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Abstract
Zero-Shot Industrial Anomaly Detection (ZSIAD)
aims to identify and localize anomalies in industrial
images from unseen categories. Owing to the pow-
erful generalization capabilities, Vision-Language
Models (VLMs) have achieved growing interest in
ZSIAD. To guide the model toward understand-
ing and localizing the semantically complex in-
dustrial anomalies, existing VLM-based methods
have attempted to provide additional prompts to
the model through learnable text prompt templates.
However, these zero-shot methods lack detailed de-
scriptions of specific anomalies, making it diffi-
cult to classify and segment the diverse range of
industrial anomalies accurately. To address the
aforementioned issue, we firstly propose the multi-
stage prompt generation agent for ZSIAD. Specifi-
cally, we leverage the Multi-modal Language Large
Model (MLLM) to articulate the detailed differ-
ential information between normal and test sam-
ples, which can provide detailed text prompts to
the model through further refinement and anti-
false alarm constraint. Moreover, we introduce
the Visual Fundamental Model (VFM) to generate
anomaly-related attention prompts for more accu-
rate localization of anomalies with varying sizes
and shapes. Extensive experiments on seven real-
world industrial anomaly detection datasets have
shown that the proposed method not only outper-
forms recent SOTA methods, but also its explain-
able prompts provide the model with a more intu-
itive basis for anomaly identification.

1 Introduction
Industrial Anomaly Detection (IAD) aims to accurately iden-
tify and locate industrial product defects by advanced com-
puter vision models and algorithms, which improves produc-
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Figure 1: Comparisons between traditional VLM-Based method,
existing Prompt-Enhancing methods and the proposed method in
ZSIAD.

tion efficiency and guarantees product quality. This is signif-
icant in promoting industrial automation to a higher level of
development.

Given the scarcity of industrial anomaly samples in the real
world, recent works have focused on how to achieve indus-
trial anomaly detection by unsupervised and zero-shot meth-
ods. Unsupervised Industrial Anomaly Detection (UIAD)
methods utilize normal samples to learn the distributional
features of normal industrial products, which in turn identi-
fies the differences between the input image and the normal
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image. In this way, the detection and localization of indus-
trial anomalies are mainly achieved through reconstruction
[Huang et al., 2021b; Huang et al., 2022a] and feature em-
bedding [Huang et al., 2021a; Huang et al., 2022b]. How-
ever, these methods usually require numerous normal sam-
ples for training to adequately learn the distributional features
of normal data, which may be difficult to satisfy in real in-
dustrial scenarios. Moreover, the UIAD methods are limited
in their effectiveness in detecting unseen anomalies, making
it difficult to accurately identify novel anomalies with small
differences from seen normal samples [Wang et al., 2025b;
Wang et al., 2025a]. The zero-shot industrial anomaly de-
tection methods are dedicated to achieve anomaly detection
without training data on objects of the target category.

Inspired by the strong generalization ability of VLM
on various downstream tasks [Sun et al., 2024], Vision-
Language Models (VLMs) have achieved growing interest
in ZSIAD. WinCLIP [Jeong et al., 2023] proposed the first
VLM-based method for ZSIAD, combining state words and
text prompt templates to achieve zero-shot anomaly classifi-
cation and segmentation. It extracted and aggregated multi-
scale spatial features aligned with language for efficient fea-
ture alignment [Huang et al., 2024; Huang et al., 2025].

Although these VLM-based ZSIAD methods show great
promise, it is difficult to further improve the performance
due to the lack of target-specific prompts for unseen anoma-
lies. Specifically, we consider the following two perspectives
as critical limitations to the accurate classification and local-
ization of unseen anomalies by recent VLM-based ZSIAD
methods: 1) Unpredictability and Complexity of Unseen
Anomalies. Industrial anomalies in the real world tend to be
highly uncertain and diverse, which makes the model rely on
additional prompts for the accurate identification and local-
ization of unseen anomalies, as shown in Figure 1 (a). Ada-
CLIP [Cao et al., 2025] introduced learnable hybrid prompts
that allow the model to better recognize unseen anomalies,
which consist of text prompt templates and learnable dynamic
prompts. This dynamic prompt is usually generated in real
time by the image encoder and linear projection layer for each
test image to enhance the model’s adaptability to different
kinds of anomalies. However, the learnable prompts are dif-
ficult to capture the details of unseen anomalies, leading to
models that may not be able to accurately identify and local-
ize unseen anomalies. It naturally brings the second issue:
2) High annotation costs for detailed anomaly prompts.
Whether it is during training or inference, integrating detailed
prompts can effectively improve the model’s ability to iden-
tify and localize unseen anomalies. In practice, obtaining
high-quality anomaly descriptions often faces numerous chal-
lenges, such as the scarcity of anomalous samples, the imbal-
ance of categories, and the complexity of the annotation pro-
cess. These factors lead to a significant increase in the cost
of labeling anomaly data. AnomalyGPT [Gu et al., 2024b]
provides the model with more adaptability and accuracy in
industrial anomaly detection tasks by generating the simu-
lated anomalous regions and anomaly descriptions, as shown
in Figure 1 (b). Specifically, it generates simulated anoma-
lous regions on normal samples by image editing and gen-
erates detailed text descriptions for them as prompts, which

