
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

AdaMixT: Adaptive Weighted Mixture of Multi-Scale Expert
Transformers for Time Series Forecasting
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Abstract
Multivariate time series forecasting involves pre-
dicting future values based on historical obser-
vations. However, existing approaches primarily
rely on predefined single-scale patches or lack ef-
fective mechanisms for multi-scale feature fusion.
These limitations hinder them from fully captur-
ing the complex patterns inherent in time series,
leading to constrained performance and insuffi-
cient generalizability. To address these challenges,
we propose a novel architecture named Adaptive
Weighted Mixture of Multi-Scale Expert Trans-
formers (AdaMixT). Specifically, AdaMixT intro-
duces various patches and leverages both General
Pre-trained Models (GPM) and Domain-specific
Models (DSM) for multi-scale feature extraction.
To accommodate the heterogeneity of temporal fea-
tures, AdaMixT incorporates a gating network that
dynamically allocates weights among different ex-
perts, enabling more accurate predictions through
adaptive multi-scale fusion. Comprehensive exper-
iments on eight widely used benchmarks, includ-
ing Weather, Traffic, Electricity, ILI, and four ETT
datasets, consistently demonstrate the effectiveness
of AdaMixT in real-world scenarios.

1 Introduction
Time series forecasting is essential for various fields, aim-
ing to accurately present future values according to histor-
ical observations. The rapid advancement of deep learning
has spurred significant research in this area, with applications
in traffic prediction [Zhao et al., 2024; Jiang et al., 2024;
Yuan and Li, 2021; Chen et al., 2024], recommender systems
[Lin et al., 2024a; Lin et al., 2024b], and weather forecast-
ing [Zhou et al., 2021; Liu et al., 2025; Miao et al., 2024b].

The recent success of attention mechanisms has prompted
researchers to investigate the potential of Transformer-based
models by redefining time series forecasting tasks as the fu-
ture token prediction [He et al., 2024b; Chen et al., 2025;
Yuan et al., 2024]. Existing research in this field can be
categorized into two classes based on different tokenization

†Corresponding author.

Transformers & Pre-trained LLM
(Body)

···

(a) Timestamp-level (b) Patch-level (c) Ours

··· ···

Traffic Weather illnessElectricity

Figure 1: The existing technologies and our main idea. (a)
Timestamp-level tokenization, where each timestamp is treated as
an individual token. (b) Patch-level tokenization, where each time
window serves as a token, with patch len denoting the length of
a patch. (c) Multi-scale feature extraction (Ours), which utilizes m
different patch len to capture features at varying scales from the
time series. In this context, n denotes the number of tokens, and
seq len refers to the length of time series data.

methods, as illustrated in Figure 1. The first approach uses
timestamps as tokens, exemplified by models such as Aut-
oformer [Wu et al., 2021] and FEDformer [Zhou et al.,
2022]. The second approach adopts patch-level tokeniza-
tion, where a patch represents a window of timestamps, with
PatchTST [Nie et al., 2022] being a notable example. Com-
pared with timestamp-level tokenization, patch-level tok-
enization more effectively captures temporal patterns, thereby
achieving superior forecasting performance. Despite their
remarkable success, these methods still face challenges re-
lated to limited generalizability. Most existing research fo-
cuses primarily on single-scale temporal features, which lack
a careful consideration of multi-scale characteristics in time
series data. Furthermore, the effective fusion of multi-scale
features has not been thoroughly explored, leading to limita-
tions in forecasting under complex scenarios.

To address the above challenges, we propose a novel time
series forecasting architecture named Adaptive Weighted
Mixture of Multi-Scale Expert Transformers (AdaMixT). By
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incorporating multi-scale temporal features, AdaMixT signif-
icantly enhances both predictive accuracy and generalizabil-
ity, providing an innovative approach to multi-scale feature
fusion. Specifically, AdaMixT leverages both General Pre-
trained Models (GPM) and Domain-specific Models (DSM)
for time series forecasting, combining the extensive knowl-
edge from GPM with the specialized feature extraction capa-
bilities of DSM to better support downstream tasks. In this
framework, input data is segmented into multi-scale patches;
smaller patches capture high-frequency features for high-
resolution representations, while larger patches capture low-
frequency features for low-resolution representations. To ef-
fectively integrate multi-scale features, AdaMixT adopts a
weighted fusion strategy to assign different weights for the
output of each model, generating the final prediction. In sum-
mary, we make the main contributions as follows:

• We propose a novel multi-scale patch design that com-
bines GPM with DSM, enabling the capture of both short-
term and long-term temporal patterns in time series. This
integration leverages the open-world knowledge of pre-
trained models and the specialized feature extraction ca-
pabilities of domain-specific architectures, thereby im-
proving forecasting accuracy and model generalizability.

