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Abstract

Existential rules, a.k.a. tuple-generating dependen-
cies (TGDs), form a well-established formalism for
specifying ontologies. In particular, the warded
language is a well-behaved fragment of TGD-based
ontologies, striking a good balance between expres-
sive power and computational complexity of an-
swering Ontology-Mediated Queries (OMQs). The
theoretical foundations of answering OMQs over
warded ontologies are by now well-understood, but
to the best of our knowledge, very few efforts exist
that exploit such a rich theory for building practical
query answering algorithms. Our goal is to fill the
above gap by designing a novel Datalog rewriting
algorithm for OMQs over warded ontologies which
is amenable to practical implementations, as well
as providing an implementation and an experimen-
tal evaluation, with the aim of understanding how
key input parameters affect the performance of this
approach, and what are its limits when combined
with off-the-shelf Datalog-based engines.

1 Introduction

Ontological reasoning is a fundamental task in Knowledge
Representation and Reasoning (KRR) and Aurtificial Intelli-
gence in general, as it enables the development of intelligent
data management systems, where data is enriched with ad-
ditional knowledge that can be derived by means of an on-
tology, i.e., a logic-based formalization of the domain of in-
terest. A prominent formalism for encoding ontologies is
the one of existential rules, a.k.a. tuple-generating depen-
dencies (TGDs), which allow to encode knowledge by means
of implication-like formulas, specifying how new knowledge
can be derived from existing knowledge known about the sys-
tem. In this context, the key task is Ontology-Mediated Query
(OMQ) Answering. That is, given a database D, containing
known facts about the system, and an OMQ O = (¢, X),
where Y. is a TGD-based ontology, and ¢ a conjunctive query
(CQ), OMQ Answering is the task of finding the so-called
certain answers to O over the database D. It is well-known
that the problem of OMQ Answering is uncomputable, in
general (e.g., see [Cali et al., 2013]).

Thus, a long stream of literature has been developed in the
last decades, devoted to identify fragments of TGD-based on-
tologies that guarantee the computability of certain answers.
See for example acyclicity-based TGD languages [Fagin et
al., 2005; Greco et al., 2011; Spezzano and Greco, 2010;
Calautti et al., 2016; Carral et al., 2017; Calautti et al., 2015;
Calautti and Pieris, 2021; Calautti et al., 2022], as well as
UCQ-rewritable languages [Cali et al., 2012a; Cali et al.,
2012b]. More expressive languages are the ones based on the
notion of guardedness [Cali er al., 2012a; Baget er al., 2011;
Benedikt et al., 2022], and beyond [Cali et al., 2013]. We
point out that some of the above works have been influenced
by earlier works on Description Logics (DL), e.g., see [Cal-
vanese et al., 2007; Poggi et al., 2008; Artale et al., 2009]
for UCQ-rewritable DL ontologies, and [Baader et al., 2005;
Lutz and Sabellek, 2022] for guarded-like DL ontologies. We
refer to [Baader et al., 2003] for a comprehensive overview.

Despite all the above efforts, each of the above TGD-
based languages has at least one of two downsides: they ei-
ther have limited expressive power (e.g., UCQ-rewritable or
guarded-based ones), or they are highly expressive but OMQ
Answering becomes computationally challenging. To rem-
edy the above situation, warded TGDs have been introduced
in [Gottlob and Pieris, 2015], striking a good balance be-
tween expressive power and computational complexity. In
particular, warded ontologies are expressive enough to cap-
ture the full power of Datalog, meaning they can express im-
portant properties of data, such as the transitive closure of
graphs, but at the same time keep certain answers compu-
tation feasible in polynomial time in data complexity, i.e.,
w.r.t. the size of the input database. The above complexity
result has been first shown in [Gottlob and Pieris, 2015] by
means of specialized alternating algorithms, while more re-
cent works have shown that warded ontologies are actually
Datalog-rewritable [Berger et al., 2022]. That is, every OMQ
O = (¢,X) with 3 warded can be rewritten to a Datalog
query Do such that for every database D, the certain answers
of O over D coincide with the answers of Dy over D. Al-
though wardedness can be considered as the sweet spot be-
tween expressiveness and complexity, we are not aware of
any efforts from the literature that exploit such a rich the-
ory to develop practical implementations of OMQ Answer-
ing over warded TGDs. One of the main reasons is that the
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results of [Gottlob and Pieris, 2015; Berger er al., 2022] are
mostly theoretical in nature. In particular, the Datalog rewrit-
ing algorithm of [Berger et al., 2022], constructs an equiva-
lent Datalog query via a naive brute force search over the (ex-
ponentially large) space of so-called proof trees of the OMQ
at hand. In fact, the only real-world system we are aware of
that supports, to some extent, warded ontologies, is the Vada-
log system [Bellomarini et al., 2018; Bellomarini et al., 2022;
Bellomarini er al., 2024], which supports a simpler version of
OMQ Answering, where the CQ is atomic, and uses a pro-
cedure different from the ones of [Gottlob and Pieris, 2015;
Berger et al., 2022]. The latter, together with the fact that
Vadalog is available only after acquiring a license, severely
limits the use of warded TGDs in practice.

