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Abstract
The need to generalize the pre-trained deep learn-
ing models to unknown test-time data distribu-
tions has spurred research into test-time adapta-
tion (TTA). Existing studies have mainly focused
on closed-set TTA with only covariate shifts, while
largely overlooking open-set TTA that involves se-
mantic shifts, i.e., unknown open-set classes. How-
ever, addressing adaptation to unknown classes
is crucial for open-world safety-critical applica-
tions such as autonomous driving. In this pa-
per, we emphasize that accurate identification of
the open-set samples is rather challenging in TTA.
The entanglement of semantic shift and covariate
shift mutually confuse the network’s discrimina-
tive capability. This co-interference further ex-
acerbates considering the single-pass data nature
and low latency requirement. With this under-
standing, we propose Dual-mode Matching and
Prompt-based Open Set Adaptation (DM-POSA)
for open-set TTA to enhance discriminative fea-
ture learning and unknown classes distinguishment
with minimal time cost. DM-POSA identifies
open-set samples via dual-mode matching strate-
gies, including model-parameter-based and feature-
space-based matching. It also optimizes the model
with a random pairing discrepancy loss, enhanc-
ing the distributional difference between open-set
and closed-set samples, thus improving the model’s
ability to recognize unknown categories. Extensive
experiments show the superiority of DM-POSA
over state-of-the-art baselines on both closed-set
class adaptation and open-set class detection.

1 Introduction
Deep neural networks have achieved great success in a wide
range of machine learning tasks. Nevertheless, they often
exhibit brittleness and vulnerability when confronted with
data distribution shifts.Therefore, enhancing the robustness
of deep models against distribution shifts has become a criti-
cal and actively researched area.

∗Corresponding author: Shao-Yuan Li.

Figure 1: Open-Set Test-Time Adaptation

Test-time adaptation (TTA) emerges as a significant re-
search frontier through adapting pre-trained models to un-
foreseen deployment distribution shifts. Aligning well with
real-world scenarios, TTA has motivated many research ef-
forts, including test time normalization [Schneider et al.,
2020; Nado et al., 2020], entropy minimization [Wang et
al., 2021], self-supervised learning [Sun et al., 2020; Liu
et al., 2021], contrastive learning [Chen et al., 2022], data
augmentation [Zhang et al., 2022], uncertainty-aware op-
timization [Niu et al., 2022], online continual adaptation
[Boudiaf et al., 2022; Wang et al., 2022; Zhang et al.,
2023], the small batch size adaptation [Niu et al., 2023;
Zhao et al., 2024], as well as TTA with pre-trained vision-
language models [Hakim et al., 2024; Feng et al., 2023].

Nevertheless, there is a noticeable gap in the literature con-
cerning the issue of semantic shift in TTA. As depicted in
Fig.1, in open-world applications that require models to be
deployed in diverse environments, the test domain not only
experiences covariate shift (domain/style shift) but also suf-
fers from semantic shift (open-set classes/new categories).
Existing TTA methods encounter significant challenges in
such situations. Fig.2 illustrates the performance drop of
representative TTA approaches when the test data contains
open-set samples. These methods lack robust loss functions
or mechanisms to identify open-set classes. When the new
categories are incorporated as closed-set samples for model
adaptation, they tend to mislead the covariate shift estimation
and alignment.

Previously only a few works have explored the open-set
challenge in TTA. OWTTT [Li et al., 2023] firstly pro-
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Figure 2: Performance degradation of traditional TTA methods in
the presence of open-set samples.

posed the open-world test-time training/adaptation (OWTTT)
concept, referring to the semantic shift as strong out-of-
distribution (OOD) and the covariate shift as weak OOD.
Built under the self-training framework, OWTTT lessened
the influence of incorrectly pseudo-labelled strong OOD sam-
ples by pruning out samples far from the source domain pro-
totypes. OSTTA [Lee et al., 2023] and UniEnt [Gao et al.,
2024] analyzed that open-set samples undermine the model’s
confidence and thus corrupt the extensively used entropy min-
imization objective. OSTTA [Lee et al., 2023] treated the
samples whose confidence values are lower and misaligned
with ‘wisdom of crowds’ as open-set and filtered them out.
UniEnt [Gao et al., 2024] distinguished open-set samples
based on the cosine similarity between target sample features
and the source domain prototypes, then conducted entropy
minimization and maximization respectively on the closed-
set and open-set samples.

These works open the door and shed insightful light on the
area of open-set TTA. However, the sophisticateness of open-
set TTA leaves large room for further exploration. The key
challenge of open-set TTA lies in that, the dual factors of se-
mantic shift detection and covariate shift alignment entangle
and interfere with one another. Imprecise detection of open-
set classes would confuse the network’s discriminative capa-
bility on the closed-set covariate shift samples. This confir-
mation bias exacerbates encountering the single-pass nature
of TTA, which intrinsically challenges effective feature learn-
ing within constrained adaptation time.

