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Abstract
Fair clustering has recently received considerable
attention where numerous distinct fairness notions
are developed. Despite being well-justified, these
fairness notions are frequently studied in isola-
tion, leaving the need to explore how they can be
combined. Building on prior work, we focus on
the doubly constrained fair clustering that incorpo-
rates two widely adopted demographic represen-
tation fairness notions in clustering: group fair-
ness and data summarization fairness. Both fair-
ness notions extend classical clustering formulation
by associating each data point with a demograph-
ic label, where group fairness requires each cluster
to proportionally reflect the population-level distri-
bution of demographic groups, and data summa-
rization fairness ensures the chosen facilities main-
taining the population-level demographic represen-
tation of each group. In this paper, we study
the Fixed-Parameter Tractable (FPT) approxima-
tion algorithms for doubly constrained fair cluster-
ing under the k-median objective, referred to DF-
k-MED. The previous algorithms typically enu-
merate different demographic groups or construct
fairness coreset, parameterized by both the num-
ber of opened facilities and demographic labels.
By further leveraging the local fairness informa-
tion, we propose a color-agnostic structural method
that obtains the parameterized result independen-
t of the number of demographic labels while ef-
fectively handling the combination of both fairness
constraints. Specifically, we design a constant fac-
tor approximation for the DF-k-MED problem with
fairness violation by one, which runs in FPT(k)-
time, where k is the number of opened facilities.

1 Introduction
Clustering is a fundamental problem in machine learning,
and has numerous applications in data mining, image clas-
sification, and beyond. Given a set of points in a metric s-
pace, the goal is to partition these points into several disjoin-

∗Corresponding author

t clusters such that points within the same cluster are close
to each other, while points in different clusters remain rela-
tively far apart. Several classic clustering models have been
extensively studied, such as k-center, k-means [Huang et al.,
2024], and k-median. In this paper, we focus on the k-median
problem, in which we are given a set C of clients, a set F
of facilities in a metric space (X , d), and a positive integer
k. The goal of the metric k-median problem is to open a
subset in F of k facilities such that the total distance from
each client to its closest opened facility is minimized. The
metric k-median problem is NP-hard, leading to a rich line
of research on obtaining efficient approximation algorithms.
The first constant-factor approximation algorithm for the met-
ric k-median problem was given by [Charikar et al., 2002],
which was improved to (3 + ε) by [Arya et al., 2004] using a
local-search method [Huang et al., 2023]. Currently, the best
known approximation factor for the metric k-median prob-
lem is 2.675 [Byrka et al., 2017] by the dependent rounding
technique, and the problem is known to be NP-hard to ap-
proximate to a factor less than 1 + 2/e [Guha and Khuller,
1998]. Moreover, finding an optimal solution for the metric
k-median problem is known to be W[2]-hard if parameter-
ized by k due to a reduction by [Guha and Khuller, 1998]
(nO(1)g(k) time for an input size of n and a positive function
g, denoted by FPT(k)-time for brevity). Recently, [Cohen-
Addad et al., 2019] presented approximation algorithm in
FPT(k)-time with ratio (1+2/e+ ε) for the metric k-median
problem, which is essentially tight assuming the Gap-ETH.

Recently, fair clustering has been extensively studied, and
lots of definitions about fairness have been proposed, such
as group fairness [Ahmadian et al., 2019; Bera et al., 2019;
Bercea et al., 2019; Harb and Lam, 2020], data summariza-
tion fairness [Chiplunkar et al., 2020; Jones et al., 2020;
Kleindessner et al., 2019; Angelidakis et al., 2022; Zhang
et al., 2024b], proportional fairness [Chen et al., 2019;
Micha and Shah, 2020], individual fairness [Mahabadi and
Vakilian, 2020; Negahbani and Chakrabarty, 2021], etc. De-
spite these notions being well-justified, they are often exam-
ined independently. Motivated by the fact that many cluster-
ing applications require a unified solution that simultaneously
satisfies multiple fairness notions, [Dickerson et al., 2023] in-
troduced the doubly constrained fair clustering that integrates
both group fairness and data summarization fairness. Both
fairness notions are motivated by the principle of disparate
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impact [Feldman et al., 2015], which asserts that differen-
t groups should receive equitable treatment, making the in-
tersection of both notions a natural consideration. As noted
in [Dickerson et al., 2023], combining group fairness and data
summarization fairness is particularly relevant, since both fo-
cus on demographic fairness and the representation of group-
s. Furthermore, the incompatibility is studies between the
above two fairness constraints and a family of other fairness
constraints. In this paper, following the prior work, we fo-
cus on the doubly constrained fair clustering. More precise-
ly, we consider the doubly constrained fair clustering under
the k-median objective, referred to Doubly Constrained Fair
k-Median (DF-k-MED). In the doubly constrained fair clus-
tering instance, we are given a set of facilities and a set of
clients in a metric space, where both facilities and clients are
divided into several disjoint groups, and each facility or client
is assigned a color to denote which group it is in. The goal
is to form k clusters such that the clustering objective is min-
imized, while ensuring that the proportion of clients of each
color in every cluster is within a specified range, and that the
number of opened facilities of each color is equal to a given
value.