Contributions. The goal of our work is to rectify the
above state of affairs by providing a new Datalog rewrit-
ing algorithm for OMQs over warded ontologies, dubbed
WardedRewrite, that is more amenable to practical imple-
mentations, supporting OMQs O = (¢, %), where ¥ is a
warded TGD-based ontology, and q an arbitrary CQ, thus go-
ing beyond the capability of existing systems that support the
warded language. We then implement WardedRewrite, and
perform an experimental analysis that highlights the applica-
bility of our implementation, and provides key insights on the
capability of different off-the-shelf Datalog-based engines in
computing certain answers over OMQs with warded ontolo-
gies, via the evaluation of the Datalog query obtained using
our algorithm WardedRewrite.

The full source code and the benchmark data are available
at: https:// gitlab.com/mcalautti/warded- rewriting-paper.

2 Preliminaries

We consider the disjoint countably infinite sets C, N, and V
of constants, (labeled) nulls, and variables, respectively. We
refer to constants, nulls and variables as terms. For an integer
n > 0, we write [n] for the set of integers {1,...,n}.

Relational Databases. A schema S is a finite set of relation
symbols (or predicates) with associated arity. We write R/n
to denote that R has arity n > 0; we may also write ar(R)
for the integer n. A (predicate) position of S is a pair (R, ),
where R/n € S and i € [n], that essentially identifies the i-th
argument of R. We write pos(S) for the set of positions of S,
that is, the set {(R,7) | R/n € Sand i € [n]|}. An atom over
S is an expression of the form R(t), where R/n € S and ¢
is an n-tuple of terms. A fact is an atom whose arguments
consist only of constants. We write var(R(t)) for the set of
variables in ¢. The notation var(-) extends naturally to other
objects mentioning variables. An instance over S is a (possi-
bly infinite) set of atoms over S with constants and nulls. A
database D over S is a finite set of facts, i.e., a finite instance
mentioning only constants. The active domain of an instance
I, denoted dom([), is the set of terms occurring in I.

Homomorphisms and Conjunctive Queries. A substitu-
tion from a set of terms T to a set of terms 7’ is a func-
tion h : T — T'. A homomorphism from a set of atoms
A to a set of atoms B is a substitution i from the set of
terms in A to the set of terms in B such that A is the identity

on C, and R(t1,...,t,) € A implies h(R(t1,...,t,)) =
R(h(t1),...,h(t,)) € B. For an integer £ > 0, a k-
ary conjunctive query (CQ) q over a schema S with out-
put variables T, denoted ¢(Z), is an expression of the form
Q(Z) + G R1(Z1) A ... A\ Ry (Zy), where, for each ¢ € [n],
Z; is a tuple of variables, and Z, § form a partition of the
set of variables Uie{n] Z;; by abuse of notation, we treat
a tuple of variables as a set of variables. Moreover, Z is
a tuple of k (not necessarily distinct) variables, and Q(Z)
and R;(Z;), for i € [n], are atoms with R; € S, while
@ ¢ S. For convenience, we may use comma in place
of the symbol A, and we may omit the existential quanti-
fier. The body (resp., head) of ¢, denoted body(q) (resp.,
head(q)) is the ser of atoms {R1(Z1),..., Rn(Zn)} (resp.,
the atom Q(Z)). We use headPred(q) to denote the pred-
icate (). For an instance I over S, we write ¢(I) for the
answers of q over I, defined as {f € (dom(I) N C)* |
3 a homomorphism % from body(q) to I with h(z) = t}.

Tuple-Generating Dependencies. A fuple-generating de-
pendency (TGD) o over a schema S is a (constant-free) ex-
pression of the form VzZVy (¢(Z,y) — 3z (T, 2)), where
Z,y and z are tuples of variables of V, and ¢(Z,y) and
¥ (Z, Z) are non-empty conjunctions of atoms over S that only
mention variables from z Uy and z U z, respectively. We may
write o as ¢(Z,y) — 3z (T, Z), and use comma instead of
A for joining atoms. We refer to ¢(Z, ) and ¢(Z, Z) as the
body and head of o, denoted body (o) and head (o), respec-
tively. We say that o is full if Z is empty, and we say it is
single-head if 1)(Z, Z) contains a single atom. The frontier of
the TGD o, denoted fr(o), is the set of variables 7, i.e., the
variables that appear both in the body and the head of 0. We
use exvar(o) and expos(o) to denote the set of all existential
variables of o, and the set of all positions in which an exis-
tential variable of o occurs. An onfology ¥ over a schema S
is a finite set of TGDs over S. The schema of an ontology
3, denoted sch(X), is the set of predicates occurring in 3.
Moreover, we assume w.l.o.g. that no two TGDs in ¥ share a
variable. We use TGD to denote the class of all ontologies.

