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Abstract

Graph anomaly detection aims to identify unusual
patterns in graph-based data, with wide applica-
tions in fields such as web security and financial
fraud detection. Existing methods typically rely on
contrastive learning, assuming that a lower similar-
ity between a node and its local subgraph indicates
abnormality. However, these approaches overlook
a crucial limitation: the presence of interfering
edges invalidates this assumption, since it intro-
duces disruptive noise that compromises the con-
trastive learning process. Consequently, this limi-
tation impairs the ability to effectively learn mean-
ingful representations of normal patterns, leading
to suboptimal detection performance. To address
this issue, we propose a Clean-View Enhanced
Graph Anomaly Detection framework (CVGAD),
which includes a multi-scale anomaly awareness
module to identify key sources of interference in
the contrastive learning process. Moreover, to mit-
igate bias from the one-step edge removal process,
we introduce a novel progressive purification mod-
ule. This module incrementally refines the graph
by iteratively identifying and removing interfer-
ing edges, thereby enhancing model performance.
Extensive experiments on five benchmark datasets
validate the effectiveness of our approach.

1 Introduction

Graph, a fundamental data structure comprising nodes and
edges, plays a crucial role in representing relationships across
diverse disciplines, such as recommendation systems [Wu
et al., 2019; He et al., 2024al, backdoor attack [Feng et
al., 2024; Jin et al., 2025], and image recognition [Liu et
al., 2024; Du er al., 2023]. Within graph analytics, Graph
Anomaly Detection (GAD) has emerged as a critical area of
research [Xiang er al., 2023; Xiang et al., 2024]. It aims
to identify patterns that significantly deviate from the major-
ity of instances [Noble and Cook, 2003; Kim et al., 2022].
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The detection of such anomalies reveals latent irregularities
in the data, allowing proactive interventions to safeguard data
integrity. This capability has far-reaching applications, par-
ticularly in fields such as sarcasm detection [Wang et al.,
2023; Wang et al., 2025], defense against attack [Jin et al.,
2023], and the discovery of pathological mechanisms in the
brain [Lanciano et al., 2020].

Early methods employ shallow mechanisms such as ego-
network analysis [Perozzi and Akoglu, 2016], residual anal-
ysis [Li er al., 2017], and CUR decomposition [Peng et al.,
2018] to detect anomalies. However, these approaches fail
to capture the complex relationships inherent in graph data,
which limits their ability to detect sophisticated anomalies.
With the rise of deep learning, some studies [Ding et al.,
2019; Fan et al., 2020; Luo et al., 2022] utilize Graph Neu-
ral Networks (GNNSs) to reconstruct structures and node fea-
tures. They use reconstruction errors as a basis for anomaly
identification. Despite their advances, these methods de-
mand extensive memory resources. In addition, the convo-
lutional operations in GNNs can smooth out anomalous sig-
nals, thereby diminishing the distinctiveness of anomalous
nodes and affecting detection accuracy. More recently, re-
searchers have employed contrastive learning to tackle the
challenges of GAD [Liu er al, 2021; Jin et al., 2021;
Zhang er al., 2022]. These methods utilize Random Walk
With Restart (RWR) [Tong et al., 2006] to sample subgraphs,
generating positive instance pairs between nodes and their lo-
cal subgraphs, as well as negative instance pairs from dif-
ferent subgraphs. Anomalies are detected by comparing the
similarities between these instance pairs, which prevents the
smoothing of anomalous signals.

However, existing contrastive learning-based methods
have a significant flaw: interfering edges undermine the
fundamental premise of contrastive learning, which relies
on the similarity between instance pairs for effective model
training. This issue stems from the presence of anomalies
in graphs—contextual and structural anomalies [Liu et al.,
2021; Duan et al., 2023b]. Contextual anomalies manifest
through alterations in node features. These distortions are
propagated through edges connected to nodes with anoma-
lous features, which disrupt the semantic consistency of the
subgraph. Structural anomalies, on the other hand, occur
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Figure 1: (a) A toy example illustrating GAD problems based on contrastive learning. In the whole graph, the red dashed line represents
an anomalous edge—a connection that did not originally exist between nodes. The red node signifies an anomalous node, whose features
are altered. Both of these anomalies introduce interfering edges (shown as red solid lines), which disrupt the process of generating positive
instance pairs. The middle subgraph is sampled through RWR starting from node 3, after which the subgraph embedding for node 3 is
obtained through further processing; (b) The proportion of interfering edges under different similarity scores based on raw features on the
Cora dataset; (c) The proportion of interfering edges under different similarity scores based on GCN-aggregated features on the Cora dataset.