alleviates the problem of high annotation cost to some ex-
tent. However, these methods rely on simulated anomalies,
which may lead to poor generalization ability to industrial
anomalies in real applications. Therefore, how to obtain re-
liable and detailed prompts in real-world datasets at low cost
has become an urgent problem. In addition, how to fully uti-
lize these prompts for industrial anomaly detection is also a
worthwhile and challenging problem.

Facing the above issues, we attempt to address them from
the following two perspectives, as shown in Figure 1 (c): (1)
proposing a multi-stage prompt generation agent based on
MLLM; (2) proposing an explainable prompt enhancement
framework that can fully utilize the generated prompts for fa-
cilitating the understanding and detection of unseen indus-
trial anomalies in VLM-based methods. Specifically, we first
propose a multi-stage prompt generation agent for ZSIAD
which can obtain semantic-rich detailed text prompts and at-
tention prompts from unseen industrial samples. On the one
hand, we compare the test samples with normal samples to
obtain preliminary detailed anomaly information. To address
the intrinsic illusion problem of MLLM, we obtain accurate
and semantic-rich anomaly descriptions through further re-
finement and anti-false alarm constraints. On the other hand,
we achieve anomaly-related attentional embedding through
the Vision Foundation Model (VFM)-based Anomaly Feature
Selection (AFS) module, which can facilitate the model to fo-
cus on potential anomalous regions in the foreground. Build-
ing on this foundation, we propose the Hybrid Explainable
Prompts Enhancement (HEPE) framework, which jointly uti-
lizes generated detailed text and attention prompts for fur-
ther enhancing the performance of VLM-based methods in
ZSIAD. The synergistic effect of hybrid explainable prompts
allows maximizing the utilization of these prompts.

Therefore, our contribution can be summarized as follows.

1) We propose a multi-stage prompt generation agent. It
can leverage MLLM and VFM to generate semantic-rich text
prompts and attention prompts for unseen anomalies, thus
providing specific anomaly prompts for VLMs at low cost.

2) We propose a hybrid explainable prompt enhancement
framework to further improve the performance by jointly
utilizing explainable generated text prompts and attention
prompts in ZSIAD, which can enhance the model’s under-
standing and detection of unseen anomalies.

3) We have conducted extensive experiments on seven in-
dustrial anomaly detection datasets. The experimental results
show that our method has significant advantages over the re-
cent state-of-the-art ZSIAD method.

2 Relative Work
2.1 Industrial Anomaly Detection Methods
The goal of industrial anomaly detection is to accurately
identify and localize abnormal patterns or defects that devi-
ate from normal operating conditions during the production
process, thereby improving production efficiency, reducing
losses, and ensuring system stability. According to the type
of supervision, it can be divided into three categories: semi-
supervised methods, unsupervised methods and zero-sample
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(a) Multi-stage guided anomaly description pipeline for ZSIAD
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Figure 2: The proposed Multi-stage guided anomaly description pipeline and Attention agent-based VFM.

methods. Unsupervised IAD methods [Carratù et al., 2023;
Wang et al., 2024a] detect industrial anomalies that deviate
from the normal pattern mainly by learning the feature dis-
tribution of normal samples. The advantage of unsupervised
methods is that they do not require anomalous samples for
training and are suitable for industrial scenarios with scarce
anomalous data. Semi-supervised Industrial Anomaly De-
tection (IAD) methods [Dong et al., 2024] leverage a small
number of labeled abnormal samples and a large number of
unlabeled normal samples for training, thereby enhancing the
model’s ability to identify anomalies while reducing the de-
pendence on large-scale labeled data.