An instance [ satisfies a TGD o as the one above, writ-
ten I |= o, if whenever there exists a homomorphism A from
&(Z,7y) to I, then there is an extension of A that is a homo-
morphism from ¢ (Z, Z) to I; we may treat a conjunction of
atoms as a set of atoms. The instance I satisfies an ontology
Y, written [ = X, if I = o foreach o € X.

Ontology-Mediated Queries. The main task we are inter-
ested in this paper is query answering under TGDs. Consider
a database D over a schema S and an ontology X over S. A
model of D and ¥ is an instance I over S such that D C |
and such that I = ¥. We use models(D, ¥) to denote the
set of all models of D and ¥. For an integer k£ > 0, a k-ary
ontology-mediated query (OMQ) over a schema S is a pair
O = (¢, %), where ¢ is a k-ary CQ over S, and X is an ontol-
ogy over S. For a database D over S, the certain answers of
O over D is the set of tuples ans(O, D) defined as

{t € dom(D)* | T € ¢(I) for all I € models(D,X)}.

The Chase Procedure. The chase procedure is an algorithm
that can be used to produce a so-called universal model of a
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database D and ontology 3, which in turn can be used to pro-
vide an alternative definition of certain answers of OMQs.
Consider an instance I and an ontology X over a schema
S. A trigger for ¥ on I is a pair (o,h), where 0 € ¥
and h is a homomorphism from body(c) to I. The result
of (o, h), denoted result(c, h), is the set p(head(o)), where
u : var(head(o)) — C U N is such that u(x) = h(z) if
z € fr(o), and p(z) = L7, with L7, € N, otherwise.

For a database D and an ontology ¥ over a schema S, the
chase of D w.rt. ¥ is the set chase(D, ) of atoms induc-

tively defined as follows. We define chase’(D,%) = D,
and for each i > 0, chase’(D,¥) = chase’ ' (D,%) U
{result(c,h) | (o,h)is a trigger for 32 on chase’ (D, X)}.
Finally, chase(D, ¥) = J;> chase’(D, ¥).

The following is well-known [Grahne and Onet, 2018]:

Theorem 1. For a k-ary OMQ O = (q,Y) and a database
D over a schema S, ans(O,D) = {t € dom(D)* | t €
g(chase(D, X))}

3 Wardedness and Datalog Rewritability

At the high-level, a warded ontology X restricts how some of
the variables of its TGDs, called ”dangerous” variables, are
used. We now proceed to formally define the above notions;
in what follows, fix an ontology ..

Affected Positions. First, we need the notion of affected po-
sitions. For a position (R, ) € pos(sch(X)), we inductively
say that (R, 1) is an affected position of . as follows: there
exists a TGD ¢ € ¥ with (R,i) € expos(o), or there ex-
ists a TGD ¢ € ¥ and a variable x € fr(o) occurring at
(R, 1) in the head of ¢ such that = occurs in body(c) only at
affected positions. We use aff (%) to denote the set of all af-
fected positions of ¥, and notaff(X) = pos(sch(X)) \ aff(X)
to denote set of all position of X that are not affected. In-
tuitively, when a position (R,7) of 3 is not affected, it is
guaranteed that for every database D, every atom of the form
R(t1,...,tn) € chase(D, ¥) is such that ¢; is a constant.

Wardedness. Consider a variable z occurring in the body
of some TGD o of ¥. We say that x is harmless if it oc-
curs in body(c) at some position of notaff(X); harmful if it
is not harmless, i.e., it occurs in body(c) only at positions
of aff(X); dangerous if it is harmful and it is a frontier vari-
able of 0. We say that X is warded if for each TGD o € X
there exists an atom « € body(o), called the ward of o, such
that (i) all dangerous variables of ¢ occur in «, and (ii) each
variable in var(a) Nvar(body(o) \ {a}) is harmless. We use
WARDED to denote the set of all warded ontologies.

Datalog Rewritability and Wardedness. A Datalog pro-
gram 1is an ontology X containing only full, single-head
TGDs, which we also call (Datalog) rules. A k-ary Data-
log query is a pair D = (R,Y), where X is a Datalog pro-
gram, and R/k € sch(X). A predicate occurring in X is
intensional if it occurs in the head of some rule of X, oth-
erwise, it is extensional. We use idb(D) and edb(D) to de-
note the set of all intensional and extensional predicates of
D, respectively. For a Datalog query D = (R,Y), and a
database D over edb(D), the answers of D over D is the

set D(D) = {t € dom(D)* | R(f) € chase(D,%)}. A
class C of ontologies is Datalog-rewritable if for every OMQ
O = (¢,X) over a schema S, with ¥ € C, there exists a
Datalog query Do = (Rp,Xp) with edb(Dp) C S and
idb(Dp) N'S = (), called a Datalog rewriting of O, such
that for every database D over S, ans(O,D) = Do(D’),
with D' = {R(t) € D | R € edb(Dp)}. It is known that
WARDED is Datalog-rewritable [Berger ef al., 2022].