when anomalous edges link previously unconnected nodes,
altering the subgraph’s inherent topology. Since both types
of edges inevitably disrupt the process of generating positive
instance pairs, we define them as ‘interfering edges.” As de-
picted in Figure 1(a), if node 3 samples nodes 2, 1, and 6 to
form a subgraph, the model may mistakenly consider the in-
stance pair formed by node 3 and the subgraph comprising
nodes 1, 2, and 6 as a positive instance pair, incorrectly per-
ceiving them as similar. This distortion in positive instance
similarity impairs the model’s ability to effectively learn nor-
mal patterns, ultimately reducing its capacity to distinguish
between normal and anomalous data.

To mitigate the negative impact of interfering edges on
contrastive learning, it is essential to accurately identify
and remove these edges during the training process. A
straightforward approach is to remove edges with low raw
feature similarity [Aghabozorgi and Khayyambashi, 2018;
Kumar et al., 2020]. However, as depicted in Figure 1(b),
relying solely on raw feature similarities is insufficient. Al-
though such a method seems intuitive, it is inherently my-
opic—focusing solely on feature-level discrepancies while
neglecting the multi-dimensional structure of the graph. To
address this limitation, we also explore an edge removal
method based on the similarity of GCN-aggregated embed-
dings, which is depicted in Figure 1(c). Unfortunately, the
results remain unsatisfactory due to the inherent tendency of
GCNs to smooth node representations, which artificially in-
creases the feature similarity between connected nodes, in-
cluding those that are anomalous. The core challenge, there-
fore, lies in effectively integrating both feature and structural
information to precisely identify interfering edges. Further-
more, a one-step edge removal strategy often leads to incom-
plete or biased elimination of interfering edges. During the
initial phase of training, CVGAD is still susceptible to these
edges, which hinders its ability to accurately assess the de-
gree of interference. Thus, another critical challenge is to
minimize the impact of interfering edges during the training
phase to enhance overall performance.

In this paper, we propose a Clean-View enhanced Graph
Anomaly Detection model (CVGAD). Our approach in-
corporates a multi-scale anomaly awareness module that em-

ploys a dual-scale contrastive learning framework, operat-
ing simultaneously on both anomalous and clean graphs.
By leveraging node-subgraph (NS) contrast and node-node
(NN) contrast, the module effectively integrates feature and
structural information to accurately evaluate the degree of
anomalies. These scores underpin the construction of an
interference-sensitive edge detection matrix, which identifies
edges that introduce noise and disrupt the training process.
Unlike the one-step edge removal method, CVGAD employs
a novel progressive purification module that incrementally re-
fines the graph by iteratively removing edges with high inter-
ference scores. These scores are dynamically recalculated at
each step using continuously updated node scores, gradually
minimizing the effect of interfering edges during the training
phase. The synergy between the multi-scale anomaly aware-
ness module and the progressive purification module signifi-
cantly enhances the model’s overall performance.
In summary, our contributions are as follows:

* We discover a fundamental flaw in contrastive learning-
based GAD methods: interfering edges undermine the
core principles of contrastive learning.

* We propose a novel method that iteratively identifies and
removes interfering edges to obtain a clean graph, miti-
gating their adverse impact on contrastive learning.

* Through extensive experiments on five benchmark
datasets, we validate the effectiveness of our edge re-
moval strategy and highlight CVGAD’s superior perfor-
mance compared to baselines.

