, shown in
Figure 1a, aims to forecast future traffic flows (denoted by
dashed lines) at different locations based on historical obser-
vations (denoted by solid lines). This spatial-temporal data
is modeled as a dynamic graph, represented in Figure 1b,
where each graph snapshot records traffic flows at different
time steps (e.g., 12:00 PM, 3:00 PM, and 9:00 PM). In each
graph snapshot, a dashed line between two nodes indicates
a commute between locations, and an arrow represents traf-
fic flows, contributing to the prediction for the target location
(denoted by a yellow triangle). The explanation task aims to
determine the influence of other locations on the prediction
of the target location. The polarity of the influence is denoted
by the color of the arrows: blue indicates a positive correla-
tion, while red indicates a negative correlation, with the dark-
ness of the color indicating the strength of the influence. Dy-
namic graph data involves both temporal and spatial patterns,
which dynamic GNNs capture using separate temporal and
spatial modules. This makes explanation challenging, as it
requires tracing how the input influences the output through
these complex components.
To address this challenge, we propose DGExplainer

(Dynamic Graph Neural Network Explainer).
DGExplainer uses layer-wise relevance propagation
(LRP), which was originally introduced for image classi-
fiers [Bach et al., 2015]. LRP can assign relevance scores
without the need for a surrogate model or additional opti-
mization. Unlike methods that only consider individual nodes
or edges, LRP evaluates sequences of edges or walks, making
it especially well-suited for dynamic GNNs. Our frame-
work operates in three main steps. First, DGExplainer
decomposes the prediction of a dynamic GNN to determine
how time-related modules contribute to that prediction, using
relevance back-propagation. Second, it propagates relevance
scores through the graph-related modules (e.g., a GCN) layer
by layer at each time step to calculate the importance of input
features. Finally, DGExplainer aggregates the relevance
scores from both steps to produce the final relevance of the
node features. The contributions of our work are as follows:
• The proposed method explains the predictions of dynamic
graph neural networks, marking one of the pioneering ef-
forts to tackle this challenge.

• This paper is the first to derive LRP for time-varying mod-
ules. These hand-derived derivations are essential as they
serve as a reference for adjusting or writing code when the
provided functions fail, and adaptations are needed.

• Experimental results across six datasets and three quanti-
tative metrics show that DGExplainer provides faithful
explanations. Furthermore, qualitative analysis indicates

that DGExplainer outperforms other baseline methods
in effectively explaining dynamic GNNs.

2 Problem Definition
This paper solves the problem of explaining dynamic GNNs
by computing the relevances of input features. The proposed
method first redistributes the prediction from the last layer
to the relevance of hidden representations. Then, we use
LRP to back-propagate the relevances through time-related

and graph-related modules, finally reaching the input layer
to obtain the relevances of input features of each node.
We study a series of input graphs G = {Xt,At}Tt=1, where

T is the length of the sequence. Each graph at time t, Gt =
{Xt,At}, consists of a feature matrix Xt ↑ RN→D and an
adjacency matrix At ↑ RN→N . Here, N = |Vt| denotes
the number of nodes, and D is the feature dimension. The
feature vector for node i at time t is xi

t = (X(i,:)
t)↑ ↑ RD,

which corresponds to the i-th row of Xt. Without loss of
generality, A(i,j) denotes the entry at the i-th row and j-th
column of the adjacency matrix A, and x

(i) denotes the i-th
entry of the vector x. The relevance of an element k, which
can be a node, an edge, a feature, etc., is represented by Rk.
Additionally, Rk1↓k2 denotes the relevance of k1 distributed
from k2. The problem of explaining dynamic GNNs involves
identifying the subgraph within G, which consists of nodes
and edges that are most important at a specific time step t,
given a dynamic GNN model f(G).

3 Preliminaries
In this section, we present the preliminaries relevant to our
proposed method. We begin with an overview of dynamic
GNNs in Section 3.1, followed by an introduction to layer-
wise relevance propagation in Section 3.3.

3.1 Dynamic Graph Neural Networks
Dynamic GNNs [Skarding et al., 2021; Zhang et al., 2022]
take a sequence of graphs as input and output representa-
tions of topology, nodes, and/or edges. A notable approach
involves co-training a GNN with a recurrent neural network
(RNN), referred to as a GNN-RNN model. Examples in-
clude GCN-GRU [Zhao et al., 2019], ChebNet-LSTM [Seo
et al., 2018], and GCN-RNN [Pareja et al., 2020]. De-
tailed related work about dynamic GNNs can be found in Ap-
pendix A.13. Despite the introduction of various methods,
recent approaches still do not consistently outperform the
GCN-GRU model [Pareja et al., 2020]. Therefore, in this
work, we choose to use the GCN-GRU model as the basis
for elaborating our method. In addition to explaining the
GCN-GRU model, we also apply DGExplainer to other
dynamic GNNs that utilize different GNN or RNN architec-
tures. Detailed results of these experiments can be found
in Appendix A.7.

3.2 The GCN-GRU Model–Forward Pass
In the GCN-GRUmodel, the GCNmodule first encodes input
features of the current time step, capturing dependencies be-
tween nodes. These encoded features are then passed to the

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Stage 2

!"! !"" !"#

{!!, %!}

'" '$ '#'! '#%!

GCN
Cell

GRU
Cell

GRU
Cell

GRU
Cell

(&!"#(&!(&$(&%
('(# ('(% ('(!