[Chierichetti et al., 2017] introduced the definition of fair-
ness involving only two colors, requiring that the propor-
tion of both colors has approximately equal representation
in every cluster. [Bercea et al., 2019] proposed the notion
of group fairness, and provided a 4.675-approximation for
the k-median objective, with an additive 1 violation for the
group fairness constraints using linear programming and min-
cost flow network. The violation value represents the extent
to which the fairness constraints are violated (see [Bercea et
al., 2019] with details). [Ahmadian et al., 2019] studied the
group fairness under the k-center objective with only an up-
per bound constraint, and presented a 3-approximation with
an additive 2 violation, where the definition of violation dif-
fers from that in [Bercea et al., 2019], using linear program-
ming and min-cost flow network. For the group fairness un-
der the condition that colors are allowed to overlap, [Bera et
al., 2019] developed a (ρ+ 2)-approximation algorithm with
(4∆+3) violation, where ρ is the factor given by any approx-
imation algorithm for the k-median problem, and ∆ is the
maximum number of colors a single point can belong to, re-
spectively. Regarding parameterized result, [Bandyapadhyay
et al., 2024] employed the fair coreset technique, and pro-
posed a (3 + ε)-approximation for the group k-median prob-
lem, respectively, in FPT(k,m)-time where m is the number
of client colors.

[Kleindessner et al., 2019] considered the data summariza-
tion fairness, and gave a constant-factor approximation algo-
rithm in linear-time based on a swap technique for the k-
center objective. This approximation was subsequently im-
proved to 3 by [Jones et al., 2020] through the maximum
matching method, matching the approximation ratio of the
matroid center problem [Chen et al., 2016] that generalize
the data summarization fairness for the k-center objective.
For data summarization under the k-median objective, which
can be generalized to the matroid median problem [Krish-
naswamy et al., 2011], the best known approximation ratio is
(7.081 + ε) due to [Krishnaswamy et al., 2018]. [Thejaswi

et al., 2022] extended data summarization fairness by intro-
ducing an additional lower-bound constraint on the number of
selected facilities, and provided a (1+2/e+ε)-approximation
for the k-median objective, running in FPT(k, t)-time, where
t denotes the number of facility colors. Furthermore, [Zhang
et al., 2024a] proposed (1 + ε)-approximation algorithm for
the k-median objective in Euclidean metrics, operating in
FPT(k, t)-time.

[Dickerson et al., 2023] considered the doubly constrained
fair clustering for the k-center objective, and the method is
not workable for the DF-k-MED problem due to differen-
t optimization objective. The previous parameterized algo-
rithms in [Bandyapadhyay et al., 2024; Zhang et al., 2024a;
Thejaswi et al., 2022] mainly enumerate feasible facilities
based on their colors or construct coreset satisfying fairness
constraints. However, these results are parameterized by both
the number of opened facilities and the number of colors. The
reason behind is that the related color information of fairness
notions is essential for satisfying the group fairness or data
summarization fairness. Therefore, in doubly constrained fair
clustering, it seems inevitable that the approximation result-
s have parameterized dependency on the number of colors.
Moreover, due to the existence of two fairness constraints,
the problem is considerably more challenging than its non-
fair or one-fair counterpart. Since even if a set of k facilities
is provided, it remains NP-hard to find a solution satisfying
the group fairness constraints [Esmaeili et al., 2021]. There-
fore, we must strategically ensure that the resulting solution
satisfies both requirements while maintaining good approx-
imation guarantees. Naturally, for the DF-k-MED problem,
we then ask whether effective approximation algorithm can
be developed in FPT(k)-time.

1.1 Our Contributions
In this paper, we propose a color-agnostic structural method
to overcome the aforementioned obstacles. Our main con-
tribution provides a positive answer to the stated question,
summarized as follows.

• By exploring the local fairness information, we propose
a color-agnostic structural method, which directly avoid-
s the enumeration of clients or facilities with differen-
t colors, and exploits the inherent structures associat-
ed with fairness notions itself. Based on the proposed
method, we obtain constant-factor approximation result
for the DF-k-MED problem in FPT(k)-time, parameter-
ized solely by the number of opened facilities.

• The proposed color-agnostic structural method simulta-
neously handles both fairness constraints while main-
taining good approximation guarantees. Specifically,
we theoretically prove that there must exist a (4 + ε)-
approximation for the DF-k-MED problem, running in
FPT time.

We summarize the results in the literature and ours in Ta-
ble 1. Formally, we have following result for the DF-k-MED
problem.

Theorem 1. For any ε > 0, there exists a randomized (4+ε)-
approximation algorithm of fairness violation by one for the
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Fairness Constraints Approximation Time Reference

Group Fair 3 + ε FPT(k,m) [Bandyapadhyay et al., 2024]
Data Summarization 1 + 2/e+ ε FPT(k, t) [Thejaswi et al., 2022]

Doubly Fair 4 + ε FPT(k) Theorem 1

Table 1: Parameterized approximation results for the group fairness and data summarization fairness in metric space.

DF-k-MED problem with running time f(k, ε)nO(1), where
f(k, ε) = (O(ε−2k log k))k.

2 Preliminaries
For anym ∈ Z+, let [m] = {1, . . . ,m}. Given a metric space
(X , d), let F ⊆ X and C ⊆ X denote the set of facilities and
clients considered in this paper, respectively. Let |F∪C| = n.
Given a client c ∈ C and a subset H ⊆ F , let d(c,H) =
minf∈H d(c, f) be the distance from c to its nearest facility
inH.

Definition 2 (the metric k-median problem). An instance of
the k-median problem is denoted by ((X , d),F , C, k), where
(X , d) is a metric space, F ⊆ X is a set of facilities, C ⊆ X
is a set of clients, and k is a positive integer, respectively. The
goal is to find a subset H ⊆ F of k facilities such that the
cost

∑
v∈C d(c,H) is minimized.