2 Related Work

Graph anomaly detection aims to identify abnormal patterns
that significantly deviate from typical patterns [Noble and
Cook, 2003; Kim et al., 2022]. Early methods mainly fo-
cus on shallow techniques. AMEN [Perozzi and Akoglu,
2016] leverages the ego-network information of each node to
identify anomalies. Radar [Li et al., 2017] identifies anoma-
lies through the residual of features and network information.
ANOMALOUS [Peng et al., 2018] utilizes CUR decomposi-
tion and residual analysis within attributed networks. How-
ever, shallow methods have limitations in effectively han-
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Figure 2:

Overview of CVGAD. It consists of three primary components: (1) Multi-scale anomaly awareness: NS contrast and NN contrast

are conducted on both the anomalous graph and clean graph, jointly training the model; (2) Progressive purification: Node contrast scores
are calculated on the anomalous graph. Based on these scores, an interference-sensitive edge detection matrix is generated. The edges with
the top-K highest interference scores are removed to create a cleaner graph. This module, together with the multi-scale anomaly awareness
component, is trained iteratively to incrementally improve model performance; (3) Score calculation: The contrast score and the detection

score are combined to generate the final node anomaly value.

dling complex patterns and learning intricate relationships.
Conversely, deep learning exhibits a superior capacity for
non-linear modeling and showcases its proficiency in ad-
dressing these complexities [Hamilton er al., 2017]. Domi-
nant [Ding et al., 2019] and ADA-GAD [He er al., 2024b]
employ GNNs to reconstruct the graph topology and node
features, identifying nodes with large reconstruction errors
as anomalies. HCM [Huang er al., 2022] predicts the path
lengths between nodes and regards hop counts as anomaly in-
dicators. SI-HGAD [Zou et al., 2024] combines hierarchical
information and conducts hierarchical substructural model-
ing. CoLA [Liu et al., 2021] implements contrastive learning
in graph anomaly detection for the first time. It compares
the similarities between nodes and their local subgraphs to
identify anomalies. ANEMONE [Jin et al., 2021] further
incorporates node-node comparisons and detects anomalies
through multi-scale contrast. SL-GAD [Zheng et al., 2021]
leverages a generative attribute regression module combined
with a contrastive learning framework for anomaly detection.
Sub-CR [Zhang er al., 2022] generates a new view using
graph diffusion algorithms, conducting contrastive learning
and attribute reconstruction on both views to obtain anomaly
scores. NLGAD [Duan et al., 2023b] improves the detec-
tion performance by means of the refined training on nor-
mal nodes. GRADATE [Duan et al., 2023a] compares the
original view with the augmented view, enhancing robustness
through multi-view contrast. DiffGAD [Li et al., 2024] fur-
ther employs the diffusion model in graph anomaly detection

and proposes a DM-based detector. However, these methods
overlook the impact of interfering edges on contrastive learn-
ing, which disrupt the training process and degrade model
performance.

3 Method

3.1 Notations

An attributed graph is represented as G = (V, &), where
V = {v1,v9,...,v,} denotes the set of nodes and £ de-
notes the set of edges. The adjacency matrix A € R"™*" pro-
vides the structure information within the graph. Specifically,
A, ; = 1 indicates that there exists an edge between node v;
and v;; otherwise, A; ; = 0. The matrix X € R"*° contains
information about node features. In anomaly detection, the
objective is to learn a function f(-) to evaluate the anomaly
score for each node in the graph. The higher the score, the
more likely the node is to be considered an anomaly.

3.2 Framework Overview

The overall pipeline of CVGAD is illustrated in Figure 2. It
consists of three interconnected modules. First, the multi-
scale anomaly awareness module utilizes RWR [Tong er al.,
2006] to extract subgraphs from dual views. Discriminators
are subsequently employed for node-subgraph contrast and
node-node contrast. This module evaluates the complex re-
lationships between nodes and their local subgraphs. Next,
the progressive purification module applies specific rules to
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calculate the contrast scores for nodes and the interference
scores for edges. By analyzing and filtering these interference
scores, edges with higher scores are selected and removed to
generate a clean graph. This process is iterated to achieve
optimal results. Finally, the score calculation module inte-
grates the contrast scores with the detection scores to derive
the final anomaly values. In the following sections, we will
provide detailed descriptions of these modules.