• To the best of our knowledge, this work is the first to intro-
duce an adaptive mechanism for multi-scale feature fusion
in time series forecasting. By utilizing multiple models as
experts and dynamically assigning weights based on the
characteristics of time series data, our approach signifi-
cantly enhances the model’s adaptability to various tasks,
ensuring robust scalability across different real-world ap-
plication scenarios.

• We conduct extensive experiments across multiple
time series forecasting benchmarks, demonstrating that
AdaMixT outperforms existing forecasting approaches.

2 Related Work
2.1 Time Series Forecasting
In recent years, considerable research efforts have been di-
rected toward leveraging Transformer-based models for time
series forecasting. Early approaches, such as Informer [Zhou
et al., 2021], adopt a sequence-to-sequence framework, treat-
ing each timestamp as an individual token. Similarly, Auto-
former [Wu et al., 2021] incorporates classical analysis con-
cepts such as decomposition and autocorrelation, while FED-
former [Zhou et al., 2022] utilizes a Fourier-enhanced struc-
ture to achieve linear computational complexity. However,
[Zeng et al., 2023] highlights the limitations of treating each
timestamp as a token, particularly in capturing intricate tem-
poral patterns. To overcome this drawback, models such
as Crossformer [Zhang and Yan, 2023] and PatchTST [Nie
et al., 2022] are inspired by patch-based visual transform-
ers [Dosovitskiy et al., 2020], representing windows of mul-
tiple timesteps as patches and using these as tokens for
improved performance. Concurrently, the impressive ca-
pabilities of Large Language Models (LLMs) have led to
their application in time series forecasting. Models like
GPT4TS [Zhou et al., 2023] and TIME-LLM [Jin et al.,

2023] have shown promising results, further demonstrating
the potential of LLMs in this field.

Despite these advancements, existing methods [Miao et
al., 2024a; Yuan et al., 2021; Yuan et al., 2020] still face
challenges in effectively capturing and fusing multi-scale fea-
tures. To overcome these limitations, we propose AdaMixT,
which enhances robust multi-scale feature extraction and in-
cludes an efficient fusion mechanism. By combining the
strengths of GPM and DSM, AdaMixT offers a comprehen-
sive and efficient solution for time series analysis.

2.2 Multi-scale Feature Learning

The analysis of multi-scale features plays a pivotal role in
numerous fields. In computer vision, multi-scale features en-
able the extraction of information at varying spatial resolu-
tions within an image, facilitating the analysis of both fine-
grained local details and overarching global structures [Das
and Dutta, 2020; He et al., 2024a]. Meanwhile, multi-scale
features have also been widely applied in domains such as
knowledge graphs [Li et al., 2025; Li et al., 2022]. In recent
years, multi-scale analysis has also been increasingly adopted
in time series forecasting. For instance, TimesNet [Wu et
al., 2022] transforms one-dimensional sequences into two-
dimensional tensors to capture diverse periodic patterns. In
addition, MICN [Wang et al., 2023] utilizes convolutions
with varying kernel sizes to learn features at multiple tempo-
ral scales. TimeMixer [Wang et al., 2024] enhances predic-
tive performance by decomposing multiscale series and ef-
fectively blending their seasonal and trend components.

Unlike existing works [Miao et al., 2025; Yuan et al.,
2023], AdaMixT learns multi-scale features during the train-
ing phase, enabling more efficient feature representation. Fur-
thermore, instead of relying on straightforward feature fu-
sion methods such as concatenation or addition, we design
a gating network to score multi-scale temporal features and
propose an innovative multi-scale feature fusion mechanism,
which further enhances the performance and generalizability.

2.3 Mixture of Experts

Mixture of Experts (MoE) refers to a model consisting of
different components, known as experts, each specialized
in handling distinct tasks or specific aspects of data. Ini-
tially introduced in the literature [Jacobs et al., 1991], it
has since been extensively studied and refined in subse-
quent works [Aljundi et al., 2017]. The advent of sparse-
gated MoE [Shazeer et al., 2017], particularly within large
Transformer-based language models [Lepikhin et al., 2020],
has revitalized this technique, expanding its applicability and
effectiveness. Traditional MoEs typically rely on feedforward
networks to select models based on specific scenarios. Un-
like these designs, AdaMixT introduces multi-scale feature
fusion into time series analysis for the first time. By adopt-
ing a self-learning mechanism, AdaMixT focuses on feature
fusion rather than model selection, enabling the model to au-
tomatically identify critical multi-scale features and achieve
efficient integration.
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Channel-
Independence

··· ···

······

Patch-based Tokenization

Text & Position Embedding

Masked Multi
Self Attention

Layer Norm

Layer Norm

Feed Forward

Layer Norm

n×

Flatten + Linear Head

            

Gating             
Network

Add + Normalize

p = 0.2 p = 0.4 p = 0.3

··· ···

DSM[3] GPM[n]GPM[1] DSM[2]···

p = 0.1

···

�1
[2]

�2
[2]

�3
[2]
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[3]
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[3]
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Hidden Layer Output Layer