4 A Datalog Rewriting Algorithm for Warded

We present a new algorithm that is able to produce a Datalog
rewriting of a given OMQ O = (¢, X) with ¥ € WARDED
that is more amenable to be implemented in practice.

At the high-level, given an OMQ O = (¢, X)), with ¥ €
WARDED, our algorithm exhaustively applies, starting from
the query g, one of the following two basic steps to the current
query being processed: decomposition and resolution. The
decomposition step is in charge of decomposing the query be-
ing processed into the smallest possible, independently pro-
cessable queries. The resolution step is in charge of unfolding
the smaller queries using the TGDs of the ontology. The lat-
ter step is the same employed by other algorithms from the
literature that deal with UCQ-rewritable OMQs. We recall
that a union of conjunctive queries (UCQ) is a Datalog query
(R, ) containing only rules having R as their head predicate,
and R does not occur in their body. However, the decompo-
sition step is what distinguishes our algorithm from ones for
UCQ-rewritable languages, as it guarantees the construction
of a finite Datalog query, when focusing on warded ontolo-
gies. We now introduce the basic notions needed to define
the above two steps.

Chunk-Based Resolution. Let A and B be non-empty sets
of atoms that mention only variables. The sets A and B unify
if there is a substitution ~y, called unifier for A and B, such
that v(A) = ~(B). A most general unifier (MGU) for A
and B, denoted mgu(A, B), is a unifier for A and B such
that for each unifier vy for A and B, v = ' o mgu(4, B),
for some substitution ~'. It is well-known that if two sets of
atoms unify, then there is always a MGU, which is unique
(modulo variable renaming). Given a CQ ¢(Z) and a set of
atoms S C body(g), we say that a variable y € var(S) is
shared in q (w.rt. S), if y € T ory € var(body(q) \ S). We
use shared(q, S) to denote the set of all variables in S that are
shared in ¢ w.r.t. S. We can now recall chunk unifiers.'

Definition 2. Consider a CQ ¢(Z) and a TGD o having no
variables in common with q. A chunk unifier of ¢ with o is a
triple (S, S2, ), where

e ) €Sy C body(q) and ) C Sy C head(o);

* ~is a unifier for S7 and Ss;

* for each « € var(Sz) N exvar(o), and for each variable

y # x, y(x) = ~(y) implies that y occurs in S; (and
thus y & var(Ss)) and that y ¢ shared(q, S1).
We say that a chunk unifier (S, S2,7) is most general
(MGCU) if y is an MGU for S; and Ss. n

!Chunk-unifiers, employed in most works related to wardedness,
are equivalent to the piece-unifiers from [Konig er al., 2015].
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In other words, an MGCU faithfully describes how the
chase would trigger o producing a set of atoms to which the
atoms in S; would homomorphically map.

The notion of chunk-based resolution follows naturally.

Definition 3. Consider a CQ ¢(Z), with headPred(q) = Q,
a TGD o, and a MGCU M = (57, Sa,7) of ¢ with 0. The
o-resolvent of q (via M), denoted by resolv, as(q), is the CQ

¢ with head(q') = Q(v(%)), and body(q’) = ~((body(q) \
S1) U body(0)). -

As we are going to see in Section 4.1, a resolution step
exhaustively applies chunk-based resolution on a given CQ.

Query Decomposition. We now move to the notions needed
to implement the other step of our algorithm: the decomposi-
tion step. We start with the notion of existential-join decom-
position, employed for other tasks in [Gottlob et al., 2014].

Definition 4. Consider a CQ ¢(z) with headPred(q) = Q,
and an ontology ¥. An existential-join decomposition of q
w.r.t. 3, or simply decomposition, is aset of n > 1 CQs § =
{(h (jl)v cee 7Qn(jn)} where {bOdY(‘h)v IR bOdY(QTL)} isa
partition of body(q), headPred(g;) = Q; for ¢ € [n], and for
eachi € [n]:

1. &; = shared(q, body(g;)), and

2. for every two atoms «, 5 € body(q), if & € body(q;)
and « and 5 mention a variable y ¢ Z occurring only in
affected positions of body(q), then 8 € body(g;).

We say that S is optimal if for each i € [n], there is no
existential-join decomposition of ¢; w.r.t. X. L]

The main idea behind an optimal decomposition S =
{1 (Z1)s .-, qn(Tn)} of aCQ ¢(Z) w.r.t. X is to factorize the
body of ¢ into the smallest subqueries, guaranteeing that the
certain answers of (g, ) can be retrieved by combining the
certain answers of each OMQ (g;, 2), for i € [n]. In particu-
lar, assuming headPred(q) = @, and headPred(¢;) = Q;, for
i € [n], the reconciliation rule of S and q is the (full) TGD
of the form Q1(Z1),...,Qn(Z,) — Q(T). In other words,
the reconciliation rule of S and ¢ performs the inverse of the
decomposition, i.e., it combines the certain answers of each
member of S, so to restore the certain answers of the CQ q.