3.3 Multi-Scale Anomaly Awareness

Subgraph Sampling. The anomaly level of a node corre-
lates intricately with the structure and features of its local
subgraph. Normal nodes typically share high similarities with
neighboring nodes, while anomalies exhibit the opposite be-
havior. Therefore, we employ RWR [Tong et al., 2006] to
sample subgraphs G and G° from the anomalous and clean
graphs, respectively. Each subgraph includes the target node
and neighboring nodes, with a fixed size of V. It is worth not-
ing that the clean graph remains consistent with the anoma-
lous graph in the initial phase. On the one hand, RWR on
the clean graph minimizes the impact of interfering edges on
contrastive learning. On the other hand, RWR on the anoma-
lous graph encourages the model to learn rich and diverse fea-
tures. Additionally, to avoid the model’s easy recognition of
the target node in the subgraph, we mask the information of
the target node. Nodes and masked subgraphs serve as the
inputs for node-subgraph contrast and node-node contrast.

Node-Subgraph Contrast. The objective of node-
subgraph contrast is to learn the coherence between a node
and its entire local subgraph [Liu et al., 2021]. For this pur-
pose, we construct instance pairs by combining node embed-
dings with masked subgraph embeddings. Since raw fea-
tures typically only represent the characteristics of individ-
ual nodes, we first apply a GCN to aggregate the features of
neighboring nodes within the subgraph:

HY =0 (D *AD PHOWE), M)

where HZ(ZH) and HZ(-K) are the hidden representation matri-

1
ces of the (£ + 1)-th and ¢-th layers respectively, D, ? is the
inverse square root of the degree matrix, A; = A; + L is the

adjacency matrix with self-loops for the subgraph G;, W%)S
refers to the weight matrix of the ¢-th layer, and o(-) is an
activation function. The output representation of GCN is de-
noted as S;. Since the feature vectors of the target nodes are
masked, we use a Multilayer Perceptron (MLP) to process the
features of the target nodes:

n{™ = o (nlOWL), @)

where W%)S is shared with the GCN in Equation (1). The
input is the raw feature vector of the target node v;, and the
output represents a low-dimensional embedding of v;. After
the aggregation through GCNs, we apply average pooling to
obtain a fixed-size subgraph embedding:

N
o (8,
h; = 321 N 3)

where (S;),, is the p-th row of the subgraph embedding S;,
and N is the size of the subgraph. Subsequently, a discrimina-
tor is employed to measure the relationship between node em-
beddings and subgraph embeddings. This discriminator as-
sesses the similarity between embeddings in both positive and
negative instance pairs, producing a score for each. Specifi-
cally, a bilinear function is employed:

si = Bilinear (h;,n;),s; = Bilinear (hj,n;), (4)

where s is the similarity score of the positive instance pair,
and s; is that of the negative instance pair formed by the tar-
getnode n; and a randomly selected subgraph embedding h;.
Node-subgraph contrast is trained by pulling positive instance
pairs closer and pushing negative instance pairs apart based
on similarities [Jaiswal et al., 2020; Li et al., 2021]. This
process can be seen as a binary classification task. Hence, we
employ Binary Cross-Entropy (BCE) loss for training:

n

Lys = — Z (yilog (si) + (1 —yi)log (1 —s7)),  (5)

=1

where y; is the label of the instance pair, y; = 1 represents
the label of positive instance pair, y; = 0 represents the label
pf negative instance pair, and s; represents either sj ors; .
Node-Node Contrast. Node-node contrast is more effec-
tive in identifying node-level anomalies [Jin er al., 2021].
Each instance pair consists of the raw node embedding and
the updated node embedding, which is aggregated from
neighboring nodes within the subgraph. To reduce bias, the
subgraphs for negative instance pairs are the same as those
sampled in node-subgraph contrast. The aggregation of sub-
graph embeddings is accomplished through a new GCN:

L) S0

S AD e OwWo
H, o (D;2AD; *H, W),  (®)

where W%)N is different from ng)\, Subsequently, we uti-
lize a new MLP to project the node feature vectors into a uni-
fied embedding space:

D = o (m W) (7)

