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Abstract

Meta-learning methods typically follow a two-
loop framework, where each loop potentially suf-
fers from notorious overfitting, hindering rapid
adaptation and generalization to new tasks. Ex-
isting methods address this by enhancing the
mutual-exclusivity or diversity of training sam-
ples, but these data manipulation strategies are
data-dependent and insufficiently flexible. This
work proposes a data-independent Meta-Gradient
Augmentation (MGAug) method from the perspec-
tive of gradient regularization. The key idea is
first to break the rote memories by network prun-
ing to address memorization overfitting in the inner
loop, then use the gradients of pruned sub-networks
to augment meta-gradients, alleviating overfitting
in the outer loop. Specifically, we explore three
pruning strategies, including random width prun-
ing, random parameter pruning, and a newly
proposed catfish pruning that measures a Meta-
Memorization Carrying Amount (MMCA) score
for each parameter and prunes high-score ones to
break rote memories. The proposed MGAug is the-
oretically guaranteed by the generalization bound
from the PAC-Bayes framework. Extensive exper-
iments on multiple few-shot learning benchmarks
validate MGAug’s effectiveness and significant im-
provement over various meta-baselines.

1 Introduction

Meta-learning aims to rapidly adapt to unseen tasks by
observing learning processes over a wide range of tasks
[Hospedales et al., 2021], and has been applied to various
scenarios, including few-shot learning [Jamal and Qi, 2019;
Xu et al., 20211, continual learning [Martins et al., 2023],
transfer learning [Zhang et al., 2023], etc. Current prevalent
meta-learning methods follow a unified two-loop framework
[Goldblum et al., 2020]. In the outer loop, a meta-learner ex-
plores meta-knowledge from numerous tasks. Based on the
meta-knowledge, base learners in the inner loop are expected
to quickly fine-tune and adapt to new tasks.
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As indicated in [Guiroy et al., 2019; Yao et al., 2021], the
two-loop framework potentially suffer from meta-overfitting
in two aspects: memorization overfitting and learner over-
fitting.  Memorization overfitting [Rajendran et al., 2020]
means that the base learner handles tasks merely based on
meta-knowledge rather than task-specific fine-tuning in the
inner loop. In this way, meta-knowledge degenerates into rote
memorization, which hinders rapid adaptation to new tasks.
Learner overfitting [Yin et al., 2020] occurs when the meta-
learner overfits to insufficient training tasks, typically mani-
fested by a meta-learner that can adapt quickly but still fails
on new tasks. Those two forms of overfitting greatly degrade
the generalization and robustness of meta-learning methods.

Data manipulation is a simple yet efficient strategy to
tackle these two overfitting issues [Ni er al., 2021; Yao et
al., 2021], including constructing mutually-exclusive tasks
and conducting task-level augmentation. The former works
on addressing memorization overfitting, where training tasks
are independently assigned class labels to avoid the meta-
learner using rote memorization to handle tasks [Yin et al.,
2020]. The latter aims to alleviate learner overfitting by aug-
menting the training tasks [Liu er al., 2020]. To simultane-
ously alleviate these two forms of overfitting, MetaMix [Yao
et al., 2021] linearly combines features and labels of sam-
ples to increase the mutual-exclusivity and diversity of train-
ing tasks. However, these data manipulation strategies are
manually designed for specific data or tasks, resulting in a
lack of flexibility and generality in real-world applications.
For example, most strategies that improve mutual-exclusivity
and diversity for classification tasks are difficult to extend
to regression tasks [Yin er al., 2020; Jamal and Qi, 2019;
Yao er al., 2021]. More importantly, our experiments in Sec.
5.3 show that improving mutual-exclusivity is effective but
short-lived, which means that simply increasing task mutual-
exclusivity is insufficient to combat memorization overfitting.