('# {!", %"} ('% {!#, %#} ('!

GCN
Cell

GCN
Cell

Forward Pass Stage 1

(&#

Figure 2: The network structure of the GCN-GRU model and the back-propagation of the relevances. Note that the GRU cells and GCN cells
share the same parameters. {Ht}T+1

t=1 , {Xt}Tt=1, {X̂t}Tt=1, {At}Tt=1 represent the hidden states, input features, GCN-encoded features, and
adjacency matrices at different time steps, respectively.

GRU module, which captures temporal dependencies across
different time steps. Below, we outline the forward process
of the GCN-GRU.
(a) The Graph Convolutional Network (GCN) module:
GCNs represent a node using local information from its sur-
rounding neighbors [Kipf and Welling, 2016]. This graph
convolution process is formulated as follows:

F
(l+1)
t = ω(VtF

(l)
t W

(l)
t). (1)

Here, Vt := D̃
↔ 1

2
t ÃtD̃

↔ 1
2

t is the normalized adjacency ma-
trix, where Ãt = At+IN and D̃t = Dt+IN . The matrixDt

is the degree matrix, defined as D(i,i)
t =

∑
j A

(i,j)
t , and IN

is an identity matrix of size N . The output at the l-th layer is
denoted as F(l)

t , with the initial layer output F(0)
t = Xt. As-

suming the GCN has L layers, the final node representation at
time step t, which contains the graph structural information,
is denoted as X̂t = F

(L)
t . The GCN-encoded features from

all time steps {X̂t}Tt=1 are then fed into a GRU.
(b) The Gated Recurrent Unit (GRU) module: GRU is a
variant of the RNN designed to learn long-term dependencies
using two selective gates [Cho et al., 2014]. In the GRU,
each cell processes an input x̂t = (X̂(i,:)

t)↑ and a hidden
state ht = (H(i,:)

t)↑. The update rule for a GRU cell is as
follows:
r = ω (Wirx̂t + bir +Whrht↔1 + bhr) , (2a)
z = ω (Wizx̂t + biz +Whzht↔1 + bhz) , (2b)
n = tanh (Winx̂t+bin+r↓ (Whnht↔1+bhn)) , (2c)
ht = (1↔ z)↓ ht↔1 + z↓ n, (2d)

where Wir, Whr, Whz , Win, Whn, bir, bhr, bhz , bin,
and bhn are learnable parameters in GRU, ω(·) is an activa-
tion function, and ↓ is an element-wise product operation.

3.3 Layer-wise Relevance Propagation
In this paper, we consider neural networks consisting of lay-
ers of neurons. The output xk2 of a neuron k2 is a non-linear
activation function g as given by:

xk2 = g

(
∑

k1

wk1k2xk1 + b

)
. (3)

Assume that we know the relevance R
(l+1)
k2

of a neuron
k2 at network layer (l + 1) for the classification decision
f(x), then we like to decompose this relevance into messages
R

(l,l+1)
k1↓k2

sent to those neurons k1 at the layer l which provide
inputs to neuron k2 such that eq. (4) holds.

R
(l+1)
k2

=
∑

k1↗(l)

R
(l,l+1)
k1↓k2

. (4)

We can then define the relevance of a neuron k1 at layer l
by summing all messages from neurons at layer (l + 1) as in
eq. (5):

R
(l)
k1

=
∑

k2↗(l+1)

R
(l,l+1)
k1↓k2

. (5)

The relevance of the output neuron at layer M is R
(M)
1 =

f(x). The pixel-wise scores are the resulting relevances of
the input neurons R(1)

d .

4 The Proposed DGExplainer
This section introduces the proposed DGExplainer frame-
work (summarized in Figure 2), which explains dynamic
GNN predictions by back-propagating relevance through
both time-varying and message-passing reverse paths. By ac-
counting for the structural and temporal information in dy-
namic graphs, DGExplainer computes the relevance of

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

!!!"#(%) ←!!"#
(%'#)

!#!
!$!"# !$!"#←$! !$!

!$!"#←% !%
!&'!"#(Compute !!!"#	based

on Section 4.1 (c))

!&'!"#

!!!"#(() = !&'!"#

!&!"#= !!!"#())

!#!"#

Stage 2Stage 1

Figure 3: An illustration of DGExplainer computing feature rele-
vance in a backward manner: the prediction is first back-propagated
through the GRU, followed by the GCN.

each input feature, offering deeper insights into how the
model arrives at its predictions.

DGExplainer operates in two stages: Stage 1: Com-

pute Relevance in the GRU Module. In this stage, relevance
scores are back-propagated through the time-related module
(GRU) along its reversed time paths. As a result, we obtain
the relevance scores for the GCN-encoded features at every
time step. Stage 2: Back-Propagate Relevance in the GCN

Module. Next, the relevance scores from Stage 1 are taken
as input and back-propagated through the graph-related mod-
ule (e.g., GCN) along the inverse of its message-passing path.
This allows us to determine the relevance of the original input
features across all time steps, providing an explanation for the
dynamic graphs.

4.1 Stage 1: Relevance Back-Propagation in GRU
Stage 1 focuses on deriving the relevance of each GRU cell’s
inputs by propagating the output relevance backward in time.
Specifically, DGExplainer first obtains the relevance of the
output from the final GRU cell. Then, at each time step t, it
uses the current cell’s output relevance to compute the rele-
vances of the two inputs: (1) the GCN-encoded feature and
(2) the hidden state. The detailed process is illustrated below.