The updated node embedding is obtained after aggregating
information from its first-order neighboring nodes:
A (041 o (41
R i) ®)
Similarly, a new bilinear function is employed to evaluate
the similarities of different instance pairs:

$;7 = Bilinear (lii,rii) , 8T = Bilinear (ﬁj,ﬁi) .
)

3.4 Progressive Purification

Node Contrast Score. For normal nodes, the similarities of
positive instance pairs converge to 1, while those of negative
instance pairs approach 0. In contrast, for anomalous nodes,
these scores are much closer. Thus, we assess the anomaly
degree of nodes by examining the difference in similarities
between positive and negative instance pairs. Specifically, we
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subtract the similarity score of the positive pair from the neg-
ative one, both derived from that of the anomalous graph. A
larger difference signifies a higher likelihood of an anomaly:

NS _ — .+ NN _ s~ _ at
SCOT€; " =S 1no — S anos SCOTE; T = 5; i ano’

%,ano
(10

To comprehensively evaluate anomalies across different
scales, we aggregate the scores from each scale through a
weighted summation approach:

score™¢ = BscoreNS + (1 — B)scoreMVN, (11)
where [ is the balance parameter for different scales.

Interfering Edges Detection. Interfering edges signif-
icantly increase the dissimilarity between the target nodes
and their local subgraphs, narrowing the score gap between
positive and negative instance pairs. This hampers the con-
trastive learning module’s ability to distinguish instance pairs,
thereby undermining the model’s effective training. To miti-
gate this issue, our first step is to accurately quantify the in-
terference level of each individual edge.

Interfering edges can be classified into two categories: (1)
anomalous connections formed between previously unlinked
normal nodes, and (2) pre-existing edges that link nodes with
anomalous features. Both categories represent connections
between inherently dissimilar entities, leading to deviations
in expected relationships. Consequently, a reduction in a
node’s contrast score can be attributed to its association with
a dissimilar node. If an edge connects two nodes with high
contrast scores, it indicates that both nodes interact with dis-
similar neighbors. This dissimilarity increases the likelihood
of interference between them. Based on this assumption, we
aggregate the scores of connected nodes to quantify the inter-
ference level associated with edges. Through this approach,
we obtain an interference-sensitive edge detection matrix:

12)

msc msc T
B = scorej"¢ + score*C, A, j = .1
J 0, otherwise

Based on the edge interference scores, we employ a rank-
ing mechanism to sort the edges in accordance with their in-
terference scores. This mechanism identifies and targets the
top-K edges, which possess the highest potential to under-
mine the contrastive learning process. These edges usually
connect nodes that display significant deviations in feature
distribution, thereby altering the true similarity between the
nodes and subgraphs. By removing these targeted edges, we
obtain a cleaner graph, which effectively reduces the impact
of interfering edges on subsequent training.

Iterative Edge Removal. A one-step edge removal ap-
proach is susceptible to the influence of interfering edges, par-
ticularly during the initial phase of training. This can lead to
inaccuracies in node scoring and errors in edge assessments,
potentially resulting in the unintentional removal of normal
edges and compromising the graph’s structural integrity. To
address this, we adopt an iterative approach for removing in-
terfering edges. In each iteration, only a small portion of
edges is removed. After the removal, the model’s parame-
ters are reset to prevent biases from the previously removed
edges. The model then undergoes another round of training
for multi-scale anomaly awareness, recalculating node scores

to better identify edges with high interference. By contin-
uously evaluating and removing interfering edges, we mini-
mize their impact on the score calculation, progressively en-
hancing the precision of the detection process.

3.5 Score Calculation

Loss Function. We perform multi-scale anomaly awareness
on both the anomalous graph and the clean graph. The con-
trastive learning loss function is defined as follows:

L = B(aLF§+(1-a) L3%)+(1-B)(a 7\713+(1_04)£(f\2/61;v3))~

Multi-Scale Contrast Score. The clean graph can obscure
genuine anomaly signals and disrupt accurate anomaly detec-
tion. Therefore, we compute scores only from the anomalous
graph during the score calculation process. Additionally, due
to the inherent randomness in sampling, structural anomalies
might occasionally connect with normal neighbors, which
may result in missed anomalies. To address this, we perform
multiple rounds of sampling and detection:

R

mse 1 2
score}**¢ = score; + = Z (score;nsc(r) - scorei) ,
r=1

(14)
where score; = & - score! ") and R is the total

round of anomaly detection.