Based on straightforward measures defined over the model
predictions or feature space similarity, the above open-set
sample detection efforts are limited for difficult open-set sam-
ples, which resemble some closed-set classes. Additionally,
simply discarding the identified open-set samples misses the
potential use of the hidden information within them.

With these concerns, we propose DM-POSA, an open-set
TTA method based on dual-mode matching and pairing dis-
crepancy loss. The core idea of DM-POSA is to improve
the model’s ability to distinguish open-set samples by accu-
rate open-set sample recognition and robust open-set repre-
sentation learning. Upon the arrival of each test batch, DM-
POSA quickly identifies open-set samples through a dual-
mode matching strategy including model-parameter-based
and feature-space-based matching. It further enhances the
model’s adaptation to difficult open-set samples by optimiz-
ing the pairing discrepancy loss, thereby effectively avoiding

the negative impact of open-set data on model performance.
In summary, our contributions are as follows:
• We analyze and emphasize that due to the entanglement

of covariate shift and semantic shit, accurate identifica-
tion of open-set samples is rather challenging, especially
under the single-pass data protocol and low latency re-
quirement of TTA.

• We propose a timely DM-POSA approach using dual-
mode matching to quickly identify reliable closed-set
and potential open-set samples in streaming data. Ad-
ditionally, it introduces a visual prompt-based pairing
discrepancy loss to enhance the distributional difference
between open-set and closed-set categories, improving
the recognition of challenging open-set samples.

• We conduct extensive experimental validations on mul-
tiple datasets, and show the superiority of DM-POSA in
distinguishing open-set samples while ensuring closed-
set classification accuracy.

2 Related Works
Test-Time Adaptation Research on test-time adaptation has
emerged rapidly in recent years. Early works mainly fo-
cused on adjustments to the batch normalization (BN) layers
by recalculating normalization statistics for each test batch
of data [Nado et al., 2020; Schneider et al., 2020]. Subse-
quently, entropy minimization-based methods gained promi-
nence. TENT [Wang et al., 2021] optimizes batch normal-
ization parameters via entropy minimization, while Memo
[Zhang et al., 2022] reduces output entropy across augmented
inputs to improve robustness. TEA [Yuan et al., 2024] aligns
the model’s distribution to test data by transforming clas-
sifiers into energy-based models. Pseudo-labeling methods
include AdaContrast [Chen et al., 2022], which combines
contrastive learning with pseudo-label refinement, and NC-
TTT [Osowiechi et al., 2024], which improves adaptation by
distinguishing noisy features via contrastive learning. RMT
[Döbler et al., 2023] uses a mean teacher model with sym-
metric cross-entropy for consistency loss. Non-parametric
approaches, like LAME [Boudiaf et al., 2022], adjust out-
puts without changing model parameters, leveraging Lapla-
cian matrix adjustments. AdaNPC [Zhang et al., 2023] uses
memory-based voting to iteratively align source and target
distributions.
Open-Set Test-Time Adaptation Several works have ex-
plored open-set test-time adaptation, which extends TTA by
addressing scenarios where the test data includes samples
unseen during the training phase. They are designed ei-
ther within a self-training framework or on the basis of en-
tropy minimization. OWTTT [Li et al., 2023] designs an
adaptive outlier data pruning strategy and represents out-of-
distribution samples through dynamic prototype expansion.
By calculating the similarity between the test data and the en-
tire prototype pool, it can distinguish whether the sample is
open-set. OSTTA [Lee et al., 2023] proposes a population-
based sample selection strategy that reduces the negative im-
pact of open-set samples by filtering out samples with low
confidence in the model. UniEnt [Gao et al., 2024] intro-
duces an integrated framework, which combines pseudo-label
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generation with close-set entropy minimization and open-set
entropy maximization.

3 Proposed Approach: DM-POSA
3.1 Preliminary
Let Ds = {(xi, yi)}Ns

i=1 be the source domain dataset with
label space Ys = {1, · · · , Cs}, and Dt = {xj}Nt

j=1 be the
target domain dataset with label space Yt = {1, · · · , Ct},
where Cs and Ct denote the number of classes in the source
and target domain datasets, respectively. In open-set TTA,
the label space of the target domain satisfies Yt = Ys ∪ Yo,
where Ys is the set of known (closed-set) classes and Yo is
the set of unknown (open-set) classes, with Ys ∩ Yo = ∅. The
test data arrives sequentially in mini-batches, denoted as Bt

at timestamp t. Given a model fθ0 pre-trained on Ds, the ob-
jective of open-set TTA is to correctly predict the classes in
Ys while rejecting the classes in Yo using the adapted model
fθt , especially under significant distribution shifts between
Ds and Dt. Specifically, we assume a covariate shift sce-
nario where Ps(Xs) ̸= Pt(Xs) but Ps(Ys|Xs) = Pt(Ys|Xs),
ensuring the label conditional distribution remains consistent
across domains. At each time step t, the model needs to de-
termine whether a sample xj belongs to Ys or Yo, classify it
if it belongs to Ys, and update itself to obtain fθt .