The coreset is a commonly used tool in clustering algo-
rithms [Har-Peled and Mazumdar, 2004], defined formally as
follows.

Definition 3 (coreset). Given an instance ((X , d),F , C, k)
of the metric k-median problem and a parameter η > 0, a
coreset is a subset of clients C† ⊆ C with associated weights
{w(c) : c ∈ C†} such that for any subset of facilities H ⊆ F
of size k,

∑
c∈C† w(c)d(c,H) ∈ [1−η, 1+η] ·

∑
c∈C d(c,H).

The metric k-means problem has a similar definition of the
coreset. [Chen, 2009] introduced the first coreset for the met-
ric k-median problem, and the following result is the best
known construction.

Theorem 4 ([Feldman and Langberg, 2011]). Given an in-
stance ((X , d),F , C, k) of the metric k-median problem and
parameters η > 0, γ < 1/2, there exists a randomized al-
gorithm that, with probability at least (1 − γ), computes a
coreset C† ⊆ C of size |C†| = O(η−2(k log n + log 1

γ )) in
time O(k(n+ k) + log2 1

γ log2 1
n ).

Theorem 4 implies that the original client set C can be re-
duced such that the total distance to any chosen facility set is
distorted by at most a factor of (1 + η).

Definition 5 (the DF-k-MED problem). An instance of the
doubly constrained fair k-median problem is denoted by
((X , d),F ,P1, C,P2, ~θ, ~α, ~β, t,m, k), where (X , d) is a met-
ric space, F ⊆ X is a set of facilities with a partition
P1 = {F1, . . . ,Ft} satisfying ∪th=1Fh = F , C ⊆ X is a
set of clients with a partition P2 = {C1, . . . , Cm} satisfying
∪mh=1Ch = C, ~θ = (k1, . . . , kt) satisfying

∑t
h=1 kh = k,

~α = (α1, . . . , αm), ~β = (β1, . . . , βm) are three fairness vec-
tors, and t,m, k are three positive integers, respectively. The

goal is to find a subset H ⊆ F of k facilities and a map-
ping φ : C → H such that the cost

∑
v∈C d(c, φ(v)) is mini-

mized, and the following conditions hold: (1) The setH satis-
fies the data summarization fairness constraints, i.e., for any
h ∈ [t], |H ∩ Fh| ≤ kh; (2) The mapping φ satisfies the
group fairness constraints, i.e., for any f ∈ H, h ∈ [m],
βh ≤ |{c∈Ch|φ(c)=f}||{c∈C|φ(c)=f}| ≤ αh.

Given an instance ((X , d),F ,P1, C,P2, ~θ, ~α, ~β, t,m, k)
the DF-k-MED problem, a pair (H, φ) is called a feasible so-
lution of this instance ifH ⊆ F is a set with size k satisfying
data summarization fairness constraints, and φ : C → H is a
mapping satisfying group fairness constraints. Let (H∗, φ∗)
be an optimal solution with cost opt =

∑
c∈C d(c, φ∗(c)),

and let O∗1 , . . . ,O∗k be the corresponding k optimal clusters
under mapping φ∗ with C = ∪i∈[k]O∗i . For any i ∈ [k] and
h ∈ [m], let O∗i (h) be the set of clients in O∗i with color h.
Then, we have O∗i = ∪h∈[m]O∗i (h).

3 An Overview of Our Algorithms
In this paper, we propose a color-agnostic structural method
for the DF-k-MED problem based on the parameterized ap-
proximation framework developed by [Cohen-Addad et al.,
2019]. This framework first identifies a set of clients, called
leaders, which are close to the facilities opened by an optimal
solution. It then selects the facilities to open by searching
within annular regions centered on these leaders, where the
radius of each region approximates the distance between the
leader and its associated facility. Over the past few years, this
framework has yielded various approximation algorithms in
FPT time for clustering problem [Cohen-Addad and Li, 2019;
Bandyapadhyay et al., 2024; Zhang et al., 2024a; Thejaswi et
al., 2022], including capacitated clustering, fair clustering,
etc. In the context of fair clustering, due to the existence of
fairness constraints, it seems unavoidable that the parameter-
ized approximation results include the parameter with respect
to the number of colors. For instance, [Thejaswi et al., 2022]
enumerated the set of facilities with different colors to satisfy
the data summarization fairness constraints, while [Bandya-
padhyay et al., 2024] constructed a composable coreset for
group fairness through separately sampling on clients with
different colors, resulting in the parameterized dependency
on the number of colors to facilities or clients. Instead of
enumerating feasible facilities or applying fair coreset tech-
niques, both of which depend on the number of colors, our
improved strategy avoids color-based parameters by adding
an additional partition matroid constraint on the selected fa-
cilities and enumerating clients without considering their col-
ors, based on the inherent structural properties exploited from
fairness constraints itself.
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We now provide an intuitive overview of our algorithm
for the DF-k-MED problem. The algorithm begins by utiliz-
ing a coreset technique for the k-median problem to reduce
the number of clients to a weighted set, without considering
fairness constraints, as incorporating fairness into the core-
set will incur parameter dependence on the number of col-
ors [Bandyapadhyay et al., 2024]. In the resulting weighted
set, our algorithm then identifies a set of leaders closed to the
facilities in an optimal solution. By guessing the leaders and
their distances to these facilities, the algorithm enumerates
potential configurations of facilities within suitable distance
ranges. Next, it constructs a monotone submodular func-
tion by introducing fictitious facilities, and solves a mono-
tone submodular maximization problem under two partition
matroid constraints, thus ensuring data summarization fair-
ness. Finally, a weighted fair assignment problem is defined
to assign the weighted clients to the chosen facilities satisfy-
ing the group fairness constraints, where a widely used linear
programming procedure guarantees the desired approxima-
tion ratio. By the above process, we develop an FPT(k)-time
approximation algorithm with approximation ratio (4 + ε) of
1 fairness violation for the DF-k-MED problem, where ε > 0
is a given parameter.