Given the final hidden state for a node, RhT , where hT =

(H(i,:)
T)↑, the objective is to compute the relevances of the

inputs, Rht→1 and Rx̂t→1 , from the relevance of the output,
Rht , for each GRU cell at time t. As described in Section 3.3,
relevance back-propagation redistributes the activation of a
descendant neuron to its predecessor neurons, with the rel-
evance being proportional to the weighted activation value.
Based on the dependencies among different components in
the final step of the GRU, as shown in Equation (2d), we de-
rive the relevance back-propagation for this step as follows:
Rht→1 = Rht→1↓ht+Rht→1↓n+Rht→1↓z+Rht→1↓r. (6)

Note that neurons r and z only receive messages from neuron
ht↔1, as shown in Equations (2a) and (2b). Consequently,
their contribution to ht can be merged into the contribution
from ht↔1, and their relevances can be regarded as constants.
Notice that ht↔1 is used to compute both n in Equation (2c)
and ht in Equation (2d). This reveals that the relevanceRht→1

has two sources: n and ht. Based on the contributions from
Rht→1↓n and Rht→1↓ht , we can define Rht as follows:

Rht = Rht→1 +Rn, (7)
Given that the relevance of a neuron is proportional to its ac-
tivation at the same layer, i.e., Rk↓k1 : Rk↓k2 = a

(l)
k1

: a(l)k2
,

we can derive the following based on Equation (2d):
Rht→1

Rn

=
aht→1

an
=

z↓ n

(1↔ z)↓ ht↔1
. (8)

We can conclude that if we derive Rht→1↓ht and Rht→1↓n,
we can then obtainRht . Therefore, we break down this prob-
lem into three steps: computing Rht→1↓ht , Rht→1↓n, and
Rht→1 , as formulated below: (a) Compute Rht→1↓ht : Solv-
ing for Equations (7) and (8) obtains:

Rht↓n =
z↓ n

ht + ε
↓Rht , (9)

Rht→1↓ht =
(1↔ z)↓ ht↔1

ht + ε
↓Rht , (10)

where ε > 0 is a constant introduced to keep the denominator
non-zero. Notice that the only ancestor neuron of n is ht, so
hereRn↓ht is actuallyRn, so in the following left of section,
we use Rn for simplicity.
(b) Compute Rht→1↓n: From Equation (2c) we obtain:

n1 : = Winx̂t, (11a)
n2 : = r↓ (Whnht↔1) = Wrnht↔1, (11b)
bn : = bin + r↓ bhn. (11c)

Then, their relevance satisfies:
Rn = Rn1 +Rn2 +Rbn , (12)
Rn1 : Rn2 : Rbn = n1 : n2 : bn. (13)

Hence, Rn1 and Rn2 can be obtained.

Rx̂t↓n1 =
∑

k

W
(k,j)
in x̂

(j)
t

ε+
∑

i W
(k,i)
in x̂

(i)
t

R
(k)
n1

. (14)

Since ht↔1 influences only n2 among the three compo-
nents of n, we compute Rht→1↓n using the ε-rule (see ap-
pendix A.6 for details) based on Equation (13):

R
(j)
ht→1↓n

=
∑

k

W
(k,j)
rn h

(j)
t↔1

ε+
∑

i W
(k,i)
rn h

(i)
t↔1

R
(k)
n2

. (15)

(c) Compute Rht→1 : Rht→1 can be computed by adding
Equations (10) and (15) together: Rht→1 = Rht→1↓ht +
∑

j R
(j)
ht→1↓n

. Notice that Rx̂t is the relevance of a node fea-
ture x̂t, which is a row in X̂t. By computing the set of rel-
evances {Rx̂

i
t
}Ni=1 for all nodes, we can obtain the overall

relevance matrix R
X̂t

, by concatenating the individual node
relevances, i.e., R

X̂t
= [Rx̂

1
t
;Rx̂

2
t
; . . . ;Rx̂

N
t
].

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Dataset Metric SA GNN-GI GradCAM GNNE PGE SubX GCN-SE T-GNNE DyExplainer Ours

R
ed
di
t Fidelity ↗ 0.35 0.34 0.33 0.29 0.28 0.24 0.32 0.39 0.35 0.42

Fidelity+ ↗ 0.19 0.23 0.22 0.16 0.12 0.10 0.21 0.24 0.27 0.27
Sparsity ↗ 0.79 0.86 0.53 0.67 0.75 0.34 0.71 0.86 0.84 0.87
Stability ↘ 0.29 0.17 0.26 0.25 0.27 0.30 0.21 0.15 0.18 0.13

Pe
M
S0

4 Fidelity ↗ 0.30 0.29 0.26 0.24 0.19 0.18 0.33 0.44 0.37 0.39
Fidelity+ ↗ 0.21 0.19 0.17 0.16 0.13 0.14 0.24 0.25 0.30 0.29
Sparsity ↗ 0.99 0.99 0.95 0.92 0.90 0.87 0.91 0.97 0.98 0.99
Stability ↘ 0.18 0.22 0.25 0.22 0.23 0.27 0.23 0.17 0.19 0.15