Due to the co-occurrence of covariate shift and seman-
tic shift, effectively adapting pre-trained models to open-set
TTA with low latency is rather challenging. In this paper, we
propose Dual-mode Matching and Prompt-based Open Set
Adaptation (DM-POSA) to tackle this problem. DM-POSA
first quickly distinguishes open-set samples through an effi-
cient dual-mode pattern matching based on parameter update
and feature change. Then makes better use of them through
a visual prompt enhanced divergence loss to amplify the dis-
tribution difference between open-set and closed-set samples,
which induces robust representation learning and better hard-
to-distinguish open-set sample detection. The overall frame-
work of DM-POSA is shown in Figure 3.

3.2 Pattern Matching Based on Parameter Update
We first propose a pattern-matching strategy based on model
parameter updates for identifying open-set samples. This de-
sign is based on entropy minimization. Based on the con-
vergence of gradient descent [Robbins and Monro, 1951], it
can be guaranteed that under an appropriate learning rate, af-
ter the model computes the gradient for a single sample and
updates, the entropy of the label prediction for the sample
will decrease when the common entropy minimization loss
L(θ, x) = H(θ, x) is used:

H(fθt+1
(x)) ≤ H(fθt(x)). (1)

However, since the model update is done over an entire batch
of data, for a single sample x, the entropy of its label predic-
tion may not necessarily decrease. This depends on how well
the desired gradient update direction for the sample matches
the average gradient update direction of the entire batch.
Thus, we define the sample gradient matching as follows:

d(gx, ḡ) =
1

L

L∑
l=1

< gx, ḡ >

||gx|| · ||ḡ||
, ḡ =

1

N

N∑
i=1

gxi
, (2)

where L is the number of layers the model updates. For open-
set samples, their gradient behaves like noise, and the update
direction is often erroneous and erratic. Therefore, ḡ is dom-
inated by the updates from close-set samples. Using the dis-
tribution of d(gx, ḡ) to distinguish open-set samples becomes
a good strategy.

However, obtaining the gradient for a single sample is not
trivial. It requires passing each sample through the model
and computing its gradient, which incurs high time overhead
compared to parallelizing over an entire batch of data. To
address this, we propose a more efficient computation method
based on the model parameter update perspective, leveraging
the model’s prediction confidence to construct a new open-set
score ods(x):

θ
′

t = α ∗ θ
′

t−1 + (1− α) ∗ θt,

ods(x) =
C∑
i=1

(
fθt(x)i − fθ′

t
(x)i

)
· I (i = c) ,

(3)

where c = argmaxc′∈C fθt(x)c′ , θt is the model parameter
updated by full gradient steps at each time t, θ

′

t is the parame-
ter updated via a moving average, and α is the momentum for
updating. ods(x) measures the model’s confidence change in
the maximum class between two consecutive model parame-
ter updates.

Nevertheless, since the source-domain model itself is not
perfect, the indicator function in Eq.3 may point to the wrong
class thus leading to an unstable ods score. To address this,
we propose a new feature-space-based pattern-matching strat-
egy in the next section.

3.3 Pattern Matching Based on Feature Change
Assume that the model consists of a feature extractor f and a
classifier h. The individual dimensions of the features f(x)
extracted by the model can be viewed as different match-
ing patterns, while the final class prediction h(f(x)) =
[W1f(x) + b1,W2f(x) + b2, · · · ,WCf(x) + bC ] represents
the pattern belonging to each class for the extracted features.

However, there exist some hard-to-detect open-set sam-
ples, which are mistakenly assigned similar patterns by the
model, resulting in their features being difficult to distinguish
and leading to misclassification with high confidence. As
shown in Figure 4, through Grad-CAM heatmaps[Selvaraju
et al., 2017], we observe the following phenomenon: the
class activation map of a correctly classified close-set sam-
ple mainly focuses on the real features of the target object,
whereas the class activation map of an open-set sample fo-
cuses on spurious features, which construct patterns similar
to those of close-set samples and deceive the classifier h.

Based on this observation, we propose a feature space
masking strategy, which covers parts of the original image’s
pixels, forcing the close-set sample’s feature pattern to lose
its distinctiveness. For open-set samples, since their feature
patterns are inherently spurious, the masking has little impact
on them. By analyzing the magnitude of the feature pattern
change, we can effectively differentiate between open-set and
close-set samples.

mh,w = I(Bernoulli(1− ρ)), (4)
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Figure 3: The overall framework of proposed DM-POSA approach. DM-POSA first quickly distinguishes open-set samples through an
efficient dual-mode pattern matching based on parameter update and feature change. Then makes better use of them through a visual prompt
enhanced divergence loss, which helps to amplify the distribution difference between open-set and closed-set samples, thus inducing robust
representation learning and better hard-to-distinguish open-set sample detection.