In this work, we improve generalization in meta-learning
following the gradient regularization perspective and propose
a data-independent Meta-Gradient Augmentation (MGAug).
Considering that the meta-gradient is derived from the inner-
loop fine-tuning of base learners, our key idea is to first over-
come memorization overfitting in the inner loop by breaking
the rote memorization state, and then yield diversity gradients
as the meta-gradient augmentation to alleviate learner over-
fitting in the outer loop. Specifically, memorization break-
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ing is achieved by pruning the base learner before each inner
loop. We explore three different levels of pruning strategies,
named random width pruning (WP), random parameter prun-
ing (PP), and catfish pruning (CP)', respectively. The first
two are based on random strategies and inspired by typical
GradAug [Yang er al., 2020] and Dropout [Srivastava et al.,
2014], respectively, while CP is a newly proposed unstruc-
tured pruning strategy that measures a Meta-Memorization
Carrying Amount (MMCA) score for each parameter and
prunes those with high scores to break the rote state more ef-
fectively. Once the rote memorization is removed, the pruned
sub-network has to re-fine-tune the remaining parameters to
handle new tasks, thus alleviating memorization overfitting.
With different pruning rates, sub-networks produce gradients
containing diverse task information as a high-quality meta-
gradient augmentation to ultimately reduce learner overfit-
ting. Contributions can be summarized in three aspects:

* We propose a novel data-agnostic meta-regularization
via meta-gradient augmentation (MGAug), which can
alleviate both memorization and learner overfitting in the
two-loop meta-learning framework.

* We explore three pruning strategies to break rote mem-
orization, including two existing random prunings and a
new catfish pruning that measures a Meta-Memorization
Carrying Amount (MMCA) score for each parameter.

* We deduce a PAC-Bayes-based generalization bound
for two-loop meta-learning with inner-loop pruning
and conduct extensive experiments on both mutually-
exclusive and non-mutually-exclusive tasks, providing
theoretical guarantees and experimental validation.

2 Related Work

Regularization techniques prevent the model from overfit-
ting the training data and can be roughly divided into data
augmentation, label regularization, and internal changes.
Data augmentation [Yoo et al., 2020] and label regulariza-
tion [Li et al., 2020] modify the input and labels, respectively,
using various transformations (e.g., flipping and noise addi-
tion) to increase sample diversity. In contrast, internal varia-
tion [Yang et al., 2020] emphasizes parameter diversity. The
well-known Dropout [Srivastava et al., 2014] and its variants
randomly remove some neurons to force the learner to cap-
ture more features. Shake-Shake [Gastaldi, 2017] and Shake-
Drop [Yamada er al., 2019] are designed for a specific resid-
ual structure, giving different weights to each residual branch.
The network pruning adopted in our MGAug belongs to an in-
ternal variation that prunes parameters to break the rote mem-
orization state.

Meta regularization is specially designed for meta-learning
to solve learner and memorization overfitting [Tabealhojeh et
al., 2023]. For learner overfitting, well-designed task aug-
mentation [Liu ef al., 2020] remains an effective solution by
increasing task diversity. Meta-MaxUp [Ni ez al., 2021] splits

Catfish pruning is named after the “catfish effect”, which forces
sardines to reactivate by putting in catfish to avoid suffocation during
transport. Here, sardines are base learner parameters that are forced
to fine-tune tasks to avoid rote states by catfish pruning.

the meta-framework and further explores various data aug-
mentation combinations. In contrast, memorization overfit-
ting occurs in the inner loop with only a few updates, invali-
dating most conventional regularization strategies [Yao er al.,
2021]. Although constructing mutually-exclusive tasks [Lee
et al., 2020] shows promise against memorization overfit-
ting, the task-dependent property makes it difficult to extend
mutual-exclusivity to regression and reinforcement learning
scenarios [Yin et al., 2020]. MetaPruning [Tian et al.,
2020] ignores inner loops and improves meta-generalization
through data-agnostic network pruning. Instead, we argue
that redundant memories in inner loops are the key cause of
memorization overfitting [Guiroy e al., 2019]. MR-MAML
[Yin et al., 2020] and TAML [Jamal and Qi, 2019] develop
explicit meta-regularization terms to constrain the parame-
ter scale and the base learner behavior, respectively. Unlike
them, we directly break the rote memorization fetter via pro-
posed catfish pruning and alleviate learner overfitting using
derived augmented meta-gradients, which can also be con-
sidered an enhanced DropGrad [Tseng et al., 2020].