Input Layer

X

Instance Normalization

(a) AdaMixT Model Overview

(b) Gating Network

(c) GPT-2 (Example of GPM)

GPM: General Pre-trained Models

DSM: Domain-specific Models

Figure 2: The architecture of AdaMixT. (a) AdaMixT adopts a channel-independent design, extracting multi-scale features through patches
of varying lengths and feeding these features into multiple experts, including GPMs and DSMs. The outputs of experts are dynamically
weighted and fused via a gating network, ultimately generating the final prediction. (b) Gating Network dynamically selects and fuses the
outputs of multiple experts, where X denotes the time series features before patching, h denotes the number of hidden neurons, and n denotes
the number of experts. (c) GPT-2, serving as a representative of the GPM, can efficiently capture general features and provide a powerful
foundational representation for subsequent multi-scale feature fusion.

3 Method
In this section, we first provide a formal definition of the prob-
lem along with necessary notations and then explain the de-
tails of the overall model structure.

3.1 Problem Definition
Multivariate time series forecasting involves predicting fu-
ture values based on historical observation. The objec-
tive is to forecast future values for the next K timestamps,
given the observations from the previous L timestamps. A
multivariate time series comprises multiple related time se-
ries, each representing a different variable. Let xt =

[x
(1)
t ,x

(2)
t , . . . ,x

(M)
t ] ∈ RM×1 be a multivariate signal,

where x
(i)
t denotes the i-th variate at time t, for 1 ≤ i ≤M .

In Equation (1), our goal is to develop a model that accu-
rately predicts the values for the next K timestamps based on
the recent history spanning L timestamps. Here, L and K
are referred to as the look-back window and the prediction
horizon, respectively. For a single variable, x̂(i)

L+1, . . . , x̂
(i)
L+K

represents the sequence of future values in the next K time
steps for the i th variable, which is the prediction target. In
contrast, x(i)

1 , . . . , x
(i)
L denote the observed data for the i-th

variable over the past L time steps. The function F , parame-
terized by Φ, leverages these observations to effectively fore-
cast the future sequence values.

x̂
(i)
L+1, . . . , x̂

(i)
L+K = F

(
x
(i)
1 , . . . , x

(i)
L ; Φ

)
(1)

3.2 Model Structure

The architecture of AdaMixT is illustrated in Figure 2.
The model leverages GPMs (e.g., GPT2 [Radford et al.,
2019] and Llama [Touvron et al., 2023]) and DSMs (e.g.,
PatchTST [Nie et al., 2022]) as experts to efficiently extract
multi-scale features from time series, thereby achieving accu-
rate prediction objectives. The entire framework consists of
three core modules: Multi-Scale Feature Extraction, Expert
Pool, and Adaptive Weighted Gating Network (AWGN).

As detailed in Algorithm 1, AdaMixT adopts a channel-
independent framework to process each variable. The pro-
cess begins with instance normalization to standardize each
variable. Following this, the time series is segmented into
patches of varying lengths using a patch-based tokenization,
enabling the capture of multi-scale temporal features span-
ning both short-term and long-term dependencies. These
patches are subsequently processed by multiple experts, in-
cluding GPMs for general feature representation and DSMs
tailored for time-series forecasting. Each expert extracts fea-
tures from input patches and integrates their outputs based
on the scoring results of Adaptive Weighted Gating Network.
The fused results are then passed through Linear Head to
generate the final predictions. Furthermore, while AdaMixT
inherently employs a channel-independent design, its archi-
tecture is highly flexible and can be seamlessly extended to
other patch-based time series models, such as Crossformer
[Zhang and Yan, 2023], for modeling inter-variable depen-
dencies. This versatility establishes AdaMixT as an efficient

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Algorithm 1 Forcasting Process of AdaMixT
Input: Multivariate time series X1:L with M variables,
Look-back window L, Prediction horizon K
Parameters: Learning rate η, Batch size B, Patch length P ,
Stride S, Scale factors {F1, F2, . . . , Fn}
Output: Predictions X̂L+1:L+K

1: for i← 1 to M do
2: x norm

(i)
1:L ← Instance Normalization(x(i)

1:L)
3: end for
4: for i← 1 to M do
5: for j ← 1 to n do
6: p

(i)
j ←MF Extract(x norm

(i)
1:L, P · Fj , S · Fj)

7: end for
8: end for
9: for i← 1 to M do

10: for j ← 1 to n do
11: E

(i)
j ← Expert Modelj(p

(i)
j )

12: end for
13: G(i) ← Gating Network(x norm

(i)
1:L)

14: fused feature(i) ←
∑n

j=1 G
(i)
j · E

(i)
j

15: end for
16: for i← 1 to M do
17: x̂

(i)
L+1:L+K ← Linear Head(fused feature(i))

18: end for
19: return X̂L+1:L+K

and generalizable solution for time series forecasting tasks.

Forward Process. We denote the i-th univariate sequence
of length L as x(i)

1:L = (x
(i)
1 , . . . ,x

(i)
L ), where i = 1, . . . ,M .