(a) close-set sample (b) open-set sample

Figure 4: Difference of close-set and open-set class activation maps

where ρ is the probability of masking. We define a new close-
set score ids(x) as follows:

ids(x) =

C∑
i=1

(fθt(x)i − fθt(x⊙m)i) · I (i = c) , (5)

where c = argmaxc′∈C fθt(x)c′ . Samples with higher ids
scores belong to the close-set class, while those with lower
ids scores are more likely to belong to the open-set class.

3.4 Dual-Mode Open-Set Recognition
To combine the two previously proposed open-set sample
recognition strategies based on mode matching, we use their
intersection as the criterion. For any batch of data Xt arriving
at time t, the close-set sample set X ′

ID and open-set sample
set X ′

OOD identified are as follows:

X ′
ID = {x | ids(x) > median(ids(Xt)) ∩ ods(x) ≥ 0}

X ′
OOD = {x | ids(x) ≤ median(ids(Xt)) ∩ ods(x) < 0}

(6)
To implement TTA, we apply the entropy minimization

loss only to the samples identified as close-set:

Len = − 1

N

N∑
i=1

C∑
c=1

h(f(xi))c log h(f(xi))c, (7)

where xi ∈ X ′
ID, N = |X ′

ID|, and C is the number of close-
set classes.

3.5 Visual Prompt Enhanced Divergence Loss
The open-set recognition strategy based on dual-mode match-
ing can identify open-set samples, but it simply discards
them and fails to effectively utilize the information contained
therein. We further propose a visual prompt enhanced diver-
gence loss to amplify the differences between open-set and
closed-set samples, thus inducing robust representation learn-
ing and better detecting hard open-set samples.

Suppose the true open-set sample set is XOOD, and the true
close-set sample set is XID. Assume that, at each moment t,
the open-set sample set identified in the current batch of data
is X ′

OOD, and the close-set sample set is X ′
ID. It can be ap-

proximated that X ′
OOD ⊆ XOOD, X ′

ID ⊆ XID. The class
probability distribution of each sample can be expressed as a
matrix PID ∈ Rb×C , where the i-th row is the class probabil-
ity distribution of sample xi:

P = [p1; p2; . . . ; pb] , (8)

Each pi =
[
p(i,1), p(i,2), . . . , p(i,C)

]
is the class probability

distribution of sample xi. We measure the distributional di-
vergence between open-set and close-set samples as follows:

D(p(xi), p(xj)) =
C∑

c=1

p(i,c) log
p(i,c)

p(j,c)
. (9)

For all samples, to achieve efficient computation, we design
a random pairwise distribution divergence loss. First, let

B = min(|X ′
ID|, |X ′

OOD|). (10)
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Assume that {u1, u2, . . . , uB} is the set of predicted close-set
samples, and {v1, v2, . . . , vB} is the set of predicted open-set
samples. Define a random mapping π:

π : {1, 2, . . . , B} → {1, 2, . . . , B} (11)

The corresponding random pairing relationship is:
(ui, vπ(i))

B
i=1. The loss function based on these paired

samples can be expressed as:

Lp = − 1

B

N∑
i=1

M∑
j=1

D(p(xi), p(xj)) (12)

The advantage of the proposed random-pairing distribution
divergence loss is that it is relatively robust to the division of
open-set and close-set samples. Even if some close-set sam-
ples are misclassified, the probability of pairing them with
samples of the same class is small (p < 1

C ), and the resulting
noise gradients are also small.

To handle the indistinguishable open-set samples, we in-
corporate visual prompts and introduce some extra learnable
parameters. Firstly, we define the indistinguishable open-set
samples as follows: For an open-set sample x ∈ XOOD, there
exists a close-set sample x′ ∈ XID, such that

1T |f(x)− f(x′)| ≤ δ1

1T |h(f(x))− h(f(x′))| ≤ δ2,
(13)

where δ1 and δ2 are very small positive numbers. It requires
both the representation and label prediction of the open-set
sample to be sufficiently similar to a close-set sample.

The proposed method aims to improve the discriminabil-
ity of indistinguishable open-set samples by using visual
prompts. Let ϵ denote the visual prompt, which is a learnable
parameter matrix of the same size as the image x. For any
image x, applying the visual prompt is equivalent to adding
the prompt to x: x = x + ϵ. For indistinguishable open-set
samples x ∈ XOOD, the final optimization goal of the prompt
design is that, for any close-set sample x′ ∈ XID, the follow-
ing conditions should hold:

1T |f(x+ ϵ)− f(x′ + ϵ)| > δ1

1T |h(f(x+ ϵ))− h(f(x′ + ϵ))| > δ2.
(14)

Therefore, when calculating the random pairing discrep-
ancy loss, we will substitute x with x+ ϵ for the calculation.
the overall training objective is

L = Len(x) + λ1Lp(x+ ϵ), (15)

where λ1 is a hyperparameter that balances the weight of Lp.
It is worth noting that we select the common entropy mini-
mization as the basic loss. However, our method also has the
versatility to be extended to other approaches.