Detection Score. When an edge is identified as interfer-
ing, it increases the likelihood that the connected nodes are
anomalies as well. Building on this insight, we propose a
novel detection scoring approach. We initialize a detection ar-
ray with all elements set to zero. For each node that serves as
an endpoint of an interfering edge, we increment the score of
the corresponding node. During the score calculation process,
the detection score scorel*® is calculated iteratively, with its
value directly proportional to the frequency at which the node
interacts with interfering edges. A higher score reflects a
stronger correlation between the node and anomalous behav-
ior. Finally, the overall node score is computed by aggregat-
ing the multi-scale contrast scores and the detection scores:

f(vg) = yscore™ + (1 — v)scorede, (15)

where + is the balance parameter for different scores.

3.6 Complexity Analysis

The time complexity of RWR for a node is O(N7), where
N is the number of nodes in the subgraph and 7 is the av-
erage degree of the graph. The time complexity of con-
trastive learning is O(Led + LNd?), where L is the num-
ber of GCN layers, e is the number of edges in the sub-
graph and d is the feature dimension. The time complexity
for edge removal is O(c + clogw), where ¢ is the num-
ber of edges in the graph and w is the number of edges
to be removed. The overall time complexity of CVGAD is
O(n(Nn+ Led + LNd?)(T. + T, + r) + m(c + clogw)),
where T, + T, is the number of training epochs, r is the score
calculation epochs and m is the number of iterations.
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4 [Experiments
4.1 Experimental Setup

Datasets. We conduct experiments on five benchmark
datasets: Cora, Citeseer, PubMed [Sen et al., 2008], Citation
and ACM [Tang et al., 2008]. Since these datasets do not in-
herently contain anomalous information, we inject anomalies
artificially. Following the approach proposed by [Ding et al.,
2019; Liu et al., 2021; Jin et al., 20211, we inject both struc-
tural anomalies and contextual anomalies into each dataset.
Specifically, to inject contextual anomalies, we randomly se-
lect n” anomaly nodes. For each node, we replace its feature
with the attribute that exhibits the greatest difference. For
structural anomalies, we randomly select 15 nodes and con-
nect them in pairs to form a clique. This process is executed
repeatedly for m’ times. Both types of anomalies are injected
in equal numbers.

Baselines. In our experiment, we select seven state-of-the-
art models as baselines. HCM [Huang et al., 2022] deter-
mines anomalies based on the minimum hop count between
nodes. CoLA [Liu et al., 20211, ANEMONE [Jin et al.,
2021], GRADATE [Duan et al., 2023a], and NLGAD [Duan
et al., 2023b] are four anomaly detection models based on
contrastive learning, which facilitate comparisons across dif-
ferent scales. Sub-CR [Zhang er al., 2022] and SL-GAD
[Zheng er al., 2021] combine attribute reconstruction and
contrastive learning to comprehensively assess the anomalous
level of nodes. To evaluate the effectiveness, we adopt ROC-
AUC as the evaluation metric.

Parameter Settings. In CVGAD, we employ a one-layer
GCN to aggregate information from subgraphs, with both
subgraph embeddings and node embeddings mapped to 64-
dimensional vectors. The size of the subgraph is set to 4,
and the learning rate remains fixed at 0.001. Additionally,
we set the value of v to 0.8. Five iterations are performed on
all datasets. Specifically, for Cora, CiteSeer, and PubMed, we
perform edge removal every 100 epochs, conducting a total of
500 epochs. For Citation and ACM, we perform 1000 epochs
of edge removal. In the refine training phase, we conduct
200 epochs on Cora, CiteSeer, and PubMed, and 400 epochs
on Citation and ACM. Besides, we implement 300 rounds of
score calculation in all datasets. In addition, we set K to 0.015
for ACM and 0.01 for other datasets.