Pe
M
S0

8 Fidelity ↗ 0.26 0.25 0.20 0.19 0.15 0.13 0.26 0.27 0.28 0.30
Fidelity+ ↗ 0.19 0.16 0.12 0.11 0.09 0.08 0.20 0.21 0.26 0.25
Sparsity ↗ 0.94 0.94 0.95 0.91 0.92 0.90 0.92 0.94 0.94 0.95
Stability ↘ 0.15 0.16 0.18 0.14 0.15 0.23 0.16 0.13 0.16 0.12

En
ro
n Fidelity ↗ 0.20 0.19 0.16 0.09 0.09 0.08 0.19 0.21 0.19 0.23

Fidelity+ ↗ 0.14 0.15 0.11 0.06 0.07 0.05 0.13 0.15 0.17 0.18
Sparsity ↗ 0.84 0.83 0.79 0.75 0.74 0.70 0.83 0.81 0.82 0.85
Stability ↘ 0.13 0.15 0.17 0.15 0.16 0.19 0.11 0.19 0.17 0.15

FB

Fidelity ↗ 0.29 0.22 0.19 0.16 0.15 0.10 0.33 0.31 0.33 0.36
Fidelity+ ↗ 0.18 0.14 0.13 0.11 0.09 0.07 0.17 0.20 0.22 0.23
Sparsity ↗ 0.94 0.93 0.91 0.90 0.86 0.80 0.92 0.98 0.95 0.96
Stability ↘ 0.13 0.15 0.17 0.16 0.14 0.18 0.22 0.16 0.18 0.12

C
O
LA

B Fidelity ↗ 0.50 0.45 0.39 0.27 0.26 0.25 0.43 0.55 0.51 0.53
Fidelity+ ↗ 0.32 0.30 0.25 0.19 0.18 0.20 0.28 0.33 0.29 0.35
Sparsity ↗ 0.96 0.95 0.94 0.93 0.93 0.90 0.94 0.99 0.96 0.96
Stability ↘ 0.18 0.25 0.27 0.16 0.19 0.25 0.24 0.21 0.24 0.18

Table 1: Comparison with baselines on fidelity (ω1 = 0.8), fidelity+ (ω1 = 0.8), sparsity (ω2 = 3!→!10↑4), and stability (r = 20%).
Compared methods: GNNExplainer (GNNE), PGExplainer (PGE), SubgraphX (SubX), T-GNNExplainer (T-GNNE), DyExplainer, and ours
(DGExplainer). Best and second-best results are shown in bold and underline.

4.2 Stage 2: Relevance Back-Propagation in GCN
To find the relevance of the input data in a GCN, we start with
the relevance of the output and backtrack through the network
layers. We calculate the relevance of each layer’s nodes using
specific equations that distribute relevance from one layer to
the previous. By repeating this process, we determine the
relevance of the original input features. Finally, we average
the absolute values of these relevances across all features to
identify the importance of each node at a specific time. In the
following, we show the concrete process in algorithm 1.
Then we backtrack in the GCN to getRXt fromR

X̂t
. Note

that the R
X̂t

is the relevance of the output X̂ of the GCN at t
and R

F
(L)
t

= R
X̂t

. We rewrite Equation (1) as:

F
(l+1)
t = ω(P(l)

t W
(l)
t); P

(l)
t := VtF

(l)
t . (16)

Let (F(l+1)
t)(k,:), (P(l)

t)(k,:), (P(l)
t)(:,k), (F(l)

t)(:,k) denote the
k-th row of F(l+1)

t , the k-th row of P(l)
t , the k-th column of

P
(l)
t , the k-th column of F(l)

t , respectively. We have

(F(l+1)
t)(k,:) = ω((P(l)

t)(k,:)W(l)
t), (17)

(P(l)
t)(:,k) := Vt(F

(l)
t)(:,k). (18)

Leveraging the ε rule, we assign the relevance by:

R
(F(l)

t)(j,k) =
∑

b

V
(b,j)(F(l)

t)(j,k)

ε+
∑

a V
(b,a)
t (F(l)

t)(a,k)
R

(P(l)
t)(b,k) , (19)

where (W(l)
t)(j,k) represents the entry at the j-th row and k-

th column of W(l)
t , and V

(b,j)
t denotes the entry at the b-th

row and j-th column of V(k,j)
t . And the R

(P(l)
t)(k,j) can be

obtained similarly as R
(F(l)

t)(j,k) . The relevance R
F

(l)
t

can
be obtained from R

F
(l+1)
t

using equation Equation (19), and
R

(P(l)
t)(k,j) . Finally, the relevance RF

(0)
t

can be determined.
Notice that R

F
(0)
t

= RXt , so we have R
F

(0)
t

= RXt , thus
completing the backward process for obtaining relevance in
the GCN. To further identify important nodes at a specific
time step, we take the absolute values of the relevances and
average them along the feature dimension to get the relevance
of a node at time t: Rx

i
t
=

∑D
j=1 |(Rx

i
t
)(j)|/D.

Figure 3 illustrates the LRP process for a time step of these
two states. Specifically, DGExplainer redistributes the rel-
evance of the output hidden state, RHt , to 1) the relevance of
the input hidden state, RHt→1 , and 2) the relevance of the
GCN-encoded feature, R

X̂t
. It then back-propagates the lat-

ter through the GCN and finally obtains the relevance of the
input feature at this time step, RX

i
t→1

. The entire algorithm is
summarized in Appendix A.1.