4 Experiments
4.1 Experimental Setup
Datasets We select three domain-shifted datasets, Cifar10-
C, Cifar100-C, and TinyImageNet-C [Hendrycks and Diet-
terich, 2019], as the close-set data for testing. These datasets

cover 15 different types of perturbations, with each pertur-
bation type having 5 levels of severity, where level 5 corre-
sponds to the most severe disturbance to the original data dis-
tribution. The pre-trained models are trained on the close-set
categories. In line with UniEnt [Gao et al., 2024], we use
SVHN dataset as the open-set data for Cifar10/100-C and the
ImageNet-O as the open-set data for TinyImageNet-C.
Evaluation Protocol We follow the single-pass protocol
from TTAC [Su et al., 2024]. In this protocol, images with
domain shifts arrive in a streaming fashion in batches. At
each time step t, the model encounters a mini-batch of test
data, which must be immediately predicted and used to up-
date the model parameters. We conduct multiple experiments
with varying open-set rates, γ, to evaluate the model’s adap-
tation performance. The open-set rate is defined as the ratio
of open-set samples to close-set samples in the test data:

γ = |XOOD|/|XID|, (16)

where XOOD is the set of open-set samples and XID is the
set of close-set samples.
Evaluation Metrics Following UniEnt[Gao et al., 2024],
we selected three evaluation metrics to assess the perfor-
mance of our model: ACC, AUROC, and OSCR[Dhamija et
al., 2018]. ACC is used to evaluate the classification perfor-
mance on close-set samples, AUROC measures the model’s
ability to recognize open-set samples by calculating the area
under the receiver operating characteristic curve, and OSCR
simultaneously quantifies both the classification accuracy on
close-set data and the detection accuracy on open-set data,
providing a comprehensive evaluation of the model’s perfor-
mance in open-set classification tasks.
Baseline Methods Source refers to using the pre-trained
model’s predictions without updates. Pred BN [Nado et al.,
2020] recalculates the BN layer’s statistics at the arrival of
each batch of test data. Tent [Wang et al., 2021] uses entropy
minimization loss to encourage the model to output more con-
fident predictions, and updates only the affine parameters of
the BN layers to reduce time overhead. EATA [Niu et al.,
2022] builds on entropy minimization and selects reliable,
non-redundant samples for model adaptation. OWTTT [Li
et al., 2023] dynamically expands prototypes to improve the
separation of strong and weak open-set samples. OSTTA
[Lee et al., 2023] filters out open-set samples during model
adaptation based on changes in confidence. UniEnt [Gao et
al., 2024] employs entropy minimization for close-set sam-
ples and entropy maximization for open-set samples. Note
that the basic loss functions of all the methods are based on
entropy minimization for a fair comparison.
Implementation Details We evaluate the results under the
most severe disturbance level (level 5). Following previous
research [Lee et al., 2023; Li et al., 2023], we use a 40-layer
WideResNet [Zagoruyko and Komodakis, 2016] with an ex-
pansion factor of 2 as the source-domain pre-trained model
for the Cifar10-C and Cifar100-C experiments, and a pre-
trained ResNet-50 [He et al., 2016] for the TinyImageNet-C
experiments. During TTA, we only update the affine parame-
ters of the BN layers and the prompt word parameter matrix.
We use the Adam optimizer [Kingma and Ba, 2014] with a
fixed learning rate of 0.001, a batch size of 256, a balance
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Method
γ = 0.5 γ = 1 γ = 1.5

ACC AUROC OSCR ACC AUROC OSCR ACC AUROC OSCR

Source 81.73 79.39 57.51 81.73 79.47 69.52 81.73 79.42 68.78
Pred BN[Schneider et al., 2020] 84.95 82.57 60.56 83.18 82.13 72.81 81.81 82.09 71.08
Tent[Wang et al., 2021] 85.92 71.34 56.36 83.89 74.46 67.41 82.72 75.75 67.01
EATA[Niu et al., 2022] 86.72 82.46 61.23 85.32 83.00 74.67 84.17 82.29 72.64
OWTTT[Li et al., 2023] 85.87 85.88 62.24 84.32 85.04 75.83 83.64 84.57 74.24
OSTTA[Lee et al., 2023] 85.49 71.50 56.25 83.08 73.20 66.11 81.44 74.45 65.53
UniEnt[Gao et al., 2024] 86.15 86.51 62.59 84.57 85.41 76.08 83.35 84.80 74.06
DM-POSA 87.47 92.29 65.29 86.49 90.16 80.74 85.54 88.01 77.96

Table 1: Results on Cifar10-C Dataset under Different Open Set Rates

factor λ1 = 0.1 for the loss function, a feature masking rate
ρ = 0.6, and an update momentum α = 0.8.

4.2 Effect Analysis

Tables 1 to 3 report the performance of the proposed method
across three datasets under different open-set rates γ.