4.1 The Algorithm WardedRewrite

In the following, for a CQ ¢(z) of the form Q(Z) <+
Ri(Z1),...,Rn(Zy), we use rule(q) to denote the (full) TGD
of the form Ry(Z1),..., Rn(Zn) — Q(Z). Moreover, for a
full TGD o of the form Ry (Z1),. .., Rn(Zn) — Q(Z), with
Q different from each R;, we use cq(o) to denote the CQ
of the form Q(Z) + Ri(Z1),...,Rn(Z,). Moreover, for
a CQ ¢, we use can(q) to denote the canonical form of g,
i.e., the CQ obtained from ¢ where each variable x of ¢ that
appears, from left to right in ¢, as the i-th variable, is re-
placed with the fresh variable w;. For example, if ¢ is the
CQ Q(z,y,y) + R(y,z,z),S(x, z), then can(q) is the CQ
Q(wy,we,ws) + R(wg,ws,w),S(wi,ws). Clearly, two
CQs ¢ and g2 which are the same, up to variable renaming,
are such that can(q1) = can(g2). We extend the above no-
tations to sets in the natural way. Finally, given two CQs ¢
and ¢o, we write q; &~ ¢o iff can(q1) and can(gz) are the

Algorithm 1: WardedRewrite
Input: An OMQ O = (¢, X) with ¥ € WARDED
Output: A Datalog rewriting of O

1 Qeurrent 1= {Can(q)}; Qexplored = @; Qec 1= @; R = @;
2 while chrrem 75 @ do

3 new -— @a

foreach ¢’ € Qcurent do

if a decomposition of ¢’ w.r.t. ¥ exists then
// Decomposition step

6 S := decomposeOptimal(q’, 2);

7 p = reconciliationRule(q’, S);
8

9

4
5

foreach ¢’ € S do
if there is qui € Qqec With qui ~ ¢” then
Replace headPred(q") with

10
‘ headPred(qa1) in body(p);

11 else
12 Quec := Qaec U {can(q”)};
13 Qnew = Qnew U {Can(qn)};
14 R:=RU{p}h
15 else

// Resolution step
16 foreach o € ¥ do
17 foreach MGCU M of ¢’ with o do
18 q" = resolv, r(q');
19 Qnew = Qnew U {Can(q”)};
20 | R:=RU{rule(q")};
21 | Qexplored = Qexplored U {q/};

22 L chrrcnl = anw \ chp]orcd;
23 return (headPred(q), R);

same up to head predicate renaming. We now have all the
notions we need to present our rewriting algorithm, dubbed
WardedRewrite, which we report in Algorithm 1.

Consider an OMQ O = (¢, X) with ¥ € WARDED. The
main idea behind the algorithm WardedRewrite is to itera-
tively apply one of two steps: decomposition and resolution.
The set Qcurrent collects the CQs that need to be processed,
and it initially contains the (canonical version of) the input
query q, while all other structures are initially empty.

For each query in ¢/ € Qcument, the goal is to try first to
decompose ¢’ into smaller subqueries (line 5). If this is pos-
sible, then the algorithm constructs the decomposition S of ¢’
w.r.t. 3, and the corresponding reconciliation rule p (lines 6-
7). Ideally, all queries in S should then be added to the set
Ohew for later processing, and p added to the set R of rules of
the final Datalog rewriting. However, to guarantee termina-
tion, the algorithm first checks, for each ¢”” € S, whether any
previous decomposition step has already produced a query
Gair With gur = ¢” (line 9). If this is the case, there is no need
to add ¢ to Quew, as an identical version has already been
processed. Hence, it is enough to replace the occurrence of
headPred(g”) in the body of p with headPred(g,y) (line 10).
If no such a query g, is found, then the CQ ¢” is really new
and its canonical version is added to the set Q. for later pro-
cessing, as well as to the set Qqe, in order to remember that
q" has been produced by a decomposition step (lines 12-13).



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Then, the (modified) rule p is added to the set R of all rules
of the Datalog rewriting (line 14).

If ¢’ cannot be decomposed, it is instead unfolded by con-
structing all possible o-resolvents of ¢/, for all TGDs ¢ € X;
this is a single resolution step (lines 16-19), which produces
a set of new queries that are also added to Q. for later pro-
cessing. The (rule version of) ¢’ is then added to the set of
rules R of the final Datalog rewriting (line 20).

After ¢’ has gone through a decomposition or a resolu-
tion step, it is marked as explored in line 21 by adding ¢’
to the set Qcxpiored Of processed queries. After all queries in
Qcurrent have been explored, Qcyrrene 1S updated in line 22 with
all new queries in Q,.,, that have not been explored yet (i.e.,
that are not in Qeypiored), and the process repeats.2 The al-
gorithm terminates when no new queries (up to variable re-
naming) have been produced. The final Datalog rewriting is
(headPred(q), R) and it is returned in line 23.

We can show the following result.

Theorem 5. For every OMQ O = (q,%), with ¥ €
WARDED, WardedRewrite terminates with input O, and out-
puts a Datalog rewriting of O.