5 Experiments
We conduct quantitative and qualitative experiments on six
real-world graphs to answer the following research questions:
RQ1: Can the proposed DGExplainer learn high-quality
explanations for the GCN-GRU model?
RQ2: What are the benefits of DGExplainer in explaining
dynamic GNNs compared to static methods?
RQ3: How do the hyperparameters affect DGExplainer?

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

|
|

|

—— 1.0

—— 0.0

—— -1.0
Relevance

12:00
PM

9:00 A
M

3:00
PM

Time

12:00
PM9:00 A

M
3:00

PM

Time

12:00
PM

9:00 A
M

3:00
PM

Time

Figure 4: Illustration of the proposed method applied to the PeMS04 dataset. In this figure, warm colors indicate positive effects, while
cold colors denote negative effects. The intensity of the color corresponds to the magnitude of the effect. From left to right, the subfigures
represent the visualization results of GNN-GI, GNNExplainer, and the proposed method.

Implementation details are provided in Appendix A.4.
Unless otherwise specified, we present the performance of
DGExplainer on the GCN-GRU model in our experi-
ments. Additionally, in Appendix A.7, we demonstrate the
performance of DGExplainer across various other dy-
namic GNN models.

5.1 Experiment Settings
Datasets. We evaluate the proposed framework on six real-
world datasets. For the link prediction tasks, we use four
datasets: Reddit Hyperlink (Reddit) [Kumar et al., 2018],
Enron [Klimt and Yang, 2004], Facebook (FB) [Trivedi et
al., 2019], and COLAB [Rahman and Al Hasan, 2016]. For
the node regression tasks, we use two datasets: PeMS04 and
PeMS08 [Guo et al., 2019]1. The statistics of these datasets
and the initial performance of GCN-GRU on them are pre-
sented in Appendix A.2.
Baselines. We assess our proposed method against eight
baseline explanation methods. These include two general
explanation methods: Sensitivity Analysis (SA) [Baldassarre
and Azizpour, 2019] and GradCAM [Pope et al., 2019]. Ad-
ditionally, we compare our method with six GNN explanation
methods: GNN-GI [Schnake et al., 2020], GNNExplainer,
PGExplainer, SubgraphX, GCN-SE, T-GNNExplainer, and
DyExplainer. Detailed descriptions of these baseline meth-
ods are provided in Appendix A.3.
Evaluation. We compare the quality of each explanation
baseline and our method using four quantitative metrics: con-
fidence, sparsity, stability, and fidelity. Following the experi-
mental setup of a previous work [Pareja et al., 2020], we con-
duct experiments on link prediction and node classification.
Detailed introduction of evaluation is in Appendix A.5.

5.2 Prediction and Explanation Performance
To address RQ1, we conducted a comprehensive compari-
son of our proposed method, DGExplainer, against sev-
eral baseline methods. Our evaluation focused on two key
aspects: prediction accuracy and the quality of explanations
in identifying important nodes. The results demonstrate that
DGExplainer outperforms the baselines in terms of fidelity
and sparsity, providing more accurate and concise explana-
tions. Additionally, our method exhibits good stability, en-
suring consistent explanations even in the presence of minor

1pems.dot.ca.gov

perturbations, although on some datasets, it slightly under-
performs SA and GradCAM. These results establish the ef-
fectiveness and reliability of our proposed method in cap-
turing important nodes and providing reliable explanations
in the context of link prediction and node regression tasks.
Traditional explanation baselines also demonstrate competi-
tive performance. For example, SA and GradCAM achieve
strong sparsity, even surpassing some graph-specific expla-
nation methods.
Results on Fidelity, Fidelity+ and Sparsity. Fidelity mea-
sures a method’s ability to accurately capture important
nodes. A high-fidelity explanation method is desirable. Fi-
delity+ is a surrogate version of fidelity, where a graph is sam-
pled from the explanation subgraph by retaining each edge
with probability ϑ and erasing it with probability 1 ↔ ϑ. To
assess fidelity, we ranked the nodes based on their importance
and conducted occlusion experiments by selectively occlud-
ing a fraction of the top nodes while keeping 80% of the nodes
unchanged (ϖ1 = 0.8). For fidelity+, we define the explana-
tion subgraph as the subgraph consisting of nodes with rele-
vance greater than ϖ1. The proposed method consistently out-
performed the baselines in terms of both fidelity and fidelity+,
and sparsity across most datasets, as shown in Table 1. In
the remaining datasets, our method achieved comparable re-
sults. The Fidelity+ gap between the proposed method and
the baselines is larger than the Fidelity gap, further demon-
strating DGExplainer’s effectiveness in assigning higher rel-
evance to important nodes.
Results on Stability. A stability evaluation was conducted
to assess how well the explanation method handles pertur-
bations in the input graph. We introduced random pertur-
bations by adding additional edges to the original graph at
a ratio of r = 20% and evaluated the resulting changes in
the relevances generated by the model. A stable explanation
method should provide consistent explanations when the in-
put undergoes minor perturbations, resulting in lower stabil-
ity scores. As presented in Table 1, our proposed method
generally exhibited good stability, although it did not outper-
form SA and GNNExplainer. These findings indicate that our
method demonstrates relative robustness to small perturba-
tions in the input graph.