Although these methods have achieved a promising per-
formance, they often lack generalization ability when detect-
ing unseen industrial anomalies. Therefore, an increasing
number of studies [Zhu et al., 2024; Gu et al., 2024a] are
focusing on zero-shot IAD methods. Since the pre-trained
vision-language models (VLMs) naturally have strong gener-
alization ability to various types of targets in the real world,
they show significant advantages in ZSIAD. By leveraging
vision-language alignment and transferring knowledge from
pre-trained models, VLM-based ZSIAD methods [Chen et
al., 2024] can better understand and identify unseen indus-
trial anomalies in real-world scenarios. Existing VLM-based
methods typically guide anomaly detection through learn-
able prompts or manually designed text prompts. For in-
stance, WinCLIP [Jeong et al., 2023] guides anomaly de-
tection by constructing text descriptions specifically tailored
for the “normal” and “abnormal” categories. However, learn-
able prompts have limitations in capturing the fine-grained
details of unseen anomalies. These prompts usually rely on
limited labeled data and predefined text templates, making
it difficult to accommodate the diversity and complexity of

the real-world anomalies. Therefore, how to further improve
the adaptability and detection accuracy of VLM-based mod-
els for unseen anomalies remains a challenge to be solved.

In this paper, we provide an innovative solution for ZSIAD
through the proposed multi-stage prompt generation agent.
The agent combines the powerful generalization capabili-
ties of the pre-trained MLLM with the multi-stage prompt
strategy to generate semantic-rich text prompts and attention
prompts from unseen industrial anomalies.

2.2 Prompt Learning
Prompt learning is a technique for augmenting model inputs
with task-specific prompts, thereby adapting pre-trained large
models to downstream tasks. Specifically, model inputs can
be augmented by well-designed prompts, which mainly in-
clude soft and hard prompts. Soft prompts [Jia et al., 2022;
Ren et al., 2023] are learnable continuous vectors that are
usually optimized for a specific dataset by gradient optimiza-
tion methods. However, soft prompts have the disadvantage
of lacking explainability and tend to perform worse than high-
quality hard prompts [Wang et al., 2024c]. Hard prompts are
natural language instructions [Dong et al., 2022], which have
the advantage of being flexible and explainable but designing
high-quality hard prompts requires a lot of manual effort.

Recently, several studies [Deng et al., 2024; Qu et al.,
2024] have explored the application of prompts to VLM-
based IAD methods. WinCLIP [Jeong et al., 2023] have
achieved promising performance using learnable soft prompts
in IAD. In addition, some studies [Cao et al., 2025; Zhou et
al., 2024] have jointly used both soft and hard prompts, im-
proving the performance of ZSIAD by combining the advan-
tages of both. However, further performance improvement
is limited by the lack of high-quality hard prompts. In this
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paper, we generate high-quality text prompts using the multi-
stage prompt generation agent. This agent allows the model
to better capture anomalous features while maintaining the
model’s ability to generalize to unseen anomalies.

3 Method
In this section, we will introduce the proposed hybrid explain-
able prompt enhancement method and its important com-
ponents in detail, which mainly include (1) Overview; (2)
Multi-stage Prompt Generation Agent; (3) Hybrid Explain-
able Prompt Enhancement Framework.

3.1 Overview
As shown in Figure 2, we first use the multi-stage prompt
generation agent to generate semantic-rich text and atten-
tion prompts for unseen anomalies, thereby providing spe-
cific anomaly prompts for the model at low cost. For the text
prompts, we input normal and test samples into the elabo-
rated MLLM in the first step so that it describes in detail the
differences between the test samples and the normal samples.
To further obtain anomaly-related information as well as to
prevent potential false alarm possibility, we refine the gener-
ated detailed anomaly descriptions under the anti-false alarm
constraint in the second step to obtain accurate and anomaly-
related text descriptions. In addition, to make the model
pay more attention to the anomaly information in the fore-
ground, we obtain anomaly-related attention prompts through
the VFM-based anomaly feature selection module.