On Cifar10-C, the proposed DM-POSA consistently out-
performs other methods across all metrics under different
open-set rates, especially in terms of the AUROC, where it
shows a significant advantage. This demonstrates that the
proposed method is more effective at identifying unknown
class samples in open-set tasks, offering stronger robustness.

On Cifar100-C, the difficulty of both open-set recognition
and close-set classification increases. However, DM-POSA
remains the top performer. At open-set rates γ = 0.5 and
γ = 1, the proposed method significantly outperforms oth-
ers across all three metrics. At γ = 1.5, the accuracy of the
proposed method is slightly lower than that of OWTTT, but it
still leads in terms of AUROC and OSCR. In contrast, meth-
ods like OSTTA, although performing well at γ = 0.5, expe-
rience a rapid drop in accuracy as the open-set rate increases,
indicating weaker adaptation to unknown class samples.

The results on the TinyImageNet-C dataset further validate
the superiority of the proposed method. Especially in terms of
AUROC, the proposed method significantly outperforms oth-
ers, indicating that it is better at distinguishing open-set sam-
ples in more complex open-set TTA scenarios. In compar-
ison, other methods show significantly weaker performance
in this stage. For example, OWTTT’s performance on the
TinyImageNet-C dataset is notably lower than on the previ-
ous two datasets, showing a performance bottleneck on more
challenging tasks.

As the open-set rate γ increases, all methods experience
a degree of performance decline. However, the proposed
method exhibits strong robustness and adaptability to open-
set tasks across all datasets, consistently leading other meth-
ods. On the Cifar10-C and Cifar100-C datasets, the pro-
posed method significantly improves classification accuracy
and performs excellently in handling open-set samples. The
results on the TinyImageNet-C dataset further demonstrate
the generalization ability and effectiveness of the proposed
method on larger datasets.

4.3 Feature Visualization
We visualize the features using t-SNE [van der Maaten and
Hinton, 2008] and compare the visualization results of the
final layer representations of the model when performing
adaptation on Cifar10-C, between the proposed DM-POSA
method and several other open-set adaptation methods. As
shown in Figure 5, the feature distinguishment for different
classes of other methods is generally lower than that of the
proposed method, particularly for class 3. It can be observed
that in the other three methods, the representations of class 3
samples are more scattered and are mixed with the represen-
tations of open-set samples, making it difficult to distinguish
them. In contrast, the representations of class 3 samples ex-
tracted by DM-POSA are more clustered and located on the
edge of the open-set sample representations. This validates
that DM-POSA adapts to a more robust representation space,
thereby enhancing open-set sample distinguishment.

(a) OWTTT (b) OSTTA

(c) UniEnt (d) DM-POSA

Figure 5: t-SNE Feature Visualization on Cifar10-C

4.4 Ablation Study
We conduct a comprehensive ablation study on each com-
ponent of DM-POSA. As shown in Tables 4 and 5, when
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Method
γ = 0.5 γ = 1 γ = 1.5

ACC AUROC OSCR ACC AUROC OSCR ACC AUROC OSCR

Source 53.25 67.91 37.75 53.25 67.80 42.65 53.25 67.83 42.33
Pred BN[Schneider et al., 2020] 58.71 77.60 43.14 55.30 77.54 47.75 52.84 76.76 44.69
Tent[Wang et al., 2021] 61.16 75.32 44.25 57.87 76.36 49.46 55.30 75.70 46.54
EATA[Niu et al., 2022] 61.71 84.31 46.86 59.63 85.85 55.18 57.56 85.24 52.58
OWTTT[Li et al., 2023] 61.84 82.72 46.58 59.76 83.86 54.51 58.33 83.12 52.33
OSTTA[Lee et al., 2023] 60.85 76.04 44.27 57.50 77.37 49.68 55.19 76.87 46.99
UniEnt[Gao et al., 2024] 61.25 83.57 46.46 58.51 84.42 53.76 56.41 83.76 51.08
DM-POSA 62.37 87.84 47.91 60.14 87.36 56.13 58.29 85.71 53.35

Table 2: Results on Cifar100-C Dataset under Different Open Set Rates

Method
γ = 0.5 γ = 1 γ = 1.5

ACC AUROC OSCR ACC AUROC OSCR ACC AUROC OSCR

Source 21.50 43.15 14.17 21.51 43.23 14.02 21.51 43.21 14.03
Pred BN[Schneider et al., 2020] 34.74 49.64 23.71 32.47 47.03 22.12 30.83 45.80 20.71
Tent[Wang et al., 2021] 37.17 51.22 25.12 34.66 48.29 23.24 32.74 46.42 21.24
EATA[Niu et al., 2022] 36.39 50.36 25.04 34.39 48.31 23.90 32.43 47.13 22.19
OWTTT[Li et al., 2023] 32.31 53.18 22.01 29.56 50.62 20.26 26.38 51.12 17.69
OSTTA[Lee et al., 2023] 37.15 50.32 25.07 34.64 47.65 23.10 32.83 45.72 21.27
UniEnt[Gao et al., 2024] 36.46 55.87 25.83 34.46 53.90 25.09 32.88 53.09 23.56
DM-POSA 37.76 63.68 27.15 35.64 59.56 26.51 33.86 57.22 24.20