5 Implementation and Experiments

In this section we discuss how we implemented the algorithm
WardedRewrite. Moreover, we present an experimental anal-
ysis assessing two aspects: how fast is of our implementation
of WardedRewrite to produce the Datalog rewriting, and how
efficient existing Datalog-based engines are at evaluating the
Datalog query produced by our algorithm.

Implementation

Regarding the implementation, the main challenge is keep-
ing the set of rules R of the final Datalog rewriting as small as
possible. This is in order to not hinder the performance of an-
swering the query using off-the-shelf Datalog engines. As an
optimization, each time a rule is added to the set R, we con-
sider all predicates @)1, . . . , @, occurring in the head of some
rule of R, and for each i € [n], consider the maximal subset
Rq, of TGDs with head predicate (; occurring in R such
that (Q;, Rg,) is a UCQ. Then, we minimize each set R,
independently by constructing, for each i € [n], the small-
est subset Rgy, of Rq, such that (Qi, Ry),) and (Qi; Rq,)
are equlvalent the latter boils down to checklng equivalence
between UCQs, which is decidable [Abiteboul et al., 1995].

Experimental Analysis

We now move to our experimental analysis. In particular,
our goal is to experimentally evaluate different aspects of our
implementation of WardedRewrite. In particular, we are in-
terested to answer two key questions.

Question 1: Given an OMQ O = (q, %) with ¥ € WARDED
as input to our implementation of WardedRewrlte how do
key parameters of O affect its running time and scalability?

Answering the above will allow us to provide insights on
the practical applicability of our implementation and its lim-

“Note that by considering the canonical version of the CQs, per-
forming the set-theoretic difference is enough to exclude from Qpew
all queries that have already been considered.

its, as well as providing conclusions on the expected be-
haviour of the algorithm, depending on the input OMQ.

The next natural question is whether the Datalog rewrit-
ing produced by our implementation can be actually used
for query answering purposes by exploiting existing Datalog-
based reasoning systems.

Question 2: Given a database D, an OMQ O = (q, %) with
>, € WARDED, and the Datalog rewriting Do produced by
WardedRewrite with input O, how efficient existing Datalog-
based reasoning engines are in evaluating Do over D?

Towards answering our key experimental questions, we
need a way to stress test both our rewriting algorithm
WardedRewrite, as well as the Datalog-based reasoning en-
gines we consider. For this, we generate a large pool of syn-
thetic database-OMQ pairs (D, O), which we call scenarios,
where O = (¢, %) and ¥ € WARDED, using the IWARDED
benchmark generator from [Atzeni et al., 2022]. TWARDED
allows to generate scenarios (D, Q), with O = (¢,%) and
3} € WARDED, by considering different parameters. In or-
der to keep our experimental evaluation manageble, we will
focus on a few, key parameters that mostly affect either the
size of the database, or the main structure of the ontology X..

Ontology Parameters. IWARDED generates OMQs (g, 2),
where X is warded, and the TGDs have a single head atom
and at most two atoms in the body. Moreover, TGDs are gen-
erated so to induce multiple sequences of TGDs of the form
o1,...,0n, Where the atom produced during the construction
of the chase by the TGD o; contributes to trigger the TGD
041, foreach i € [n — 1]. We can control the shape of these
sequences by choosing two main parameters.

The average recursion length, denoted avg_recursion,
specifies the average length of recursive TGD sequences, i.e.,
sequences of TGDs o1, ...,0, in ¥ where the TGD o,, can
further trigger o1. The length n of the sequence is chosen
using a Guassian distribution with avg_recursion as the
mean, and variance 1.0. The number of left-right-join recur-
sions, denoted num_1r j, specifies the number of TGDs that
IWARDED will add to ¥ that mention two predicates in their
body that both belong to a recursive sequence.

Database Parameters. As for the database parameters,
we consider the number of facts per predicate, denoted
db_facts: IWARDED will add db_facts random facts to
the database D for each predicate of D; the number of pred-
icates of D is chosen automatically by IWARDED so to pre-
serve the values of the ontology-related parameters above.

Query Parameters. There are no parameters we can con-
trol regarding the construction of the CQ q. In particular,
IWARDED only supports the construction of CQs g of the
form Q(z) + R(Z), i.e., CQs with a single body atom whose
tuples are propagated as output of the query; IWARDED au-
tomatically adds auxiliary TGDs to ¥ so that all the TGD se-
quences added to X "feed” the predicate R with tuples. This
guarantees that the certain answers of ¢ are never empty.

Test Scenarios. In generating our scenarios, we con-
sider 21 different values for the number of left-right-
join recursions num_1rj and the average recursion length
avg._recursion, spanning from 0 to 400 with steps of
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Figure 1: Rewriting time vs. number of left-right join recursions.