As shown in Figure 3, the proposed hybrid explainable
prompts enhancement framework mainly consists of the vi-
sual branch, textual branch, and attention prompts branch.
The proposed CLIP-based framework primarily explores the
utilization of text and attention prompts for enhancing the
model’s ability to detect unseen anomalies. In the visual
branch, we input the test industrial images into the pre-trained
CLIP [Radford et al., 2021] image encoder to extract patch-
level visual embeddings. In the textual branch, we input the
generated text prompts representing normal and abnormal re-
spectively into the pre-trained CLIP text encoder to obtain
text embeddings. Combining the dynamic and static prompt
generators from previous work [Cao et al., 2025], we obtain
anomaly mapping by calculating the similarity between vi-
sual embeddings and textual embeddings. In addition, we
combine the hybrid semantic fusion module (HSF) and gen-
erated attentional embeddings for facilitating the model to fo-
cus on anomalous regions in the foreground in order to en-
hance the accuracy and generalization capability of image-
level anomaly detection.

3.2 Multi-Stage Prompt Generation Agent
For VLM-based ZSIAD methods, high-quality text descrip-
tions of anomalies are essential to prompt the model for un-
derstanding and detection of unseen anomalies. However, ex-
isting methods either rely on predefined text templates or are
annotation-costly. In addition, attention prompts can enhance
the model’s ability to focus on anomalous regions. There-
fore, we propose the multi-stage prompt generation agent for
generating semantic-rich text and attention prompts.

Text Prompt. To fully leverage the potential of MLLM in
describing anomalies, we first input normal and test sample
to MLLM in the first step, and the differences between the
two samples are described in detail through MLLM in order
to mine potential anomaly details. Subsequently, we boot-
strap the process of refining anomaly details by introducing
category labels in the second step, which aims at generating
anomaly descriptions that are as relevant as possible to spe-
cific industrial products. It is noteworthy that LLMs are prone
to misidentifying normal differences as abnormal regions due
to the potential problems of illusion and misinterpretation.
For instance, LLMs may misclassify nuts that are oriented
differently from the normal samples as anomalies. Therefore,
we further set the anti-false alarm constraint, which is mainly
used to prevent LLMs from describing normal differences as
abnormal.

Attention Prompt. To enhance the model’s ability to fo-
cus on anomalous regions, we utilize the VFM and anoma-
lous feature selection module to generate attentional prompts.
Specifically, we first input the test industrial images into the
VFM image encoder for attentional feature extraction. Then,
the anomaly feature selection module can select the most
useful regions for anomaly detection as attention prompts
from the attentional features. which mainly contains Omni-
dimensional Dynamic Convolution (OD Conv) [Li et al.,
2022] and Depthwise Separable Convolutions (DS Conv)
[Chollet, 2017]. OD Conv significantly improves the dy-
namics of convolutional operations and feature extraction
through the multidimensional attention mechanism that can
dynamically enhance attention to the anomalous regions. DS
Conv can achieve higher performance with a lower parame-
ters through the property of deeply separable convolution.

3.3 Hybrid Explainable Prompt Enhancement
Due to its outstanding zero-shot generalization capability,
the vision-language classic framework CLIP has achieved
tremendous success across various domains of computer vi-
sion. Building upon prior CLIP-based ZSIAD methods [Cao
et al., 2025], we propose a Hybrid Explainable Prompts En-
hancement that combines generated text descriptions and at-
tention prompts for industrial anomaly detection. The follow-
ing are each component of the proposed framework.

Static and Dynamic Prompts. To improve the ZSIAD per-
formance effectively using the proposed hybrid explainable
prompts, we introduce static and dynamic prompts. The
static prompt PS serves as a foundational learning cues
shared across all images. Furthermore, we introduce dynamic
prompts PD, allowing the semantic information contained in
the hybrid prompts to be effectively integrated into the CLIP
semantic space. PD differs from PS in that they are gener-
ated by the prompt generator G for each test image individu-
ally. In the proposed method, the composition of G includes
class tokens from the CLIP image encoder and a learnable
projection layer. This projection layer is used to map class
tokens into dynamic prompts PD.

Hybrid Semantic Fusion Module (HSF). Previous
anomaly detection methods [Chen et al., 2023] select the
maximum value of anomalies as the anomaly score, which
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Figure 3: The proposed explainable prompt enhancement framework for ZSIAD, which can fully utilize the generated prompts for facilitating
the understanding and detection of unseen industrial anomalies.

is sensitive to noise predictions. To enhance the robustness
of the model and the reliability of the detection results,
we introduce the HSF module [Cao et al., 2025]. It is
adopted to aggregate patch embeddings that are more likely
to represent anomalies, which effectively consolidate region-
level information for robust image-level anomaly detection.
The HSF output integrates the semantic information most
relevant to anomalies. Combined with the proposed hybrid
explainable prompts, it can incorporate even more anomaly-
related semantic information. Compared to the previous
max-value-based anomaly detection methods, the resulting
semantically enriched vision patch embeddings effectively
improve image-level anomaly detection performance.