5.3 Qualitative Analysis
To address RQ2, we conducted quantitative experiments
and visualizations of the generated explanations using

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 5: Comparison of different methods with the fidelity of similar levels of thresholds.

DGExplainer and baseline methods on the PeMS04
dataset, which represents traffic flow on a highway net-
work. The results, presented in Figure 4, indicate that
DGExplainer generates the most reasonable and detailed
explanations compared to the GNN-GI and GNNExplainer
approaches. Our analysis revealed several key findings: (a)
GNN-GI tends to assign equally extreme relevances to every
individual node, suggesting that each node has a strong corre-
lation with the prediction. In contrast, GNNExplainer gener-
ates average scores for all the identified nodes. (b) GNN-GI
identifies nearly all nodes as important, while GNNExplainer
only identifies a few nodes as significant, disregarding the
correlations of other nodes with the target variable.
These disparities in the visualization results are due to the

fact that the comparison methods fail to capture the tempo-
ral patterns of dynamic graphs, treating each time step inde-
pendently and considering only spatial information. In con-
trast, DGExplainer excels in generating comprehensive
and context-aware explanations by effectively incorporating
temporal dynamics into the analysis. By considering both
spatial and temporal information, DGExplainer provides a
more accurate understanding of the underlying relationships
within the dynamic GNNs.

5.4 Parameter Sensitivity Analysis
To address (RQ3), we investigate fidelity across various
threshold values, denoted as ϖ1 = {0.5, 0.6, 0.7, 0.8, 0.9}.
The fidelity analysis is presented in Figure 5. Our observa-
tions are as follows: (a) With smaller ϖ1 values, the fidelity is
high. This is because a larger number of nodes are occluded
when their relevance surpasses the threshold, resulting in a
substantial change in accuracy. (b) As ϖ1 increases, the fi-

delity gradually decreases, with a steeper decline observed in
the range of [0.8, 0.9]. Overall, our proposed method consis-
tently achieves the highest fidelity across all thresholds and
datasets, affirming the robustness of our framework. These
findings provide substantial insights into the relationship be-
tween fidelity and the chosen threshold values, reinforcing the
efficacy of our approach.

6 Conclusion
In this paper, we present DGExplainer, a novel and ef-
ficient framework that utilizes both layer-wise and time-
wise relevance back-propagation to explain the predictions
of dynamic Graph Neural Networks (GNNs). To evaluate
DGExplainer’s performance, we conduct both quantita-
tive and qualitative experiments. The results demonstrate
the framework’s effectiveness in identifying crucial nodes for
link prediction and node regression tasks, outperforming ex-
isting explanation methods. This research pioneers the explo-
ration of dynamic GNNs, offering insights into their intricate
structures, which is a significant challenge due to the com-
plexity of inference in time-varying modules. Unlike exist-
ing static GNN explainers, DGExplainer does not require
learning a surrogate function or executing any optimization
procedures. Additionally, it can be extended to other ad-
vanced dynamic GNNs.

Acknowledgements
Work in the paper is supported by NSF ECCS 2412484 and
NSF RISE 2425748.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

References
[Bach et al., 2015] Sebastian Bach, Alexander Binder,

Grégoire Montavon, Frederick Klauschen, Klaus-Robert
Müller, and Wojciech Samek. On pixel-wise explanations
for non-linear classifier decisions by layer-wise relevance
propagation. PloS one, 10(7):e0130140, 2015.

[Baldassarre and Azizpour, 2019] Federico Baldassarre and
Hossein Azizpour. Explainability techniques for graph
convolutional networks. In ICML Workshops, 2019.

[Chen and Ying, 2023] Jialin Chen and Rex Ying. Tempme:
Towards the explainability of temporal graph neural net-
works via motif discovery. NeurIPS, 36:29005–29028,
2023.

[Chen et al., 2022] Jinyin Chen, Xueke Wang, and Xuan-
heng Xu. Gc-lstm: Graph convolution embedded lstm
for dynamic network link prediction. Applied Intelligence,
pages 1–16, 2022.

[Chen et al., 2024] Yongqiang Chen, Yatao Bian, Bo Han,
and James Cheng. How interpretable are interpretable
graph neural networks? arXiv preprint arXiv:2406.07955,
2024.

[Cho et al., 2014] Kyunghyun Cho, Bart Van Merriënboer,
Dzmitry Bahdanau, and Yoshua Bengio. On the proper-
ties of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259, 2014.

[Duval and Malliaros, 2021] Alexandre Duval and
Fragkiskos D Malliaros. Graphsvx: Shapley value
explanations for graph neural networks. In ECML PKDD,
pages 302–318. Springer, 2021.

[Fan et al., 2021] Yucai Fan, Yuhang Yao, and Carlee Joe-
Wong. Gcn-se: Attention as explainability for node clas-
sification in dynamic graphs. In ICDM, pages 1060–1065.
IEEE, 2021.

[Goyal et al., 2018] Palash Goyal, Nitin Kamra, Xinran He,
and Yan Liu. Dyngem: Deep embedding method for dy-
namic graphs. arXiv:1805.11273, 2018.

[Goyal et al., 2020] Palash Goyal, Sujit Rokka Chhetri, and
Arquimedes Canedo. dyngraph2vec: Capturing network
dynamics using dynamic graph representation learning.
Knowledge-Based Systems, 187:104816, 2020.