3 Meta Learning

Meta-learning is generally trained and tested on several tasks
(here, we omit validation for brevity). To avoid confusion, we
use the terms “support set” and “query set” to refer to training
and test samples in a single task, leaving “training set” and
“testing set” to the meta-learner. Given a set of training tasks
{T: = (D, D)} sampled from the task distribution p(7),
where D7 = (xf,y;7) is the support set containing support
samples x and corresponding labels 7, and DY = (z],v})
is the query set containing query samples z and labels y.
The goal of meta-learning is to produce a base learner that
can quickly handle new tasks Tpne, = (D2.,,, DZ.,,), that
is, fine-tune the support data (z?.,,,¥5.,,) and then accu-
rately predict y? ., for x_ . Considering the difficulty of
constructing a large number of routine tasks, meta-learning
algorithms are usually validated on few-shot tasks. When ap-
plied to classification scenarios, this is commonly described
as a N-way K -shot task, indicating K samples in the support
set, with class labels y°, y? € {1,...,N}.

Most meta-learning methods follow a two-loop framework
[Goldblum et al., 2020]. The outer loop first involves sam-
pling a batch of tasks {T;}X; ~ p(7), and then updat-
ing meta-parameters based on the feedback derived from
the inner loop over these tasks. In each inner loop, with
the given meta-parameter w and fine-tuning policy F, the
base parameters are updated from 6(w) to 6;(w) on sup-
port samples D; for the t-th task: 6;(w) = F(0(w), Df).
Therefore, the feedback is usually defined as the loss on
query sample D{ derived from the fine-tuned 0;(w). Let
Louter denote the loss function in the outer loop, and meta-
parameters are finally optimized by minimizing empirical
risk, i.e., argming >, Louter(0¢(w), D{). Without loss of
generality, using the gradient descent, meta-update in the o-
th outer loop can be further formalized as

o o—1
w =w —

Nl

T
va[/outer (at(w071)7Dg) ) (1)
t=1
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Figure 1: There are four steps in the meta-learner update, including
initializing, fine-tuning, predicting, and updating. We zoom in on
the inner-loop learning process and present three cases: (a) shows
normal base learning, i.e., query samples are jointly predicted by
initialization (meta memorization) and fine-tuning. (b) represents
memorization overfitting, where query prediction mainly relies on
rote memorization. (c) illustrates that the proposed catfish pruning
breaks meta memorization, forcing the base network to re-predict by
fine-tuning and further deriving meta-gradient augmentation.

where [ is the meta-learning rate and ¢ is the task index.

Note that different meta-parameter deployments ¢(w) and
fine-tuning algorithms F motivate different branches of meta-
learning methods. The well-known gradient-based meta-
learning (GBML) [Lee and Choi, 2018] takes w as the initial-
ization of base parameters 6 and fine-tunes them by gradient
descent, such as MAML [Finn et al., 2017], Meta-SGD [Li
et al., 2017] etc. Formally, let L;,,,. denote the loss in the
inner loop, then F = arg ming Linner(0(w), Df). Similarly,
after the o-th outer loop, the initialization and the i-th update
of the base learner are

07" = 07" — aVoLinner (071, D5), ..., 070 = w°,
2
where « is the base learning rate. An alternative metric-based
meta-learning (MBML) [Snell et al., 2017] meta-learns fea-
ture extractors and freezes them in inner loops, i.e., 0;(w) =
f(w) = w. This paper focuses on these two meta-learning
branches, but MGAug can also be used for other branches
[Goldblum et al., 2020] derived from two-loop framework.

4 Meta-Gradient Augmentation

This work proposes MGAug to mitigate meta overfitting is-
sues in a data-independent manner. The overall idea is to first
overcome memorization overfitting using network pruning
and then alleviate learner overfitting with derived augmented
meta-gradients. Fig.1 shows the illustration of our MGAug
with the proposed catfish pruning. Let’s start by decompos-
ing the meta-update into four steps: step 1 initializes base pa-
rameters 0(w) based on w; step 2 fine-tunes 0(w) to 0;(w) on
the support set of the ¢-th task; step 3 predicts the query sam-
ple based on 6;(w) and calculates loss values; step 4 updates
w once based on the average query error over a batch of tasks.
Obviously, the query error is the key feedback for the update
of meta-parameters and should be inferred jointly by meta-
knowledge (i.e., w) and task-specific fine-tuning (Fig. 1 (a)).
Memorization overfitting occurs as w is trained enough to di-
rectly memorize query predictions while ignoring fine-tuning
(Fig. 1 (b)), implying a degradation of rapid adaptability.