4.2 Anomaly Detection Results

To assess the model’s anomaly detection performance, we
compare CVGAD with seven baseline models on five
datasets. Based on the results shown in Table 1, we can
draw the following conclusions: (1) CVGAD achieves no-
table AUC gains of 1.91%, 0.31%, 1.20%, 1.73%, and 0.35%
on Cora, Citeseer, Citation, ACM, and PubMed, respectively,
which demonstrates the effectiveness of the proposed model;
(2) The performance of contrastive learning-based methods
surpasses that of HCM. The main reason is that lower simi-
larity is typically observed between abnormal nodes and lo-
cal subgraphs. Consequently, by comparing the similari-
ties between nodes and subgraphs, we can effectively iden-
tify anomalous nodes; (3) Sub-CR exhibits good perfor-
mance, primarily because other baselines rely on a single

Methods Cora  Citeseer Citation ACM PubMed
HCM 0.6057 0.6620 0.5624 0.5722 0.8143
CoLA 0.9036 0.8878 0.7532 0.7937 0.9497

ANEMONE 0.9109 0.9252 0.7868 0.8081 0.9503

SL-GAD 0.9098 0.9231 0.7824 0.8145 0.9609

Sub-CR 0.9058 09334 0.7973 0.8128 0.9644

GRADATE 09010 0.8859 0.7414 0.7508 0.9504
NLGAD 0.9148 0.9391 0.7752  0.8065 0.9612
CVGAD 0.9339 09422 0.8093 0.8318 0.9679

Table 1: AUC results on five datasets with injected anomalies. The
best results are highlighted in bold and the second-best results are
underlined.

Cora Citeseer Citation ACM PubMed
CVGAD®*™ 0.9188 09213 0.7972 0.8067 0.9526
CVGAD°™ 09194 0.9252 0.8023 0.8249 0.9587
CVGAD®™™ 09167 09199 0.7832 0.8167 0.9551
CVGAD®® 09246 0.9323 0.8031 0.8274 0.9605
CVGAD®® 0.9233 09308 0.7997 0.8263 0.9585
CVGAD®™ 0.9231 0.9346 0.8011 0.8268 0.9566
CVGAD 0.9339 0.9422 0.8093 0.8318 0.9679

Table 2: AUC results of CVGAD and its variants.

strategy, while Sub-CR combines both generative and con-
trastive learning strategies. However, by mitigating the in-
fluence of interfering edges, CVGAD achieves better results
than Sub-CR on all datasets.

4.3 Ablation Study

To verify the effectiveness of different modules, we conduct
three types of ablation studies. First, we examine the effect of
edge removal strategies. Next, we test the impact of random
walks on different views. Finally, we compare the multi-score
integration approach with scores solely based on contrastive
learning. The results are presented in Table 2, and the detailed
analysis is as follows.

Edge Removal and Iterative Strategy. CVGAD*"™ per-
forms edge removal based on the similarity scores of raw fea-
tures (maintaining the same edge removal ratio as CVGAD).
CVGAD®°"¢ employs a non-iterative edge removal by remov-
ing the same total proportion at one step. CVGAD®®"° trains
on two anomalous graphs. The experimental results show that
CVGAD exhibits superior performance over the other three
models. First, it demonstrates that removing edges can effec-
tively improve detection performance. Moreover, it indicates
that the interfering edge removal method of CVGAD out-
performs the approach based on similarity. Edges with low
similarity are not necessarily interfering edges. Mistakenly
removing normal edges can disrupt the original topology of
the graph, thereby compromising the effectiveness of the de-
tection. Additionally, the results validate that iterative edge
removal is more effective than non-iterative edge removal.
This is because a one-step removal approach may be suscepti-
ble to interfering edges in the initial stage, which hinders the
identification of anomalous nodes and interfering edges. In
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contrast, the iterative process in CVGAD gradually removes
small portions of edges in each round, progressively refining
the graph while simultaneously preserving the normal pat-
terns. This approach creates a synergistic effect between the
multi-scale anomaly awareness module and the progressive
purification module, leading to improved performance.