4 Loss Function

The pixel-level anomaly map in the proposed method is de-
rived by calculating the cosine similarity between patch em-
beddings QE with integrated attention prompts and text em-
beddings TA and TN with integrated text prompts. The
anomaly map is defined as follows:

Mi = ψ

(
ecos(Q

i
E ,TA)

ecos(Q
i
E ,TA) + ecos(Q

i
E ,TN )

)
, (1)

where ψ is an interpolate function. The pixel-level anomaly
map Mi in i-th block is resized to match the dimensions of
the test image. Anomaly maps are extracted from multiple
blocks [24] and aggregated to produce the final anomaly map
M. In the training process, dice loss LD and focal loss LD

is jointly applied as the object function, which is defined as

follows:

LD = 1−
2
∑N

i=1 pigi∑N
i=1 pi +

∑N
i=1 gi

, (2)

LF = −α(1− pi)
γ log(pi), (3)

where α is the balancing factor, γ is the hyper-parameter
that adjusts the weight of easily classified samples, pi is the
anomaly scores predicted by the model, and gi is the ground
truth label. The final object function L is defined as follows:

L = LD + LF . (4)

5 Experiments
5.1 Experiment Setup
Datasets. We conduct experiments using the seven indus-
trial anomaly detection datasets for all experiments: MVTec
AD [Bergmann et al., 2021], VisA [Zou et al., 2022], MPDD
[Jezek et al., 2021], BTAD [Mishra et al., 2021], KSDD
[Tabernik et al., 2020], DAGM [Wieler and Hahn, 2007], and
DTD-Synthetic [Aota et al., 2023].
Evaluation Metrics. Consistent with prior ZSIAD methods
[Cao et al., 2025], we adopted Area Under the Receiver Oper-
ating Characteristic Curve (AUROC) and maximum F1 score
(max-F1) to evaluate the anomaly detection performance of
both image-level and pixel-level. Beyond the dataset-specific
results, we further reported the mean performance across all
datasets. This result is quantified using AUROC and max-F1.
Implementation Details. We adopted QWen2-VL-72B
[Wang et al., 2024b] to generate detailed descriptions of the
anomalies. Furthermore, QWen2.5-7B [Yang et al., 2024] is
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Metric Dataset w/o supervised training w/ supervised training

SAA WinCLIP DINOv2 SAM APRIL-GAN AdaCLIP Our

Image-level
(AUROC, max-F1)

MVTec AD (63.5, 87.4) (91.8, 92.9)† (74.4, 87.4) (70.8, 86.0) (82.3, 88.9) (89.2, 90.6) (91.9, 92.4)
VisA (67.1, 75.9) (78.1, 80.7)† (75.2, 78.5) (61.9, 73.9) (81.7, 80.7) (85.8, 83.1) (86.3, 84.1)

MPDD (42.7, 73.9) (61.4, 77.5) (62.4, 74.9) (63.0, 77.0) (66.0, 76.0) (76.0, 82.5) (83.4, 82.4)
BTAD (59.0, 89.7) (68.2, 67.6) (79.3, 69.3) (89.4, 85.7) (85.2, 82.0) (88.6, 88.2) (95.2, 90.9)
KSDD (68.6, 37.6) (93.3, 79.0) (94.9, 77.5) (65.8, 37.9) (95.7, 85.2) (97.1, 90.7) (98.9, 91.4)
DAGM (87.1, 88.8) (91.7, 87.6) (90.7, 89.2) (82.7, 83.6) (93.5, 91.8) (99.1, 97.5) (98.4, 96.5)

DTD-Synthetic (94.4, 93.5) (95.1, 94.1) (85.8, 93.5) (81.9, 91.1) (98.1, 96.8) (95.5, 94.7) (96.5, 95.9)