[Gui et al., 2020] Yihan Gui, Danshi Wang, Luyao Guan,
and Min Zhang. Optical network traffic prediction based
on graph convolutional neural networks. In OECC, pages
1–3. IEEE, 2020.

[Guo et al., 2019] Shengnan Guo, Youfang Lin, Ning Feng,
Chao Song, and Huaiyu Wan. Attention based spatial-
temporal graph convolutional networks for traffic flow
forecasting. In AAAI, pages 922–929, 2019.

[Hajiramezanali et al., 2019] Ehsan Hajiramezanali, Ar-
man Hasanzadeh, Krishna Narayanan, Nick Duffield,
Mingyuan Zhou, and Xiaoning Qian. Variational graph
recurrent neural networks. In NeurIPS, volume 32, 2019.

[Huang et al., 2022] Qiang Huang, Makoto Yamada, Yuan
Tian, Dinesh Singh, and Yi Chang. Graphlime: Local in-
terpretable model explanations for graph neural networks.
TKDE, 2022.

[Kapoor et al., 2020] Amol Kapoor, Xue Ben, Luyang
Liu, Bryan Perozzi, Matt Barnes, Martin Blais, and
Shawn O’Banion. Examining covid-19 forecasting us-
ing spatio-temporal graph neural networks. arXiv preprint
arXiv:2007.03113, 2020.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.
[Kipf and Welling, 2016] Thomas N Kipf and Max Welling.

Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[Klimt and Yang, 2004] Bryan Klimt and Yiming Yang. The
enron corpus: A new dataset for email classification re-
search. In ECML PKDD, pages 217–226. Springer, 2004.

[Kumar et al., 2018] Srijan Kumar, William L Hamilton,
Jure Leskovec, and Dan Jurafsky. Community interaction
and conflict on the web. In WWW, pages 933–943, 2018.

[Li et al., 2017] Jundong Li, Harsh Dani, Xia Hu, Jiliang
Tang, Yi Chang, and Huan Liu. Attributed network em-
bedding for learning in a dynamic environment. In CIKM,
pages 387–396, 2017.

[Luo et al., 2020] Dongsheng Luo, Wei Cheng, Dongkuan
Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang
Zhang. Parameterized explainer for graph neural network.
NeurIPS, 33:19620–19631, 2020.

[Ma et al., 2020] Yao Ma, Ziyi Guo, Zhaocun Ren, Jiliang
Tang, and Dawei Yin. Streaming graph neural networks.
In SIGIR, pages 719–728, 2020.

[Nguyen et al., 2018] Giang Hoang Nguyen, John Boaz Lee,
Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and
Sungchul Kim. Continuous-time dynamic network em-
beddings. In WWW, pages 969–976, 2018.

[Pareja et al., 2020] Aldo Pareja, Giacomo Domeniconi, Jie
Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kaneza-
shi, Tim Kaler, Tao Schardl, and Charles Leiserson.
Evolvegcn: Evolving graph convolutional networks for
dynamic graphs. In AAAI, pages 5363–5370, 2020.

[Pope et al., 2019] Phillip E Pope, Soheil Kolouri, Moham-
mad Rostami, Charles EMartin, and Heiko Hoffmann. Ex-
plainability methods for graph convolutional neural net-
works. In CVPR, pages 10772–10781, 2019.

[Rahman and Al Hasan, 2016] Mahmudur Rahman and Mo-
hammad Al Hasan. Link prediction in dynamic networks
using graphlet. In ECML PKDD, pages 394–409. Springer,
2016.

[Sanchez-Lengeling et al., 2020] Benjamin Sanchez-
Lengeling, Jennifer Wei, Brian Lee, Emily Reif, Peter
Wang, Wesley Qian, Kevin McCloskey, Lucy Colwell,
and Alexander Wiltschko. Evaluating attribution for graph
neural networks. NeurIPS, 33:5898–5910, 2020.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Sankar et al., 2018] Aravind Sankar, Yanhong Wu, Liang
Gou, Wei Zhang, and Hao Yang. Dynamic graph represen-
tation learning via self-attention networks. arXiv preprint
arXiv:1812.09430, 2018.

[Schlichtkrull et al., 2020] Michael Sejr Schlichtkrull,
Nicola De Cao, and Ivan Titov. Interpreting graph neural
networks for nlp with differentiable edge masking. arXiv
preprint arXiv:2010.00577, 2020.

[Schnake et al., 2020] Thomas Schnake, Oliver Eberle,
Jonas Lederer, Shinichi Nakajima, Kristof T Schütt,
Klaus-Robert Müller, and Grégoire Montavon. Higher-
order explanations of graph neural networks via relevant
walks. arXiv preprint arXiv:2006.03589, 2020.

[Schnake et al., 2021] Thomas Schnake, Oliver Eberle,
Jonas Lederer, Shinichi Nakajima, Kristof T Schütt,
Klaus-Robert Müller, and Grégoire Montavon. Higher-
order explanations of graph neural networks via relevant
walks. TPAMI, 44(11):7581–7596, 2021.

[Selvaraju et al., 2017] Ramprasaath R Selvaraju, Michael
Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi
Parikh, and Dhruv Batra. Grad-cam: Visual explanations
from deep networks via gradient-based localization. In
ICCV, pages 618–626, 2017.