The input sequence (x1, . . . ,xL) is divided into M univari-
ate sequences x(i) ∈ R1×L, each independently processed by
a model consisting of multiple experts, with each sequence
using a different patch length. Finally, different weights
are assigned to each expert model, and multi-feature fusion
is performed. After passing through the final Linear Head,
the corresponding prediction results are returned as x̂(i) =

(x̂
(i)
L+1, . . . , x̂

(i)
L+K) ∈ R1×K .

Multi-scale Feature Extraction. Time segments com-
posed of multiple consecutive timestamps are essential for
learning effective predictive representations [Nie et al.,
2022]. Building on this idea, we incorporate multi-scale fea-
tures of time series into the modeling process by dividing
each input univariate time series x

(i)
1:L into patches of vary-

ing lengths, which may be overlapping or non-overlapping.
Specifically, we define the base patch length P and stride
S, and utilize Scale factors = {F1, F2, . . . , Fn} to adjust
the scale sizes, where n denotes the total number of defined
scales. Through this patching process, n patch sequences
x
(i)(j)
1:L ∈ RPj×Nj are generated, where Nj =

⌊
L−Pj

Sj

⌋
+ 2

represents the number of patches derived from the j-th patch-
ing operation. Here, Pj = P · Fj denotes the adjusted patch
length, and Sj = S · Fj represents the adjusted stride at the
j-th scale. To ensure alignment, the original sequence x(i)

1:L is
padded at the end with Sj repeated values before performing

the patching process.
By adopting patch lengths of varying scales, smaller Pj

values enable the x(i)(j)
1:L branch to specifically focus on short-

term temporal features with finer granularity, thereby achiev-
ing high-resolution modeling. In contrast, larger Pj values
are better suited for effectively capturing long-term seasonal
variations and trend characteristics, thus achieving the goal of
multi-scale feature extraction.
Expert Pool. We propose the concept of an Expert Pool,
designed to integrate the strengths of different models to en-
hance the performance of multivariate time series forecasting.
The Expert Pool consists of two core types of models: Gen-
eral Pre-trained Models and Domain-Specific Models. GPMs
(e.g., GPT-2 [Radford et al., 2019] and Llama [Touvron et al.,
2023]) demonstrate exceptional performance in understand-
ing complex time series data due to their strong generaliz-
ability and rich feature representation learning. In contrast,
DSMs (e.g., PatchTST [Nie et al., 2022]) focus on precise
pattern extraction in time series data, capturing fine-grained
features and effectively compensating for the limitations of
GPMs in specific tasks.

Unlike existing methods [Jin et al., 2023; Wang et al.,
2023] that typically utilize either GPM or DSM individually,
our approach combines these two types of models, signifi-
cantly improving prediction performance through the syner-
gistic effects. Both types of models are based on the Trans-
former architecture, whose core mechanism is the Attention
Mechanism. Specifically, patches are first projected into the
Transformer latent space of dimension D using a trainable
linear projection Wp ∈ RD×P , and a learnable positional
encoding Wpos ∈ RD×N is added to preserve temporal
order. The transformed patches are then processed by the
multi-head attention module, where Query (Q), Key (K),
and Value (V) matrices are computed as follows: Q

(i)
h =(

x
(i)
d

)T

WQ
h , K

(i)
h =

(
x
(i)
d

)T

WK
h , V

(i)
h =

(
x
(i)
d

)T

WV
h ,

where WQ
h ,W

K
h ∈ RD×dk and WV

h ∈ RD×D. The atten-
tion output O(i)

h ∈ RD×N : is then computed using a scaled

dot-product:
(
O

(i)
h

)T

= Softmax
(

Q
(i)
h K

(i)T
h√

dk

)
V

(i)
h .

Adaptive Weighted Gating Network. In this study, we
proposed AWGN, which differs from traditional simple fea-
ture fusion methods such as feature addition or concatena-
tion. This innovative approach effectively considers the im-
portance of different features, thereby enhancing the accuracy
of time series forecasting. As shown in Figure 2(b), AWGN is
a three-layer MLP network that dynamically assigns weights
G(x(i)) to the expert models based on the characteristics of
each input sequence x(i). These weights are subsequently
applied to the output features E(p(i)) of the expert models,
as described in Equation (2). Here, x(i) represents the time
series features before patch partitioning, p(i) denotes the se-
quence after partitioning, and n indicates the total number of
experts in the expert model pool.

y =
n∑

i=1

G(x(i)) · E(p(i)) (2)
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Dataset # Features # Timesteps Frequency Domain

Weather 21 52696 10 min Weather
Traffic 862 17544 1 hour Transportation

Electricity 321 26304 1 hour Electricity
ILI 7 966 1 week Illness

ETTh1 7 17420 1 hour Temperature
ETTh2 7 17420 1 hour Temperature
ETTm1 7 69680 15 min Temperature
ETTm2 7 69680 15 min Temperature

Table 1: Statistics of datasets in various domains.