Table 3: Results on TinyImageNet-C Dataset under Different Open Set Rates

only entropy minimization is used for updates, the model per-
forms poorly and is unable to effectively distinguish between
open-set and close-set samples. After incorporating model
parameter update matching (MM), the model’s performance
improves, enabling it to better adapt to changes in close-set
samples. Further introducing feature space variation match-
ing (FM) enhances the model’s ability to discriminate open-
set samples. Finally, after combining the paired difference
loss (PDL) under the prompt word design, the model per-
forms best across all metrics, validating its key role in im-
proving open-set recognition capabilities. At the same time,
it can be observed that the improvement in close-set accu-
racy is relatively small, whereas there is a significant increase
in the open-set metric AUROC. Particularly, after adding the
paired difference loss, the model’s open-set performance im-
proves dramatically, indicating that the paired difference loss
based on the prompt word design is a crucial component for
enhancing the model’s open-set discrimination ability.

MM FM PDL ACC AUROC OSCR

- - - 57.87 76.36 49.46
✓ - - 59.18 83.11 53.64
✓ ✓ - 59.32 85.58 54.77
✓ ✓ ✓ 60.14 87.16 56.13

Table 4: Ablation Experiment on Cifar100-C (Perturbation Level 5)

MM FM PDL ACC AUROC OSCR

- - - 83.89 74.46 67.41
✓ - - 83.14 75.50 67.64
✓ ✓ - 83.72 77.63 69.50
✓ ✓ ✓ 86.49 90.16 80.74

Table 5: Ablation Experiment on Cifar10-C (Perturbation Level 5)

5 Conclusion
When the test data contains open-set samples, traditional TTA
methods suffer from performance degradation. To timely
identify and correctly handle these open-set samples during
the testing phase, and prevent them from interfering with
the model’s adaptation process, we propose the DM-POSA
method. It includes an online open-set recognition strategy
based on dual-mode matching and a pairwise divergence loss
based on visual prompts. The dual-mode matching strat-
egy enables the quick and effective identification of open-
set samples upon the arrival of each data batch, while the
pairwise divergence loss based on visual prompts further en-
hances the model’s ability to distinguish difficult open-set
samples, increasing the distribution gap between known and
unknown categories, thus effectively mitigating the negative
impact of open-set samples on model performance. Exper-
imental results show that DM-POSA significantly improves
performance in open-set test scenarios across multiple TTA
datasets. Compared to existing open-set TTA methods, it can
more accurately identify and handle open-set samples while
maintaining classification accuracy for close-set categories.
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[Döbler et al., 2023] Mario Döbler, Robert A. Marsden, and
Bin Yang. Robust mean teacher for continual and gradual
test-time adaptation. In 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
7704–7714, 2023.

[Feng et al., 2023] Chun-Mei Feng, Kai Yu, Yong Liu,
Salman A. Khan, and Wangmeng Zuo. Diverse data aug-
mentation with diffusions for effective test-time prompt
tuning. 2023 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 2704–2714, 2023.

[Gao et al., 2024] Zhengqing Gao, Xu-Yao Zhang, and
Cheng-Lin Liu. Unified entropy optimization for open-set
test-time adaptation. In 2024 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
23975–23984, 2024.

[Hakim et al., 2024] Gustavo Adolfo Vargas Hakim, David
Osowiechi, Mehrdad Noori, Milad Cheraghalikhani, Ali
Bahri, Moslem Yazdanpanah, Ismail Ben Ayed, and Chris-
tian Desrosiers. Clipartt: Adaptation of clip to new do-
mains at test time, 2024.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 770–778, 2016.

[Hendrycks and Dietterich, 2019] Dan Hendrycks and
Thomas Dietterich. Benchmarking neural network
robustness to common corruptions and perturbations. In
International Conference on Learning Representations,
2019.

[Kingma and Ba, 2014] Diederik Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, 12 2014.

[Lee et al., 2023] Jungsoo Lee, Debasmit Das, Jaegul Choo,
and Sungha Choi. Towards open-set test-time adaptation
utilizing the wisdom of crowds in entropy minimization.
In 2023 IEEE/CVF International Conference on Computer
Vision (ICCV), pages 16334–16334, 2023.

[Li et al., 2023] Yushu Li, Xun Xu, Yongyi Su, and Kui Jia.
On the Robustness of Open-World Test-Time Training:
Self-Training with Dynamic Prototype Expansion . In
2023 IEEE/CVF International Conference on Computer
Vision (ICCV), pages 11802–11812, Los Alamitos, CA,
USA, October 2023. IEEE Computer Society.

[Liu et al., 2021] Yuejiang Liu, Parth Kothari, Bastien van
Delft, Baptiste Bellot-Gurlet, Taylor Mordan, and Alexan-
dre Alahi. Ttt++: When does self-supervised test-time
training fail or thrive? In Advances in Neural Informa-
tion Processing Systems, volume 34, pages 21808–21820.
Curran Associates, Inc, 2021.