4 Parameterized Algorithm for Doubly
Constrained Fair Clustering

We now present our color-agnostic structural algorith-
m for the DF-k-MED problem. The high-level idea
of our algorithm is as follows. Consider an in-
stance ((X , d),F ,P1, C,P2, ~θ, ~α, ~β, t,m, k) of the DF-k-
MED problem and parameters η, γ, δ > 0. Let (H∗, φ∗)
be an optimal solution, where H∗ = {f∗1 , . . . , f∗k} is the
set of k facilities opened by the optimal solution. Our al-
gorithm consists of two phases. The first phase (steps 1-15
of Algorithm 1) starts with the coreset technique on the in-
stance with parameter η, yielding a weighted set C† of size
O(η−2k log n) and an associated weight functionw. Now our
goal is to identify a subset H ⊆ F satisfying the data sum-
marization fairness and a weighted assignment ψ from the
clients in C† to H, minimizing the corresponding cost. Note
that the first phase only focuses on the finding of H. Next
we guess a set of leaders and distances between the leaders
and the corresponding facilities. For any i ∈ [k], let `i be
the closest client in C† to f∗i ∈ H∗. We call `i the leader
of f∗i . Let λi be the distance d(`i, f

∗
i ), rounded down to the

closest integer power of (1 + δ) with parameter δ. The al-
gorithm then enters an enumeration phase, with |C†|k choices
for {`1, . . . , `k} and O(δ−1 log n)k choices for {λ1, . . . , λk}
(see Subsection 4.1 with more details). By enumerating over
all |C†|kO(δ−1 log n)k combinations, we can assume that we
have identified the correct leaders and distances. For each
leader `i (i ∈ [k]), let Ni denote the set of facilities f ∈ F
satisfying λi ≤ d(f, f∗i ) < (1 + δ)λi. To construct a mono-
tone submodular function, we add a fictitious facility f ′i to
each Ni (i ∈ [k]). For any H ⊆ F , we then formulate a
monotone submodular maximization problem under two par-
tition matroid constraints to achieve the desired set H that
satisfies data summarization constraints. The second phase

Algorithm 1: An algorithm for the DF-k-MED problem
Input: An instance

((X , d),F ,P1, C,P2, ~θ, ~α, ~β, t,m, k) of the
DF-k-MED problem, parameters η, γ, δ > 0

Output: A pair (H, φ)
1 Let C† be the weighted set of clients constructed by

Theorem 4 with ((X , d),F , C, k, η, γ) as the input, and
let w : C† → Z+ be the corresponding weighted
function;

2 Let dmin and dmax be the maximum and minimum
distances between any two points in F ∪ C, respectively;

3 Λ← {dmin, (1 + δ)dmin, (1 + δ)2dmin, . . . , dmax};
4 for each multi-set {`1, . . . , `k} ⊆ C† do
5 for each multi-set {λ1, . . . , λk} ⊆ Λ do
6 for i = 1 to k do
7 Ni ← {f ∈ F | λi ≤ d(f, `i) < (1 + δ)λi};
8 Construct a new facility f ′i , and add it to Ni;

for each f ∈ Ni do
9 d(f, f ′i)← 2λi;

10 for each c /∈ Ni do
11 d(c, f ′i)← minf∈Ni

(d(c, f) + d(f, f ′i));

12 F ′ ← {f ′1, . . . , f ′k};
13 Define ∆(H) = Φ(C†,F ′)− Φ(C†,H ∪ F ′) for

anyH ⊆ F ;
14 FindH ⊆ F maximizing function ∆(H) such

that |H ∩ Ni| = 1 for any i ∈ [k], and
|H ∩ Fi| = kh for any h ∈ [t];

15 OutputH such that Φ(C†,H) is minimized among allH
computed in Line 14;

16 ψ ← solve the Weighted Assignment problem on C† and
H;

17 φ← obtain the assignment from the original client set C
toH based on ψ;

18 return (H, φ).

(steps 16-17 of Algorithm 1) aims to find an assignment of
clients from C† to the facilities inH satisfying the group fair-
ness constraints. This phase avoids the use of fair coreset. To
this end, we define a weighted assignment problem, and prove
theoretical that there must exist a (4 + ε)-approximate solu-
tion for the DF-k-MED problem. For obtaining such solution-
s, we model the defined problem to the linear programming
procedure, and utilize the min-cost flow network to solve it.
Algorithm 1 details the specific process of our parameterized
algorithm for the DF-k-MED problem.

4.1 Finding Feasible Facilities
In this section, we describe how to select a set H of k facil-
ities that satisfies the data summarization fairness constraints
in the first phase. The previous method in [Thejaswi et al.,
2022] enumerated the feasible facilities with different colors,
leading to the result parameterized by the number of colors
to facilities. To avoid the enumeration, we explore the inher-
ent structure related to the data summarization fairness con-
straints, and model it to a partition matroid constraint.
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Consider an instance ((X , d),F ,P1, C,P2, ~θ, ~α, ~β, t,m, k)
of the DF-k-MED problem and a parameter η > 0. By ap-
plying a coreset construction with parameter η, we reduce
the original client set C to a weighted set C† of size
O(η−2k log n), where each client in C† is weighted by an
integer indicating how many original clients it represents.
However, the above process does not consider the inherent
structural information of the clients, such as their colors,
leading to a loss of the crucial attribute. Therefore, to address
the later group fairness constraints, we record the number of
points with each color assigned to each weighted client in
C†. Specifically, consider a client c ∈ C† with weight w(c),
and for any h ∈ [m], let nch denote the number of clients
with color h assigned to c. Consequently,

∑m
h=1 n

c
h = w(c).