Finally, the features weighted by AWGN are aggregated and
passed through Linear Head to generate the final prediction
values. This scoring and weighted aggregation mechanism
offers a more efficient approach to integrating multi-feature
information for time series forecasting tasks.
Loss Function. We utilize the Mean Squared Error (MSE)
loss to quantify the discrepancy between the predictions and
the ground truth. The loss in each channel is gathered and
averaged over M time series to get the overall objective loss.

LMSE = Ex
1

M

M∑
i=1

∥∥∥x̂(i)
t:t+K−1 − x

(i)
t:t+K−1

∥∥∥2
2

(3)

Instance Normalization. This technique has been recently
introduced to address the distribution shift between training
and testing data [Ulyanov et al., 2016]. It works by normaliz-
ing each time series instance x(i) to have a zero mean and unit
standard deviation. Specifically, each x(i) is normalized be-
fore patching, and the mean and standard deviation are added
back to the output prediction afterward.

4 Experiments
4.1 Experimental Setup
Dataset. We conduct experiments on eight widely rec-
ognized benchmarks, namely Weather, Traffic, Electricity,
ILI, and four ETT datasets (ETTh1, ETTh2, ETTm1, and
ETTm2), which were originally introduced by [Wu et al.,
2021]. The statistics are summarized in Table 1.
Baselines. We evaluate AdaMixT against ten SOTA base-
lines across four categories: (i) LLM-based models, in-
cluding TIME-LLM [Jin et al., 2023] and GPT4TS [Zhou
et al., 2023]; (ii) Multi-scale time series models, such
as TimeMixer [Wang et al., 2024], MICN [Wang et al.,
2023], and TimesNet [Wu et al., 2022]; (iii) Transformer-
based models, including iTransformer [Liu et al., 2023],
PatchTST [Nie et al., 2022], FEDformer [Zhou et al., 2022],
and Autoformer [Wu et al., 2021]; and (iv) the MLP-based
model, DLinear [Zeng et al., 2023].
Implementation Details. To ensure the fairness of exper-
iments, all baseline models are configured according to the
settings in their official open-source repositories and evalu-
ated using a unified evaluation framework, TSLib 1. All ex-
periments are implemented based on PyTorch [Paszke, 2019]

1https://github.com/thuml/Time-Series-Library
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Figure 3: Average MSE and MAE comparison with different model
variants on ETTh2, Traffic, and Weather datasets.

and executed on an NVIDIA A100-80G GPU. The default op-
timizer for the experiments is Adam [Kingma and Ba, 2014],
and each experiment is repeated three times, with the average
results reported.

4.2 Performance Comparison
Table 2 presents the experimental results for long-term multi-
variate forecasting, highlighting the substantial advantages of
our model. Specifically, compared to LLM-based methods,
our model reduces MSE and MAE by 13.19% and 5.35%,
respectively. When compared to Multi-scale models, the re-
ductions are 24.99% and 15.14%, respectively. Relative to
the DLinear model, MSE and MAE decrease by 22.73%
and 13.35%. Furthermore, our model exhibits even more
significant improvements over other transformer-based mod-
els. Notably, even when compared with SOTA models such
as TIME-LLM [Jin et al., 2023] and PatchTST [Nie et al.,
2022], our model consistently delivers superior performance.
These results strongly demonstrate the robustness and superi-
ority of our approach across various datasets.

4.3 Model Analysis
Ablation Study. To comprehensively evaluate the contribu-
tions of the key components—GPM, DSM, and AWGN—to
the overall performance of the AdaMixT, we conducted a se-
ries of ablation experiments. These experiments systemati-
cally removed each component, allowing us to compare the
performance of the resulting model variants and quantify the
impact of each element.

As shown in Figure 3, the ablation study results demon-
strate that the complete AdaMixT model achieves the best
performance on the ETTh2, Weather, and Traffic datasets,
while removing any single module leads to a decrease in pre-
diction accuracy. For example, on the ETTh2 dataset, remov-
ing GPM and DSM results in performance degradation, high-
lighting the critical role of GPM in extracting general feature
representations and the significant value of DSM in modeling
temporal features. Notably, the most substantial performance
drop is observed when AWGN is removed, with both MSE
and MAE significantly higher than other variants. This find-
ing underscores the pivotal role of AWGN in multi-scale fea-
ture fusion and its importance in improving prediction accu-
racy. Similar trends are observed on the Weather and Traffic
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Method
AdaMixT

(Ours)
TIME-LLM

(2023)
GPT4TS
(2023)

TimeMixer
(2024)

MICN
(2023)

TimesNet
(2022)

iTransformer
(2023)

PatchTST
(2022)

FEDformer
(2022)

Autoformer
(2021)