Average (68.9, 78.1) (82.8, 82.8) (80.4, 81.5) (73.6, 76.4) (86.1, 85.9) (90.2, 89.6) (92.9, 90.5)
Rank (6.3, 5.3) (4.4, 4.0) (5.0, 5.1) (5.7, 6.0) (3.0, 3.4) (2.3, 2.1) (1.3, 1.6)

Pixel-level
(AUROC, max-F1)

MVTec AD (75.5, 38.1) (85.1, 31.6)† (85.9, 39.6) (85.4, 29.4) (83.7, 39.8) (88.7, 43.4) (90.9, 45.9)
VisA (76.5, 31.6) (79.6, 14.8)† (95.0, 30.3) (92.6, 18.2) (95.2, 32.3) (95.5, 37.7) (94.9, 35.2)

MPDD (81.7, 18.9) (71.2, 15.4) (95.6, 31.1) (94.8, 22.1) (95.1, 30.6) (96.1, 34.9) (96.0, 35.5)
BTAD (65.8, 14.8) (72.6, 18.5) (91.9, 43.4) (93.8, 46.9) (89.5, 38.4) (92.1, 51.7) (93.1, 52.1)
KSDD (78.8, 6.6) (95.8, 21.3) (99.3, 50.6) (91.2, 18.4) (98.2, 56.2) (97.7, 54.5) (98.2, 54.2)
DAGM (62.7, 32.6) (81.3, 13.9) (90.9, 52.0) (88.6, 40.7) (90.3, 57.9) (91.5, 57.5) (92.4, 63.3)

DTD-Synthetic (76.7, 60.6) (79.5, 16.1) (97.0, 63.4) (95.0, 56.7) (97.8, 72.7) (97.9, 71.6) (98.6, 72.8)

Average (73.9, 29.0) (80.7, 18.8) (93.7, 44.3) (91.7, 33.2) (92.8, 46.9) (94.2, 50.2) (95.1, 51.0)
Rank (6.9, 5.7) (5.9, 6.4) (3.0, 4.0) (4.4, 5.4) (3.6, 2.9) (2.3, 2.1) (1.9, 1.4)

Table 1: Comparisons of ZSIAD methods in the 7 industrial anomaly datasets. The best performance is in bold and the second best is
underlined. † denotes to results taken from original papers. Rank denotes the average performance rankings on all datasets.

Text
Prompt

Attention Prompt Industrial Dataset

VFM AFS Image-level Pixel-level

✕ ✕ ✕ 91.4 89.3 93.7 49.8
✓ ✕ ✕ 91.7 90.3 94.5 50.5
✓ ✓ ✕ 92.3 89.4 94.8 50.8
✓ ✓ ✓ 92.9 90.5 95.1 51.0

Table 2: Ablation study of each proposed strategy.

Anti-false
Alarm Constraint

Normal
Image

Industrial Dataset

Image-level Pixel-level

✕ ✕ 91.7 89.6 93.9 50.0
✓ ✕ 92.1 89.9 94.2 50.2
✕ ✓ 92.6 90.3 94.7 50.8
✓ ✓ 92.9 90.5 95.1 51.0

Table 3: Ablation study of different text prompt generation strategy.

utilized to extract anomalous information and judge the pres-
ence of anomalies. The pre-trained CLIP (ViT-L/14@336px)
[Radford et al., 2021] is employed as the backbone for sub-
sequent ZSIAD models, extracting patch embeddings from
the 6th, 12th, 18th, and 24th ViT blocks. DINOv2 (ViT-S)
[Oquab et al., 2024] is adopted as the VFM. We trained the
proposed method for 5 epochs with a learning rate of 0.01.
All experiments were performed with a single NVIDIA A100
GPU (80GB).

Comparison Methods. We compare the proposed method
with two baselines: with and without training. Specifically,
SAA [Cao et al., 2023] and WinCLIP [Jeong et al., 2023]
are adopted as our non-trained baselines. For trained base-

lines, we selected APRIL-GAN [Chen et al., 2023] and Ada-
CLIP [Cao et al., 2025]. Following the previous work, we
trained DINOv2 [Oquab et al., 2024] and SAM [Kirillov et
al., 2023], which appends additional linear layers to multiple
Transformer layers as a task head for anomaly detection.