Moreover, we introduce a function ρ : C → C† denoting the
mapping relation. By applying Theorem 4, we can obtain a
weighted instance ((X , d),F ,P1, C†, w,P2, ~θ, ~α, ~β, t,m, k).
For simplicity, we do not explicitly track the number of
clients in the original set with different color assigned to the
client in this weighted instance.

Recall that the goal of this section is to find a set H of fa-
cilities satisfying the data summarization fairness constraints.
Let H∗ = {f∗1 , . . . , f∗k} denote the set of k facilities opened
by an optimal solution. For each f∗i ∈ H∗ (i ∈ [k]), let `i be
the closest client in C† from f∗i . Assume that we have correct-
ly guessed the set of k leaders (i.e., {`1, . . . , `k}) with respect
to the k optimal facilities. We now discuss how to guess the
distance between f∗i and `i for any i ∈ [k]. Although the
optimal facility f∗i is unclear, it is known that d(f∗i , `i) must
be the distance between some facility and client in C ∪ F .
Thus, we can use the following discretization trick. Let dmin

and dmax be the minimum distance and the maximum dis-
tance of any two points in X , respectively. Then, the aspect
ratio of this metric is dmax

dmin
, capturing the ratio of the largest

to smallest pairwise distance among points in C ∪ F . It is
well-known that we can assume that the aspect ratio can be
bounded by polynomial in n [Cohen-Addad et al., 2019]. For
a small parameter δ > 0, we can guess the distance d(f∗i , `i)
from the set {dmin, (1 + δ)dmin, (1 + δ)2dmin, . . . , dmax},
which has at most log1+δ

dmax

dmin
= O(log n) possible values.

Assume that we have guess d(f∗i , `i) ∈ [λi, (1 + δ)λi) where
λi = (1 + δ)jdmin for some j ∈ [O(log n)]. Similarly, we
can guess the discretized distances, denoted by λ1, . . . , λk,
from each leader to its corresponding facility. Therefore, by
enumerating over |C†|k(O(log n))k choices, we can guess the
right `i and λi for all i ∈ [k].

For each leader `i (i ∈ [k]), we construct a facility set
Ni = {f ∈ F | λi ≤ d(f, `i) < (1 + δ)λi}. Then, if
we pick one arbitrary facility from each Fi, a good distance-
based property will be obtained with respect to an optimal
pick. However, the resulting set by this way fails to satis-
fy the data summarization fairness constraints, and incurs a
large loss in approximation guarantee. To achieve a better
approximation while satisfying fairness constraints, we first
construct a monotone submodular function, and then invoke
the monotone submodular maximization problem under two
partition matroid constraints, capturing the data summariza-
tion fairness constraints. We now show how to construct a

monotone submodular function. For each set Ni (i ∈ [k]),
we introduce a new facility f ′i , and add it to Ni. Further,
for each f ∈ Ni, we set d(f, f ′i) = 2λi. For each client
c ∈ C†, we define d(c, f ′i) = minf∈Ni

(d(c, f) + d(f, f ′i)).
Let F ′ = {f ′1, . . . , f ′k} be the set of k new facilities. For
any A ⊆ X , let Φ(C†,A) =

∑
c∈C† w(c)d(c,A). For any

set H ⊆ F , we define the improvement function ∆(H) =
Φ(C†,F ′) − Φ(C†,H ∪ F ′), and prove that it is monotone
and submodular.

Lemma 6. For anyH ⊆ F , the above defined function ∆(H)
is monotone and submodular with ∆(∅) = 0.

Proof. It is easy to see that ∆(∅) = 0 by definition. We
first show the function ∆(H) is monotone. Consider subset-
s H ⊆ H′ ⊆ F . We need to prove that ∆(H) ≤ ∆(H′).
Then, we have Φ(C†,F ′ ∪ H) =

∑
c∈C† d(c,F ′ ∪ H) ≥∑

c∈C† d(c,F ′ ∪ H′) = Φ(C†,F ′ ∪ H′). Thus, we have
∆(H) ≤ ∆(H′).

We now need to prove that the function ∆(H) is monotone
and submodular. Consider subsets H ⊆ H′ ⊆ F and facility
f ∈ F . For each client c ∈ C†, we have x − min(x, y) =
max(0, x− y), for any real numbers x and y. Then, we have

d(c,F ′ ∪H)− d(c,F ′ ∪ (H ∪ {f}))
=d(c,F ′ ∪H)−min(d(c,F ′ ∪H), d(c, {f}))
= max(0, d(c,F ′ ∪H)− d(c, {f}))
≥max(0, d(c,F ′ ∪H′)− d(c, {f}))
=d(c,F ′ ∪H′)−min(d(c,F ′ ∪H′), d(c, {f}))
=d(c,F ′ ∪H′)− d(c,F ′ ∪ (H′ ∪ {f})).