DLinear
(2023)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er

96 0.145 0.196 0.149 0.200 0.162 0.212 0.161 0.209 0.161 0.229 0.172 0.220 0.175 0.216 0.149 0.198 0.238 0.314 0.249 0.329 0.176 0.238
192 0.190 0.238 0.193 0.243 0.204 0.248 0.207 0.250 0.220 0.281 0.219 0.261 0.225 0.258 0.194 0.241 0.275 0.329 0.325 0.370 0.218 0.277
336 0.243 0.279 0.243 0.284 0.254 0.286 0.264 0.292 0.278 0.331 0.280 0.306 0.280 0.298 0.245 0.282 0.339 0.377 0.351 0.391 0.262 0.313
720 0.310 0.332 0.315 0.336 0.326 0.337 0.344 0.343 0.311 0.356 0.365 0.359 0.361 0.351 0.314 0.334 0.389 0.409 0.415 0.426 0.327 0.367
Avg 0.222 0.261 0.225 0.266 0.237 0.271 0.244 0.274 0.243 0.299 0.259 0.287 0.260 0.281 0.226 0.264 0.310 0.357 0.335 0.379 0.246 0.299

Tr
af

fic

96 0.358 0.248 0.376 0.280 0.388 0.282 0.466 0.293 0.519 0.309 0.593 0.321 0.394 0.269 0.360 0.249 0.576 0.359 0.597 0.371 0.413 0.288
192 0.378 0.254 0.397 0.294 0.407 0.290 0.507 0.301 0.537 0.315 0.617 0.336 0.412 0.277 0.379 0.256 0.610 0.380 0.607 0.382 0.423 0.287
336 0.390 0.263 0.420 0.311 0.412 0.294 0.525 0.309 0.534 0.313 0.629 0.336 0.425 0.283 0.392 0.264 0.608 0.375 0.623 0.387 0.438 0.300
720 0.428 0.287 0.448 0.326 0.450 0.312 0.552 0.325 0.577 0.325 0.640 0.350 0.460 0.301 0.432 0.286 0.621 0.375 0.639 0.395 0.466 0.315
Avg 0.389 0.263 0.410 0.303 0.414 0.295 0.513 0.307 0.542 0.316 0.620 0.336 0.423 0.283 0.391 0.264 0.604 0.372 0.617 0.384 0.435 0.298

E
le

ct
ri

ci
ty

96 0.118 0.214 0.137 0.244 0.139 0.238 0.120 0.215 0.164 0.269 0.168 0.272 0.148 0.240 0.129 0.222 0.186 0.302 0.196 0.313 0.141 0.240
192 0.146 0.237 0.158 0.266 0.153 0.251 0.170 0.261 0.177 0.285 0.184 0.289 0.164 0.256 0.147 0.240 0.197 0.311 0.211 0.324 0.158 0.260
336 0.160 0.258 0.183 0.292 0.169 0.266 0.187 0.278 0.193 0.304 0.198 0.300 0.178 0.271 0.163 0.259 0.213 0.328 0.214 0.327 0.171 0.271
720 0.194 0.289 0.247 0.348 0.206 0.297 0.228 0.313 0.212 0.321 0.220 0.320 0.211 0.300 0.197 0.290 0.233 0.344 0.236 0.342 0.206 0.304
Avg 0.155 0.250 0.181 0.288 0.167 0.263 0.176 0.267 0.187 0.295 0.193 0.295 0.175 0.267 0.159 0.253 0.207 0.321 0.214 0.327 0.169 0.269

IL
I

24 1.384 0.757 1.708 0.765 2.063 0.881 1.358 0.763 2.684 1.112 2.317 0.934 1.638 0.831 1.319 0.754 2.624 1.095 2.906 1.182 1.964 0.975
36 1.300 0.755 1.634 0.781 1.868 0.892 1.432 0.826 2.667 1.068 1.972 0.920 1.742 0.879 1.430 0.834 2.516 1.021 2.585 1.038 2.080 0.998
48 1.475 0.793 1.597 0.769 1.790 0.884 1.551 0.814 2.558 1.052 2.238 0.940 1.826 0.932 1.553 0.815 2.505 1.041 3.024 1.145 2.163 1.043
60 1.460 0.821 1.565 0.754 1.979 0.957 1.614 1.827 2.747 1.110 2.027 0.928 1.954 0.973 1.470 0.788 2.742 1.122 2.761 1.114 2.396 1.112

Avg 1.405 0.782 1.626 0.767 1.925 0.904 1.489 1.058 2.664 1.086 2.139 0.931 1.790 0.904 1.443 0.798 2.597 1.070 2.819 1.120 2.151 1.032