5.2 Comparison with State-of-the-Art Methods

Table 1 presents the results of our comparative experiments,
demonstrating the superior performance of the trained meth-
ods over the untrained ZSIAD baselines. WinCLIP and SAA
with the manual text prompts exhibit inferior performance.
It is noteworthy that fine-tuning the visual foundation mod-
els (DINOv2 and SAM) can achieve satisfactory pixel-level
ZSIAD. The impressive performance of VFM-based ZSIAD
methods fine-tuned on domain-specific data underscores the
fact that pre-trained VFMs have essential knowledge for the
anomaly. With minor adaptations, this foundational knowl-
edge can be effectively leveraged for ZSIAD tasks.

Compared to other ZSIAD methods, the proposed method
exhibits notable performance enhancements. For example,
compared to the sub-optimal method AdaCLIP, the proposed
method achieves 2.7% improvement in image-level AUROC
and 0.9% improvement in max-F1. Moreover, the pixel-
level AUROC reached 95.1% and the max-F1 score attained
51.0%. These results underscore the superiority of the pro-
posed method and validate the efficacy of incorporating text-
enhanced and attention-based prompts. Furthermore, we vi-
sualize the anomaly detection results across different datasets
in Figure 4. The proposed method shows notably more pre-
cise pixel-level anomaly detection for unseen classes than
other methods. This best pixel-level performance can be at-
tributed to the detailed anomaly information provided by text-
enhanced prompts and the more discriminative visual features
captured by attention prompts.
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Figure 4: Visualization of anomaly maps of different ZSIAD methods. The proposed method can get the most precise segmentation results
for novel categories.
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Figure 5: Ablation study of different VFM for attention prompts
generation. ‘I’ and ‘P’ means the Image-level and Pixel-level, re-
spectively.

5.3 Ablation Study
In this subsection, we conduct ablation experiments on the all
datasets to validate the effectiveness of different strategies.
We quantitatively evaluated the effectiveness of the proposed
text and attention prompts by different combinations. The re-
sults of the ablation study are shown in Table 2. Compared to
the baseline, each combination achieves a better performance.
Therefore, we can conclude that both strategies contribute to
the ZSIAD performance improvement. In addition, the final
ablation study results demonstrate that the joint application
of the proposed strategies can further result in greater perfor-
mance gain, proving the effectiveness and rationality of the
proposed strategies.

5.4 Qualitative Analysis
Text Prompt Generation Strategy. Table 3 presents the
results of ablation experiments on various text prompt gen-
eration strategies. The experimental results clearly demon-
strate that the model achieves optimal performance by con-
trasting anti-false alarm with normal samples in generating

text prompts. In other words, the joint application of the pro-
posed strategies mitigates the noise in generated text prompts.
On the one hand, LLM can correct descriptions that mistak-
enly judge differences in location as errors by applying the
anti-false positive strategy. It allows subsequent ZSIAD mod-
els to obtain accurate and semantically rich descriptions of
anomalies. On the other hand, MLLM has a clear reference to
exclude misjudgments caused by the specific attributes of the
objects themselves (such as describing sesame-like spots on
sugar as anomalies), thereby outputting accurate anomaly in-
formation. Consequently, the combined application of these
strategies minimized noise in text prompt generation, result-
ing in optimal model performance.

Different VFM for Attention Prompt. We explored the
impact of different VFM-generated attention cues on the pro-
posed ZSIAD method, with results reported in Figure 5. The
experimental results clearly shows that using DINOv2 (ViT-
S) to generate attention prompts achieves the optimal ZSIAD
performance for the proposed method. The pixel-level per-
formance achieved with SAM and its variants EfficientSAM
[Xiong et al., 2024] remains suboptimal. We believe this
is due to DINOv2 being a self-supervised VFM, aimed at
learning general-purpose visual features. In other words,
DINOv2 extracts discriminative and semantic-rich features
from extensive image datasets through a self-supervised train-
ing method. These feature representations are essential for
ZSIAD tasks. SAM and its derivatives are primarily designed
for interactive segmentation, demonstrating strong perfor-
mance guided by user-provided prompts. SAM exhibits a
weaker overall semantic understanding of complex scenes in
scenarios without clear prompts.

6 Conclusion
In this paper, we present a novel multi-stage prompt genera-
tion agent for ZSIAD to generate semantic-rich text prompts
and attention prompts for unseen anomalies. Furthermore,
we propose the Hybrid Explainable Prompt Enhancement
method, which maximizes the potential of these prompts
to enhance the model’s understanding and detection of un-
seen anomalies. Extensive experiments on the widely-utilized
benchmarks have validated the effectiveness of our method.
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