Multi-View RWR Strategy. CVGAD""°  and
CVGAD®® modules conduct RWR on two anomalous
graphs and two clean graphs, respectively. CVGAD°¢¢
traverses only on the clean graph. The results demonstrate
that random walks on two views (the clean graph and the
anomalous graph) yield better performance. By conducting
random walks on the clean graph, sampling interfering
edges is avoided, which enhances the similarities between
nodes and their neighborhood subgraphs. This improves
the effectiveness of the contrastive learning process. On
the other hand, performing random walks on the anomalous
graph helps the model learn diverse features.

Multi-Score Integration Strategy. The score of
CVGAD*“°" is determined solely by the node contrast scores.
The result reveals that the combination scores yield superior
performance, as nodes connected by high-interference edges
are more likely to be anomalous. Detection scores provide a
more precise differentiation of abnormality levels.

4.4 Parameter Analysis

Balance Parameter o and 5. We investigate the impact of
the view balance parameter o and the scale balance param-
eter 5. As shown in Figure 3(a) and Figure 3(b), the per-
formance initially increases and subsequently exhibits a de-
cline on both the x-axis and y-axis. Other datasets exhibit
the same phenomenon. This illustrates that employing multi-
scale learning and multi-view training yields superior results
compared to singular methods. The parameter o controls the
balance between different views. For most datasets, the opti-
mal value of « is relatively low, highlighting the effectiveness
of removing interfering edges. Based on these results, we set
«a to 0.8, 0.4, 0.4, 0.6, and 0.4 for Cora, Citeseer, Citation,
ACM, and PubMed, respectively. Regarding the scale bal-
ance parameter (3, relying solely on the first-order neighbor
similarity may fail to capture the full range of anomalous pat-
terns in all datasets. In contrast, NS contrast can better reflect
the broader anomalous patterns of the nodes. So we set the
value of § at 0.6 on all datasets.

(b) Citation

(a) Citeseer

Figure 3: Sensibility analysis of balance parameters.

4.5 Edge Removal Accuracy

To validate the accuracy of the edge removal method, we
compare CVGAD with edge removal methods based on raw
feature similarity (CVGAD®*"™) and GCN-aggregated feature
similarity (CVGADY“""). For CVGAD, we record the pro-
portion of interfering edges removed at each iteration. For
CVGAD*®*" and CVGADY", we select the edges with the
top-K lowest scores and record the proportion. If the pro-
portion of edges with zero feature similarity exceeds the top-
K threshold, we randomly select a set of top-K edges for
removal. As shown in Figure 4, CVGAD shows signifi-
cantly superior edge removal accuracy in comparison to the
other methods on the Cora and ACM datasets. The reason is
that CVGAD effectively integrates feature information and
graph structures to distinguish interfering edges. In con-
trast, CVGAD®"™ focuses solely on feature-level informa-
tion, and the convolutional operation of CVGADY" smooths
out anomalous signals, which impairs the model’s ability to
identify anomalies. Additionally, owing to the higher hetero-
geneity of ACM compared to Cora, the edge identification
accuracy of CVGAD is lower on ACM.

81.0F - - g”)’n 1.0F
= » I 3 = CVGAD
= T M —a— cvGADS™
200'8 T ~ 230'8 v CVGADE™
B £
5 —=— CVGAD 5
E 0.6 H—a— cvgapsim E 0.6 i - 1
k= v— CVGADE™" £ -
BOA et S04t
g A g —a 1 A
Eo2f 1 Eo2f X
S S
e e,
£ 0.0k L Eook
- 2 3 4 5 = 1 2 3 4 5
T, T,
(a) Cora (b) ACM

Figure 4: Proportion of interfering edges removed.

5 Conclusion

We propose a novel graph anomaly detection method named
CVGAD, which introduces an effective solution to the limi-
tation of existing anomaly detection methods based on con-
trastive learning. CVGAD evaluates interference scores for
edges and removes interfering edges to enhance the similari-
ties between nodes and their local subgraphs. Through an it-
erative strategy, multi-scale anomaly awareness and progres-
sive purification mutually reinforce each other, thereby lead-
ing to improved anomaly detection performance. Extensive
experiments demonstrate the effectiveness of our approach.
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