Thus, we have

∆(H ∪ {f})−∆(H)

=Φ(C†,F ′ ∪H)− Φ(C†,F ′ ∪H ∪ {f})

=
∑
c∈C†

w(c)d(c,F ′ ∪H)−
∑
c∈C†

w(c)d(c,F ′ ∪H ∪ {f})

≥
∑
c∈C†

w(c)d(c,F ′ ∪H′)−
∑
c∈C†

w(c)d(c,F ′ ∪H′ ∪ {f})

=Φ(C†,F ′ ∪H′)− Φ(C†,F ′ ∪H′ ∪ {f})
=∆(H′ ∪ {f})−∆(H′),

which proves that the function is submodular.

We apply the approximation algorithm of [Lee et al., 2009]
for monotone submodular maximization under multiple ma-
troid constraints. We are interested in the set H that consists
of one center from each Fi while satisfying the data sum-
marization constraints, since one such set is the desired H∗.
Here, we aims to maximize ∆(H) under two partition ma-
troid constraints, where the first one requires containing ex-
actly one facility from each set Ni, and the second one asks
for including at most kh facility from each set Fh. Note that
the latter one captures the data summarization fairness con-
straints. Let H be the output in step 15 of Algorithm 1. By
the result in [Lee et al., 2009], we have ∆(H) ≤ 1/2∆(H∗).
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Lemma 7. Consider an instance I of the DF-k-MED prob-
lem with parameters η, γ, δ > 0. Let C† and H =
{f1, . . . , fk} be the output in step 1 and step 15 of Algorith-
m 1, respectively. Then, for any parameter ε1 > 0, we have
Φ(C†,H) ≤ (2 + ε1)opt, where opt is the optimal cost of I.

Proof. Let F ′ = {f ′1, . . . , f ′k}. We first bound the cost
induced by the set that opens facilities in F ′. Consider a
client c ∈ C† with d(c,H) = d(c, fi). Observe that s-
ince `i is the closest client from f∗i , we have d(c, f∗i ) ≥
d(`i, f

∗
i ) ≥ λi/(1 + δ). Thus, by the triangle inequality and

the definition of facility f ′i , we have d(c, f ′i) ≤ d(c, f∗i ) +
d(f∗i , f

′
i) = d(c, f∗i ) + 2λi ≤ d(c, f∗i ) + 2(1 + δ)d(c, f∗i ) ≤

(3 + 2δ)d(c, f∗i ). Further, d(c,F ′) ≤ (3 + 2δ)d(c,H∗).
Combing over all client c ∈ C†,

∑
c∈C† w(c)d(c,F ′) =

(3+2δ)
∑
c∈C† w(c)d(c,H∗), and thus we have Φ(C†,F ′) ≤

(3 + 2δ)Φ(C†,H∗).
We next show that the set F ′ will not decrease the cost.

Consider a client c ∈ C† with d(c,H) = d(c, fi), i.e., fi is the
closest facility inH to c. Let σ(c) ∈ Ni be the closest facility
to c in Ni. We claim that client c is closer to fi ∈ H than to
f ′i ∈ F ′. Then, we have d(c, fi) ≤ d(c, σ(c)) +d(σ(c), `i) +
d(`i, fi) ≤ d(c, σ(c))+λi+λi = d(c, σ(c))+d(σ(c), f ′i) =
d(c, f ′i), where the first inequality follows from the triangle
inequality, and the second inequality and the second equality
use the definition of leader `i and facility f ′i , respectively.
Thus, d(c,H) ≤ d(c,F ′). Summing over all clients in C†,
we obtain

∑
c∈C† w(c)d(c,H) =

∑
c∈C† w(c)d(c,H ∪ F ′).

Thus, we have

Φ(C†,H) = Φ(C†,H ∪ F ′) = Φ(C†,F ′)−∆(H)

≤ Φ(C†,F ′)− 1/2∆(H∗)
≤ Φ(C†,F ′)− 1/2(Φ(C†,F ′)− Φ(C†,H∗))
= 1/2Φ(C†,F ′) + 1/2Φ(C†,H∗)
≤ 1/2 · (3 + 2δ)Φ(C†,H∗) + 1/2Φ(C†,H∗)
= (2 + δ)Φ(C†,H∗).

By Definition 3 and the fact that the cost induced by H∗ is
no more than that of (H∗, φ∗), we get Φ(C†,H∗) ≤ (1 +
η)Φ(C,H∗) ≤ (1 + η)opt. Thus, Φ(C†,H) ≤ (2 + ε1)opt
with ε1 = O(ηδ).

4.2 Solving the Weighted Assignment Problem
Recall that a set H satisfying the data summarization fair-
ness constraints is obtained in previous section. The goal of
this section is to find an assignment from the weighted clien-
t set C† to the facilities in H, where the assignment satis-
fies the group fairness. To proceed, we modify the weight-
ed instance ((X , d),F ,P1, C†, w,P†2 , ~θ, ~α, ~β, t,m, k), since
some structural information is not considered in the process
of constructing coreset. Recall that for each client c ∈ C†,
we record how many points with each color assigned to c, de-
noted as nc1, . . . , n

c
m. Then, we have

∑m
h=1 n

c
h = w(c). For

each client c ∈ C†, we divide c into m clients c1, . . . , cm,
where each client ch (h ∈ [m]) with the same position as
c is assigned a weight nch with color h. Let C‡ denote the
new constructed set with the corresponding weight function

w† : C‡ → Z+ ∪ {0}. Therefore, the above problem can be
defined as the following weighted assignment problem for-
mally.
Definition 8 (the Weighted Assignment problem). Given a
weighted set C‡ of clients in a metric space (X , d) asso-
ciated with weight function w† : C‡ → Z+ ∪ {0}, a set
P‡2 = {C‡1, . . . , C‡m} of m disjoint groups with ∪mh=1C