20 each. That is, we consider the values in the set
{0,20, 40, ...,400} for the above two parameters. We point
out that the largest values in this set are quite extreme
for an average real-world ontology, and we consider such
a large interval in order to strees test our rewriting algo-
rithm, and assess its practical applicability. Regarding the
database generation, we consider a fixed value of 100k facts
per predicate (db_facts). Then, for each combination
i,7 € {0,20,40,...,400}, we generated a scenario, denoted
Sli, j], of the form (D, Q) with O = (¢,X%), by running
IWARDED with input num_1rJj = ¢, avg_recursion = j,
and db_facts = 100k, obtaining a total of 441 scenarios.

Experimental Setup. For the experiments, we used an Ama-
zon Elastic Compute Cloud (EC2) instance with an Intel(R)
Xeon(TM) Platinum 8000-series @3.6 GHz, 16 GB of RAM,
running Amazon Linux 2 LTS Candidate. We implemented
the algorithm WardedRewrite in Java 22, and used openJDK
22 for its execution, while the Datalog-based reasoning en-
gines have been executed in their default configuration.

5.1 Evaluating the Rewriting Algorithm

In this section we address our first experimental question. For
each of the 441 scenarios S[i, j] = (D, O) with O = (g, %)
and with ¢, 5 € {0, 20,40, ...,400}, we executed our imple-
mentation of WardedRewrite with input the OMQ O. For
each execution we collected the total running time.

Figure 1 (resp., Figure 2) shows the average running time
of our implementation of WardedRewrite, for each value of
the parameter num_lrj (resp., avg_recursion), where
the average is computed across all test scenarios having
avg_recursion (resp., num_1rj) in one of 4 intervals,
i.e., [0-100], [100-200], [200-300], [300-400].

As we can see from Figure 1, the number of left-right-
join recursions indeed has an impact on the running time of
our implementation of WardedRewrite. We can see that for
lower intervals of avg_recursion, even the highest value
of 400 left-right-join recursions (num_lrj) leads to quite
fast executions on average; e.g., 5 seconds for the average
recursion length interval [0-100], and 33 seconds for [100-
200]; the highest interval [300-400] leads to some minutes
with the higher values of num_1rj. The trend is somehow
expected, since the deeper TGDs can chain, and the more
queries WardedRewrite needs to produce via resolution steps.

However, we can see that the increase in running time is
mostly linear as num_1rj increases, on average, suggesting

¢ num_Irj [0-100] = num_lIrj [100-200]
num_lIrj [200-300] ® num_lIrj [300-400]
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Figure 2: Rewriting time vs. average recursion length.

that the number of left-right-join recursions does not severely
impact the efficiency of our implementation.

Moving to the analysis wurt. the parameter
avg_.recursion, we observe steeper trends in Fig-
ure 2. The reason is because, assuming we focus on a
certain value of the parameter num_1r j, at each resolution
step, there is a certain chance that a new CQ ¢ with two
body atoms, both having a recursive predicate, is pro-
duced. The number of times this happens is proportional to
avg_recursion. Hence, the runtime of WardedRewrite
increases exponentially w.r.t. avg_recursion.

Nonetheless, the above analysis shows that even the most
demanding scenarios (e.g., S[400, 400]), which are rather ex-
treme and unlikely to occur in practice, can be solved in the
order of some minutes. This is quite encouraging, consid-
ering that computing the rewriting is usually done “offline”,
since this is a database-independent task.

Validation with Other Benchmarks. To place our analysis
above in perspective, we also executed our implementation of
WardedRewrite on another benchmark of OMQs from the lit-
erature that uses warded ontologies from [Atzeni er al., 2022],
called structural scenarios. These scenarios were meant to
stress test different aspects of a Datalog-based reasoning en-
gine, and we are not aware of other existing benchmarks col-
lecting OMQs whose ontologies are (strictly) warded. Exe-
cuting WardedRewrite over the OMQs of the structural sce-
narios revealed that the Datalog rewriting can be constructed
very efficiently, with the worst case requiring about 250 ms.

5.2 Impact of the Rewriting on Reasoning

In this section we move to our second experimental question,
i.e., how off-the-shelf Datalog-based reasoning engines be-
have when they evaluate the Datalog query produced by our
implementation of WardedRewrite.

Engines. We consider different engines from the literature.
In particular, (the parallel version of) Vadalog [Bellomarini
et al., 2024],VLog [Urbani et al., 2018], DLV [Adrian et al.,
2018] and its extension DLV-E [Leone et al., 20191, as well
as InteGraal [Baget et al., 2015]. All the above Datalog-
based reasoning engines support the evaluation of standard
Datalog queries. They also support OMQ Answering, but to
a certain degree. For example, Vadalog supports OMQs over
warded ontologies, but only with atomic CQs, using a spe-
cialized procedure rather than a Datalog rewriting approach.
On the other hand, for example, DLV-E works on OMQs over
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Figure 3: Efficiency ratio over the test scenarios S|z, j], with ¢, j €
{0, 20,40, ..., 200}.

shy ontologies, uncomparable to warded, and relies on a re-
fined version of the chase, called parsimonious. Nonetheless,
all engines above support OMQ Answering when the ontol-
ogy X is such that, for every database D, chase(D, ¥) is fi-
nite. Since all our test scenarios turned out to have an on-
tology with this property, every engine we consider not only
is able to evaluate Datalog queries, but it is also able to take
directly as input any of our test scenarios S[¢, j| = (D, O),
with 7,7 € {0,20,40,...,400}, and effectively compute the
certain answers ans(QO, D).