E
T

T
h1

96 0.360 0.393 0.398 0.414 0.376 0.397 0.381 0.398 0.421 0.431 0.384 0.402 0.386 0.405 0.370 0.399 0.376 0.415 0.435 0.446 0.422 0.448
192 0.398 0.418 0.442 0.440 0.416 0.418 0.442 0.430 0.474 0.487 0.436 0.429 0.441 0.436 0.413 0.421 0.423 0.446 0.456 0.457 0.419 0.430
336 0.398 0.427 0.456 0.450 0.442 0.433 0.501 0.460 0.770 0.672 0.521 0.500 0.491 0.461 0.422 0.436 0.444 0.462 0.486 0.487 0.460 0.462
720 0.453 0.465 0.602 0.545 0.477 0.456 0.544 0.505 0.770 0.672 0.493 0.505 0.509 0.494 0.447 0.466 0.469 0.492 0.515 0.517 0.521 0.500
Avg 0.402 0.426 0.475 0.462 0.428 0.426 0.467 0.448 0.559 0.535 0.458 0.450 0.457 0.449 0.413 0.431 0.428 0.454 0.473 0.477 0.449 0.461

E
T

T
h2

96 0.260 0.328 0.309 0.362 0.285 0.342 0.288 0.340 0.299 0.364 0.340 0.374 0.300 0.350 0.274 0.336 0.332 0.374 0.332 0.368 0.279 0.344
192 0.306 0.370 0.362 0.395 0.354 0.389 0.391 0.403 0.441 0.454 0.402 0.414 0.382 0.400 0.339 0.379 0.407 0.446 0.426 0.434 0.361 0.401
336 0.306 0.372 0.376 0.409 0.373 0.407 0.422 0.427 0.654 0.567 0.452 0.452 0.424 0.432 0.329 0.380 0.400 0.447 0.477 0.479 0.466 0.473
720 0.376 0.418 0.405 0.436 0.406 0.441 0.442 0.451 0.956 0.716 0.462 0.468 0.426 0.445 0.379 0.422 0.412 0.469 0.453 0.490 0.398 0.417
Avg 0.312 0.372 0.363 0.401 0.355 0.395 0.386 0.405 0.588 0.525 0.414 0.427 0.383 0.407 0.330 0.379 0.388 0.434 0.422 0.443 0.351 0.409

E
T

T
m

1

96 0.288 0.341 0.288 0.343 0.292 0.346 0.317 0.358 0.316 0.362 0.338 0.375 0.341 0.376 0.290 0.342 0.326 0.390 0.510 0.492 0.303 0.346
192 0.328 0.369 0.347 0.378 0.332 0.372 0.367 0.387 0.363 0.390 0.374 0.387 0.381 0.395 0.332 0.369 0.365 0.415 0.514 0.495 0.338 0.367
336 0.359 0.388 0.368 0.394 0.366 0.394 0.388 0.402 0.408 0.426 0.410 0.411 0.419 0.419 0.366 0.392 0.392 0.425 0.510 0.492 0.375 0.393
720 0.415 0.418 0.421 0.423 0.417 0.421 0.454 0.443 0.481 0.476 0.478 0.450 0.486 0.456 0.416 0.420 0.446 0.458 0.527 0.493 0.427 0.422
Avg 0.348 0.379 0.356 0.385 0.352 0.383 0.382 0.398 0.392 0.414 0.400 0.406 0.407 0.412 0.351 0.381 0.382 0.422 0.515 0.493 0.361 0.382

E
T

T
m

2

96 0.163 0.252 0.168 0.257 0.173 0.262 0.175 0.259 0.179 0.275 0.187 0.267 0.184 0.267 0.165 0.255 0.180 0.271 0.205 0.293 0.165 0.257
192 0.217 0.290 0.219 0.293 0.229 0.301 0.237 0.299 0.307 0.376 0.249 0.309 0.253 0.312 0.220 0.292 0.252 0.318 0.278 0.336 0.227 0.307
336 0.272 0.330 0.275 0.332 0.286 0.341 0.296 0.338 0.325 0.388 0.321 0.351 0.315 0.352 0.274 0.329 0.324 0.364 0.343 0.379 0.285 0.342
720 0.361 0.383 0.367 0.335 0.378 0.401 0.393 0.395 0.502 0.490 0.408 0.403 0.412 0.406 0.362 0.385 0.410 0.420 0.414 0.419 0.398 0.417
Avg 0.253 0.314 0.257 0.304 0.267 0.326 0.275 0.323 0.328 0.382 0.291 0.333 0.291 0.334 0.255 0.315 0.292 0.343 0.310 0.357 0.269 0.331

1st Count 38 30 2 5 0 3 0 0 0 0 0 0 0 0 2 3 0 0 0 0 0 1

Table 2: Long-term forecasting results on different datasets. “Avg” is the average of all considered prediction lengths. Lower MSE/MAE
indicates better performance. We use prediction lengths K ∈ {24, 36, 48, 60} for ILI and K ∈ {96, 192, 336, 720} for the others. The best
and second-best results are marked in bold and underlined, respectively.
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Figure 4: Multivariate long-term forecasting results with different
pretrained models in AdaMixT.

datasets, further confirming the importance of each module in
enhancing model performance.