‡
h = C‡,

two fairness vectors ~α = (α1, . . . , αm), ~β = (β1, . . . , βm),
and a set H of k facilities, the goal is to find a mapping
ψ : (C‡×H)→ Z+∪{0} satisfying

∑
f∈H ψ(c, f) = w†(c)

for any c ∈ C‡, and the weighted group fairness constraints:

for any f ∈ H, h ∈ [m], βh ≤
∑

c∈C‡
h

ψ(c,f)∑
c∈C‡ ψ(c,f)

≤ αh, such that

the cost
∑
c∈C‡

∑
f∈H ψ(c, f)d(c, f) is minimized.

Given an instance J = ((X , d), C‡, w†,P‡2 , ~α, ~β,H) of
the Weighted Assignment problem, we call ψ a feasible so-
lution of J if ψ satisfies weighted group fairness constraints
and

∑
f∈H ψ(c, f) = w†(c) for any c ∈ C‡. We define the

cost of ψ as cost(ψ) =
∑
c∈C‡

∑
f∈H ψ(c, f)d(c, f), which

is the sum of the product of ψ(c, f) and distance between
a client c ∈ C‡ and a facility f ∈ H. Note that for any
c ∈ C‡, f ∈ H, if ψ(c, f) > 0, the ψ(c, f) unit of weight
of the client c is assigned to f . Let ψ∗ : (C‡ × H) →
Z+ ∪ {0} denote the optimal solution of J such that the cost∑
c∈C‡

∑
f∈H ψ

∗(c, f)d(c, f) is minimized.

Lemma 9. Given an instance I of the DF-k-MED problem
and parameters η, γ, δ > 0, let J be the obtained weighted
assignment problem instance. Then, there must exist a so-
lution ψ satisfying weighted group fairness constraints such
that the cost of ψ is at most (4 + ε) times the optimal cost of
I, where ε = O(ηδ).

Proof. Our proof strategy begins by constructing a mapping
φ from the original client set C to the facility set H, which is
then converted into the weighted mapping ψ : C‡ → H. In
this process, each client is assigned to the facility inH closest
to its corresponding optimal facility. Since the optimal solu-
tion is feasible, we can ensure that the constructed mapping
satisfies the weighted group fairness constraints. Moreover,
by using the triangle inequality, we can bound the cost of the
resulting assignment, thus obtaining the stated approximation
guarantees.

We first show how to construct the mapping ψ. For any
f∗i ∈ H∗ (i ∈ [k]), let π(f∗i ) = arg minf∈H d(f, f∗i ) de-
note the closest facility in H to f∗i . For any c ∈ C, let
φ(c) = π(φ∗(c)). Note that the mapping φ is for the orig-
inal client set C, and we need convert it to the weighted client
set C‡ to obtain ψ. For any client c ∈ C, assume that c is
assigned to ch in C‡. By the definition of mapping ρ, we
get that ρ(c) is the closest client in C† to c. Recall that for
each color h ∈ [m], the weighted set C‡ contains a clien-
t ch with the same position as ρ(c) ∈ C†. Thus, we have
d(ch, c) = d(ρ(c), c) For any c ∈ C, if client c is assigned
to the facility φ(c) ∈ H by φ, we assign 1 unit of weight of
the client ch to φ(c), i.e., set ψ(ch, φ(c)) = 1. By the trian-
gle inequality, we have d(ch, φ(c)) ≤ d(ch, c)+d(c, φ(c)) =
d(ρ(c), c) + d(c, φ(c)). Consider a client c ∈ O∗i (i ∈ [k]),
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and let f be the closest facility in H to the client ρ(c) in
C‡ that c is assigned. By the triangle inequality, we have
d(c, φ(c)) ≤ d(c, f∗i ) + d(f∗i , φ(c)) ≤ d(c, f∗i ) + d(f∗i , f) ≤
d(c, f∗i ) + d(c, f∗i ) + d(c, f) ≤ 2d(c, f∗i ) + d(c, ρ(c)) +
d(ρ(c), f), where the second inequality follows from that
φ(c) is the closest facility in H to f∗i . Thus, we have that
d(ch, φ(c)) ≤ 2d(c, f∗i ) + 2d(c, ρ(c)) + d(ρ(c), f). Comb-
ing over all client c ∈ C, we can get that cost(ψ) ≤ 2opt +
2ηopt+ (2 + ε1)opt = (4 + ε1 + 2η)opt. Hence, the cost of
ψ is at most (4 + ε)opt, where ε = O(ηδ).

The remaining task is to prove that ψ satisfies the weight-
ed group fairness constraints. We first prove that the map-
ping φ on the original client set C satisfies the group fairness
constraints. Since (H∗, φ∗) is a feasible solution of I, for
any i ∈ [k] and h ∈ [m], we have βh ≤ |O∗i (h)|

|O∗i |
≤ αh.