Answering Question 2. For each Datalog-based rea-
soning engine E we consider and each pair 7,5 €
{0,20,40, ...,200}, we asked F to compute the certain an-
swers ans(O, D), and collected the time fcerin required by
the engine. Then, we asked E to compute the answers
Do (D) of the Datalog rewriting Dy of O we previously
computed using WardedRewrite in Section 5.1, and collected
the time ..y required. Note that we only considered the test
scenarios with num_1rj and avg_recursion in the range
{0, 20,40, ...,200}, since for higher values most of the en-
gines run out of memory. Moreover, each time an engine was
executed, it was given a timeout of 5 minutes.

Then, we measure the efficiency of an engine E over a
scenario S[i, j] via the efficiency ratio R, s(; ) = tf:: The
reason is that our goal is not a comparison of the above en-
gines, but rather asses for each engine, whether the Datalog
rewriting produced by our implementation of WardedRewrite
can be evaluated efficiently, relative to the capabilities and the
limits of the engine itself; R g[; ;) < 1 means that it is "rel-
atively” efficient for the engine to evaluate the Datalog query
produced by WardedRewrite, while R g(; ;1 > 1 means it is
faster for the engine to evaluate the original OMQ directly.

Figure 3 reports, for each engine E, a violin plot
collecting the efficiency ratios Rp g(; ;. for all 4,5 €
{0,20,40, ...,200}, expressed as a percentage—e.g. 50%
corresponds to an efficiency ratio equal to 0.5. In each violin
plot, the bottom and the top borders of the inner box denote
the first and third quartile; the line inside the box denotes the
median efficiency ratio; the area surrounding the box denotes
the distribution of all the efficiency ratios.

Regarding DLV, DLV-E, and InteGraal, we can see that
most of the efficiency ratios are below 100%, with DLV-E
and InteGraal having most of them around 50%. This indi-

cates that the Datalog rewriting produced by our implemen-
tation of WardedRewrite can be evaluated efficienty by these
systems, and in most cases, the rewriting is even desirable
w.r.t. evaluating the original OMQ itself. The main reason for
this trend is that all these engines implement certain answer-
ing by means of an explicit construction of the chase instance
(or a variant of it). This means that when considering the
original OMQ O of a test scenario, the presence of existential
variables in O forces the engine to introduce a large number
of nulls, while constructing the chase, and thus results in a
large chase instance. On the other hand, the Datalog rewrit-
ing avoids the construction of all such intermediate atoms,
reducing the size of the chase instance considerably.

On the opposite side, VLog is not very efficient, in most
cases, when evaluating the Datalog rewriting w.r.t. evaluating
the original OMQ directly, with almost 75% of the scenar-
ios having an efficiency ratio over 100%, with the worst effi-
ciency ratio around 480%. The reason for this is that, differ-
ently from DLV, DLV-E, and InteGraal, VLog is less affected
by the size of the chase instance, when evaluating the orig-
inal OMQ, due to a custom column-based representation of
the produced atoms, and thus it does not usually gain much
in computing the certain answers via the Datalog rewriting.

Finally, Vadalog is in a middle ground, with roughly 80%
of the test scenarios having an efficiency ratio below 50%,
while for the remaining 20% of the test scenarios, the Datalog
rewriting performs poorly, compared to the original OMQ,
with high efficiency ratios up to 830%. This could be due to
the fact that for some of the scenarios, when Vadalog evalu-
ates the original OMQ of the scenario, it is able to stop much
earlier in the contruction of the chase instance, since it in-
ternally constructs only an isomorphim-closed portion of the
chase (see [Bellomarini et al., 2018] for more details).

Validation and Scalability Analysis. We employed once
again the structural scenarios from [Atzeni et al., 2022] in or-
der to validate our analysis performed above, and indeed the
above trends are confirmed also in these scenarios. Moreover,
it turned out that for most of the engines, the efficiency ratio
even improves (i.e., decreases) as the database size increases.

End-to-end Reasoning. We point out that, besides VLog,
for which we have already shown that evaluating the original
OMQ is faster than evaluating the Datalog rewriting, in most
cases, for all other engines, most of the efficiency ratios (88%
on average) that are below 100% remain below 100% even if
the time for building the rewriting is taken into account.

6 Conclusion

Our work is a first step in making OMQ Answering un-
der warded ontologies viable in practice, without relying
on closed systems, as we have shown that constructing the
Datalog rewriting is quite efficient, and most off-the-shelf
Datalog-based engines are very capable in evaluating it.

A possible direction for improvement would be paralleliz-
ing WardedRewrite by exploiting the fact that all intermedi-
ate queries produced by the algorithm can be processed inde-
pendently from each other, thanks to the optimal decomposi-
tion employed by the algorithm.
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