[Seo et al., 2018] Youngjoo Seo, Michaël Defferrard, Pierre
Vandergheynst, and Xavier Bresson. Structured sequence
modeling with graph convolutional recurrent networks. In
ICONIP, pages 362–373. Springer, 2018.

[Shapley, 1953] Lloyd S Shapley. A value for n-person
games. Contributions to the Theory of Games, 2(28):307–
317, 1953.

[Shrikumar et al., 2017] Avanti Shrikumar, Peyton Green-
side, and Anshul Kundaje. Learning important features
through propagating activation differences. In ICML,
pages 3145–3153, 2017.

[Skarding et al., 2021] Joakim Skarding, Bogdan Gabrys,
and Katarzyna Musial. Foundations and modeling of dy-
namic networks using dynamic graph neural networks: A
survey. IEEE Access, 9:79143–79168, 2021.

[Trivedi et al., 2019] Rakshit Trivedi, Mehrdad Farajtabar,
Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning
representations over dynamic graphs. In ICLR, 2019.

[Vu and Thai, 2020] Minh N Vu and My T Thai. PGM-
explainer: Probabilistic graphical model explanations for
graph neural networks. In NeurIPS, 2020.

[Wang et al., 2023] Tianchun Wang, Dongsheng Luo, Wei
Cheng, Haifeng Chen, and Xiang Zhang. Dyexplainer:
Explainable dynamic graph neural networks. arXiv

preprint arXiv:2310.16375, 2023.
[Xia et al., 2022] Wenwen Xia, Mincai Lai, Caihua Shan,

Yao Zhang, Xinnan Dai, Xiang Li, and Dongsheng Li.
Explaining temporal graph models through an explorer-
navigator framework. In ICLR, 2022.

[Xiong et al., 2023] Ping Xiong, Thomas Schnake, Michael
Gastegger, Grégoire Montavon, Klaus Robert Muller, and

Shinichi Nakajima. Relevant walk search for explaining
graph neural networks. In ICML, pages 38301–38324.
PMLR, 2023.

[Yang et al., 2020] Li Yang, Xiangxiang Gu, and Huaifeng
Shi. A noval satellite network traffic prediction method
based on gcn-gru. In WCSP, pages 718–723. IEEE, 2020.

[Ying et al., 2019] Rex Ying, Dylan Bourgeois, Jiaxuan You,
Marinka Zitnik, and Jure Leskovec. GNNExplainer:
Generating explanations for graph neural networks. In
NeurIPS, volume 32, page 9240, 2019.

[You et al., 2022] Jiaxuan You, Tianyu Du, and Jure
Leskovec. Roland: graph learning framework for dynamic
graphs. In KDD, pages 2358–2366, 2022.

[Yu et al., 2018a] Bing Yu, Haoteng Yin, and Zhanxing Zhu.
Spatio-temporal graph convolutional networks: a deep
learning framework for traffic forecasting. In IJCAI, pages
3634–3640, 2018.

[Yu et al., 2018b] Wenchao Yu, Wei Cheng, Charu C Aggar-
wal, Kai Zhang, Haifeng Chen, and Wei Wang. Netwalk:
A flexible deep embedding approach for anomaly detec-
tion in dynamic networks. In KDD, pages 2672–2681,
2018.

[Yuan et al., 2020] Hao Yuan, Jiliang Tang, Xia Hu, and
Shuiwang Ji. Xgnn: Towards model-level explanations of
graph neural networks. In KDD, pages 430–438, 2020.

[Yuan et al., 2021] Hao Yuan, Haiyang Yu, Jie Wang, Kang
Li, and Shuiwang Ji. On explainability of graph neural net-
works via subgraph explorations. In ICML, pages 12241–
12252. PMLR, 2021.

[Zhang et al., 2018] Jianming Zhang, Sarah Adel Bargal,
Zhe Lin, Jonathan Brandt, Xiaohui Shen, and Stan
Sclaroff. Top-down neural attention by excitation back-
prop. IJCV, 126(10):1084–1102, 2018.

[Zhang et al., 2022] Mengqi Zhang, Shu Wu, Xueli Yu,
Qiang Liu, and Liang Wang. Dynamic graph neural net-
works for sequential recommendation. TKDE, 2022.

[Zhao et al., 2018] Xujiang Zhao, Feng Chen, and Jin-Hee
Cho. Deep learning for predicting dynamic uncertain opin-
ions in network data. In 2018 IEEE International Con-

ference on Big Data (Big Data), pages 1150–1155. IEEE,
2018.

[Zhao et al., 2019] Ling Zhao, Yujiao Song, Chao Zhang,
Yu Liu, Pu Wang, Tao Lin, Min Deng, and Haifeng Li.
T-gcn: A temporal graph convolutional network for traffic
prediction. TITS, 21(9):3848–3858, 2019.

[Zheng et al., 2023] Xu Zheng, Farhad Shirani, Tianchun
Wang, Wei Cheng, Zhuomin Chen, Haifeng Chen, Hua
Wei, and Dongsheng Luo. Towards robust fidelity for
evaluating explainability of graph neural networks. arXiv
preprint arXiv:2310.01820, 2023.

[Zhu et al., 2016] Linhong Zhu, Dong Guo, Junming Yin,
Greg Ver Steeg, and Aram Galstyan. Scalable temporal
latent space inference for link prediction in dynamic so-
cial networks. TKDE, 28(10):2765–2777, 2016.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