[Nado et al., 2020] Zachary Nado, Shreyas Padhy, D. Scul-
ley, Alexander D’Amour, Balaji Lakshminarayanan, and
Jasper Snoek. Evaluating prediction-time batch nor-
malization for robustness under covariate shift. ArXiv,
abs/2006.10963, 2020.

[Niu et al., 2022] Shuaicheng Niu, Jiaxiang Wu, Yifan
Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and
Mingkui Tan. Efficient test-time model adaptation without
forgetting. In The Internetional Conference on Machine
Learning, 2022.

[Niu et al., 2023] Shuaicheng Niu, Jiaxiang Wu, Yifan
Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and
Mingkui Tan. Towards stable test-time adaptation in dy-
namic wild world. In Internetional Conference on Learn-
ing Representations, 2023.

[Osowiechi et al., 2024] David Osowiechi, Gustavo A. Var-
gas Hakim, Mehrdad Noori, Milad Cheraghalikhani, Ali
Bahri, Moslem Yazdanpanah, Ismail Ben Ayed, and Chris-
tian Desrosiers. Nc-ttt: A noise constrastive approach
for test-time training. In 2024 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
6078–6086, 2024.

[Robbins and Monro, 1951] Herbert Robbins and Sutton
Monro. A Stochastic Approximation Method. The Annals
of Mathematical Statistics, 22(3):400 – 407, 1951.

[Schneider et al., 2020] Steffen Schneider, Evgenia Rusak,
Luisa Eck, Oliver Bringmann, Wieland Brendel, and
Matthias Bethge. Improving robustness against common
corruptions by covariate shift adaptation. In Advances in
Neural Information Processing Systems, volume 33, pages
11539–11551, 2020.

[Selvaraju et al., 2017] Ramprasaath R. Selvaraju, Michael
Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi
Parikh, and Dhruv Batra. Grad-cam: Visual explanations
from deep networks via gradient-based localization. In
2017 IEEE International Conference on Computer Vision
(ICCV), pages 618–626, 2017.

[Su et al., 2024] Yongyi Su, Xun Xu, Tianrui Li, and Kui Jia.
Revisiting Realistic Test-Time Training: Sequential Infer-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

ence and Adaptation by Anchored Clustering Regularized
Self-Training . IEEE Transactions on Pattern Analysis &
Machine Intelligence, 46(08):5524–5540, August 2024.

[Sun et al., 2020] Yu Sun, Xiaolong Wang, Zhuang Liu,
John Miller, Alexei Efros, and Moritz Hardt. Test-time
training with self-supervision for generalization under dis-
tribution shifts. In the 37th International Conference on
Machine Learning, volume 119, pages 9229–9248, 13–18
Jul 2020.

[van der Maaten and Hinton, 2008] Laurens van der Maaten
and Geoffrey Hinton. Visualizing data using t-sne. Journal
of Machine Learning Research, 9(86):2579–2605, 2008.

[Wang et al., 2021] Dequan Wang, Evan Shelhamer,
Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent:
Fully test-time adaptation by entropy minimization. In
International Conference on Learning Representations,
2021.

[Wang et al., 2022] Qin Wang, Olga Fink, Luc Van Gool,
and Dengxin Dai. Continual test-time domain adapta-
tion. In Proceedings of Conference on Computer Vision
and Pattern Recognition, 2022.

[Yuan et al., 2024] Yige Yuan, Bingbing Xu, Liang Hou, Fei
Sun, Huawei Shen, and Xueqi Cheng. Tea: Test-time
energy adaptation. In 2024 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
23901–23911, 2024.

[Zagoruyko and Komodakis, 2016] Sergey Zagoruyko and
Nikos Komodakis. Wide residual networks. In the British
Machine Vision Conference (BMVC), pages 87.1–87.12.
BMVA Press, September 2016.

[Zhang et al., 2022] Marvin Zhang, Sergey Levine, and
Chelsea Finn. Memo: test time robustness via adaptation
and augmentation. In the 36th International Conference
on Neural Information Processing Systems, NIPS ’22, Red
Hook, NY, USA, 2022. Curran Associates Inc.

[Zhang et al., 2023] Yifan Zhang, Xue Wang, Kexin Jin,
Kun Yuan, Zhang Zhang, Liang Wang, Rong Jin, and Tie-
niu Tan. Adanpc: Exploring non-parametric classifier for
test-time adaptation. In the 40th International Conference
on Machine Learning, volume 202, pages 41647–41676,
23–29 Jul 2023.

[Zhao et al., 2024] Shiji Zhao, Shao-Yuan Li, and Sheng-Jun
Huang. Nanoadapt: Mitigating negative transfer in test
time adaptation with extremely small batch sizes. In Inter-
national Joint Conference on Artificial Intelligence, 2024.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