Results with Different Models. In the main experiments,
AdaMixT utilizes GPT-2 [Radford et al., 2019] as GPM. To
further validate the effectiveness of the model, we also per-

form comparative experiments using BERT and LLaMA-7B.
The experimental results in Figure 4 indicate that the perfor-
mance differences among BERT, GPT-2, and LLaMA-7B are
minimal on the ETTh1, Weather, and Traffic datasets. This
finding demonstrates the high robustness of AdaMixT in se-
lecting GPMs, as it consistently delivers stable performance
across various pretrained models.

Hyperparameter Sensitivity. We conducte a sensitivity
analysis on 3 key hyperparameters, including the number of
layers in the backbone model, the look-back window, and the
number of experts. Results are shown in Figure 5. Based on
the results, we summarize the following conclusions:

• Backbone Layers: The number of layers in the backbone
is positively correlated with the predictive performance.
This indicates that, even after fusion, GPM retain favor-
able scaling laws with respect to layer depth, which posi-
tively influences model performance.

• Look-back Window: The Look-back window directly af-
fects prediction accuracy, especially at extended forecast-
ing horizons. This observation aligns with the patterns
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Figure 5: Sensitivity analysis of three key hyperparameters on the ETTh1 dataset.

Method AdaMixT(1, 1/2) AdaMixT(1, 1) AdaMixT(1, 2)

Metric MSE MAE MSE MAE MSE MAE

IL
I

24 1.702 0.854 1.630 0.824 1.384 0.757
36 1.753 0.862 1.509 0.816 1.300 0.755
48 1.737 0.860 2.023 0.941 1.475 0.793
60 1.560 0.839 1.630 0.891 1.460 0.821

E
T

T
h1

96 0.360 0.393 0.366 0.399 0.381 0.408
192 0.398 0.418 0.400 0.415 0.412 0.423
336 0.398 0.427 0.411 0.431 0.407 0.428
720 0.453 0.465 0.459 0.470 0.571 0.547

Table 3: Impact of different feature scales on prediction accuracy for
ILI and ETTh1 datasets. The best results are marked in bold.

found in traditional models, demonstrating that longer
historical inputs can effectively enhance performance.

• Number of Experts: The experimental results indicate
that increasing the number of expert models can effec-
tively capture features at different scales, thereby signifi-
cantly improving the accuracy of time series forecasting.
This result validates the effectiveness of the feature fusion
mechanism in the AdaMixT. However, caution should be
taken as the model may be prone to overfitting.

Scale Factors Study. As shown in Algorithm 1, the setting
of scale factors determines the granularity of feature extrac-
tion. The selection of the appropriate parameters is critical to
the accuracy of the prediction. To further investigate this, we
conduct an analysis of the impact of different feature scale
settings on prediction performance, using the ILI and ETTh1
datasets as examples.

Through a cyclic study of these two datasets, we find that
the cyclicity of ILI is significantly longer than that of ETTh1.
Based on this observation, we employ two expert models in
the experiment, with the scale factor for GPM set to 1, and
the scale factor range for the DSM set to {1/2, 1, 2}. The
results, as shown in Table 3, indicate that for datasets with
longer periodicities, using larger scale factors improves pre-
diction performance (and vice versa). This finding suggests
that when selecting scale factors, the intrinsic characteristics
of the time series should be considered to achieve optimal
prediction results.

Inference Time Study. In order to evaluate the practical ap-
plicability, we compare the inference time of AdaMixT with
current similar methods. As shown in Figure 6, AdaMixT

ETTh1 ETTm1 Weather0

20

40

60

80

Ti
m

e 
(s

)

AdaMixT TiME-LLM GPT4TS TimeMixer MICN

Figure 6: Comparison of inference time for different models across
ETTh1, ETTm1, and Weather datasets.

demonstrates superior inference time compared with other
complex multi-scale feature fusion models and LLM-based
models. This advantage is primarily attributed to the fact that
AdaMixT does not require complex prompt generation, post-
processing, or frequency domain transformations.

5 Conclusion and Future Works

In this paper, we present AdaMixT, which is designed to ad-
dress the limitations of existing methods in terms of gener-
alizability and multi-scale feature fusion. AdaMixT incorpo-
rates three key innovations: Multi-scale Feature Extraction,
Expert Pool, and Adaptive Weighted Gating Network, signif-
icantly enhancing the model’s performance. To the best of our
knowledge, this work is the first to combine the general fea-
ture representation capability of GPM with the fine-grained
modeling ability of DSM to construct the expert pool. Ad-
ditionally, we design AWGN that evaluates the weights of
different models, enabling effective fusion of multi-scale fea-
tures. Extensive experimental results on multiple benchmark
datasets demonstrate that our approach outperforms existing
forecasting approaches.

Our model offers new insights into multi-scale feature fu-
sion in time series analysis. In the future, we aim to further
explore multi-scale fusion methods and strengthen the com-
plementary strengths of GPM and DSM, which will be a cru-
cial research direction moving forward.
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