For any f ∈ H, let N(f) = {f∗i ∈ H∗ | π(f∗i ) = f}
denote all facilities in H∗ such that f is the closest center.
Note that {c ∈ C | φ(c) = f} = ∪f∗i ∈N(f)O∗i . Simi-
larly, for any h ∈ [m], we have {c ∈ Ch | φ(c) = f} =
∪f∗i ∈N(f)O∗i (h). Consequently, for any f ∈ H and h ∈ [m],

we get that |{c∈Ch|φ(c)=f}||{c∈C|φ(c)=f}| =

∑
f∗
i
∈N(f) |O

∗
i (h)|∑

f∗
i
∈N(f) |O∗i |

. By using

the scaling technique, we have that minf∗i ∈N(f)
|O∗i (h)|
|O∗i |

≤∑
f∗
i
∈N(f) |O

∗
i (h)|∑

f∗
i
∈N(f) |O∗i |

≤ maxf∗i ∈N(f)
|O∗i (h)|
|O∗i |

. Then, we get that

βh ≤
∑

f∗
i
∈N(f) |O

∗
i (h)|∑

f∗
i
∈N(f) |O∗i |

≤ αh. Thus, φ satisfies the group

fairness constraints. We now prove that the mapping ψ satis-
fies the weighted group fairness constraints. By the above
process, we get that the total weight of clients with color
h ∈ [m] in C‡ assigned to a facility f ∈ H is exactly e-
qual to the number of clients of this color assigned to f
in the solution (H, φ), i.e., for any f ∈ H and h ∈ [m],
we have

∑
c‡∈C‡h

ψ(c‡, f) = |{c ∈ Ch | φ(c) = f}|.
Then, for any f ∈ H, we have

∑
c‡∈C‡ ψ(c‡, f) = |{c ∈

C | φ(c) = f}|. Thus, for any f ∈ H and h ∈ [m],∑
c‡∈C‡

h

ψ(c‡,f)∑
c‡∈C‡ ψ(c

‡,f)
= |{c∈Ch|φ(c)=f}|
|{c∈C|φ(c)=f}| holds. Since the mapping

φ satisfies the group fairness constraints, the mapping ψ sat-
isfies the weighted group fairness constraints.

Lemma 9 implies that there must exist a (4 + ε)-
approximate solution ψ satisfying the weighted group fair-
ness constraints. To obtain such a solution, the general idea
is to reduce the assignment problem to a linear programming
problem. The unknown optimal assignment can be naturally
expressed in terms of linear inequalities, along with the con-
dition that the assignment is fair. However, the issue is that
in general the optimal fractional solution to this linear pro-
gramming problem is not integral, and we must covert it to
integral solution. Naturally, we start with the following linear
programming. For any client cj ∈ C‡ and facility fi ∈ H,
we introduce a variable xij denoting how much weight from
the client cj is assigned to the facility fi. Note that the value
of xij represents the assignment ψ. The goal is to minimize
the cost

∑
cj∈C‡

∑
fi∈H d(cj , fi)xij satisfying the following

conditions.∑
fi∈H

xij = w†(cj) ∀cj ∈ C‡, (1)

∑
cj∈C‡h

xij ≤ αh
∑
cj∈C‡

xij ∀i ∈ [k], h ∈ [m], (2)

∑
cj∈C‡h

xij ≥ βh
∑
cj∈C‡

xij ∀i ∈ [k], h ∈ [m], (3)

xij ≥ 0 ∀i ∈ [k], cj ∈ C‡. (4)

Constraint (1) ensures that each client cj ∈ C‡ is assigned to
facilities with weight w†(cj). Constraints (2) and (3) cap-
ture the group fairness constraints. The above linear pro-
gramming can be solved in polynomial time, yielding a frac-
tional assignment satisfying the group fairness. To obtain
an integral assignment, by using a deterministic rounding
method [Bercea et al., 2019] that rounds the feasible fraction-
al assignment obtained to an integral assignment, we have the
following result. Note that we now only need to satisfy the
group fairness constraints.
Lemma 10. For the DF-k-MED problem, there is a determin-
istic rounding algorithm that returns an integral assignment
ψ with cost at most (4+ ε)opt with an additive 1 violation for
group fairness constraints.

4.3 The Analysis of Running Time
We now bound the running time of Algorithm 1. Indeed,
we only need to discuss the iteration of steps 4-5, since all
other things can be executed in polynomial time, including
constructing coreset, optimizing improvement function, and
solving the Weighted Assignment problem. Since the size of
the weighted set is |C†| = O(η−2k log n), there are at most
|C†|k = (O(η−2k log n))k different multi-sets of size k. Ad-
ditionally, there are (log1+δ

dmax

dmin
)k = (O(log n))k choices

for λi for each i ∈ [k], since the aspect ratio dmax

dmin
can be

assumed to polynomially bounded in n. Therefore, the num-
ber of iterations in steps 4-5 of the algorithm can be bound-
ed by (O(η−2k log n))k · (O(log n))k ≤ (O(η−2 log n))k.
If k < log n/ log log n, we can obtain (O(η−2 log n))k ≤
(O(η−2))k · (log n)logn/ log log n = (O(η−2))k · n. Oth-
erwise, log n ≤ O(k log k), implying (O(η−2 log n))k =
(O(η−2k log k))k. Therefore, the running time of Algorith-
m 1 can be bounded by (O(η−2k log k))k · nO(1). By Lem-
ma 10 and the above discussion, Theorem 1 can be proved.

5 Conclusions
In this paper, we study the doubly constrained fair clustering.
Due to the doubly fairness constraints, it is thus a non-trivial
task to obtain a solution that satisfies the fairness constraints
and meanwhile achieves a small approximation ratio. The
main contribution of this paper is a (4 + ε)-approximation for
the DF-k-MED problem, in FPT(k)-time parameterized only
by the number of opened facilities. Considering the consid-
erable attention received by the theoretical aspect of the fair
clustering problem, we believe that gaining these new param-
eterized results are of independent interest.
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