To avoid this, MGAug removes the parameters that carry
the most meta-memorization using the proposed catfish prun-
ing to enforce base learner re-fine-tune to the support set
(Fig. 1 (c)). Each pruning is like throwing a catfish into
sardines (i.e., base parameters), resulting in different sub-
networks and fine-tuning results. The higher the pruning rate,
the more significant the memorization break, and the more
fine-tuning is required. After several independent pruning
and fine-tuning stages, we obtain a set of augmented meta-
gradients containing diversity task information, which are ul-
timately used to update the meta-learner. Taking the GBML
as an example, the rest of this section details the inner and
outer loops using our MGAug.

4.1 Inner-Loop with Network Pruning
Observe the inner loop process after the o-th outer loop,
where the base parameters are initialized by the latest meta-
learned parameters, i.e., 6(w) £ 000 — o, Let F, denote
the pruning criterion. We can obtain the pruned sub-network
parameters 92’0 = F,(6°°, p) with a given pruning rate p,
and rewrite the ¢-th update on the ¢-th task in (2) as

091 = 02" — aVoLinner (001", D;). (3)

pt =

where « is the learning rate in the inner loop. For the prun-
ing criterion JF,, we explored three specific strategies whose
ability to break rote memorization gradually increases at the
same pruning rate. For brevity, we omit the superscripts of
the inner and outer loops below.

Random width pruning (WP) is a structural pruning strat-
egy that prunes the neurons in each layer of the network
to meet the given pruning rate. Without loss of general-
ity, we use the I-th convolutional layer parameter ¢(;) €

RdinXdout Xk Xk for {llustration, where k& represents the con-
volution kernel size and d;, and d,,; represent the num-
ber of input and output channels, respectively. For exam-
ple, d;, is the channel number of input images in the first
layer, and d,,; is the number of corresponding convolution
kernels. The number of trainable parameters in this layer is
nay = dout X k x k. With the pruning rate p € [0, 1], the pa-
rameter of the corresponding layer in sub-networks is 6, (1),
where |6, ()| = nq)(1 — p). Inspired by [Yang et al., 20201,
we sampled the first (1 — p) x 100% from the entire model as
the sub-network, that is, 0, ;) € Rin X(1=p)dour xkxk
Random parameter pruning (PP) is an unstructured prun-
ing, where each parameter may be removed individually.
Specifically, we introduce an indication mask m € R" con-
sistent with the shape of base parameters #, where n is the
number of parameters and the value of m is randomly se-
lected from the set {0, 1}. A position with a value of 0 in m
indicates that the corresponding parameter is pruned, other-
wise it is retained. Afterwards, the pruned parameters can be
expressed as §, = m® 6, where |m| < n(1—p) and © is the
Hadamard product. Compared to WP, PP achieves parameter-
level changes, enabling more flexible memorization breaking.
Catfish pruning (CP) is a novel task-oriented pruning
strategy that enables stronger memorization breaking based
on the current task and parameter state. Like PP, CP also
needs an indicator mask m. The difference is that the mask
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value in CP reflects the amount of memory contained in each
parameter rather than being randomly generated. Thus, we
define the meta-memorization carrying amount and design a
memorization-breaking pruning criterion.

Definition 1. (Meta-Memorization Carrying Amount). Let
0 € R™ denote the base learner parameter and e(;) be the
indicator vector for the j-th parameter 0 ;), whose value is
zero everywhere except that index j is one. Keeping every-
thing else constant, we measure the query loss difference in
the t-th task before and after pruning parameter ;) to get the
following Meta-Memorization Carrying Amount (MMCA):

MMCA, (j, & AL (0; DY)

4
:£(1®9;Df)—£((1—6(]-))®9;Df), @

where 1 is a vector of all ones with m dimension and © de-
notes the Hadamard product.

MMCA essentially measures the sensitivity of parameter
0,y in solving task ¢. It is reasonable to represent the amount
of memorization carried out here since the base parameters
are initialized before each inner-loop by the meta parameters
derived from the previous outer-loop. However, computing
MMCA directly for each discrete parameter is prohibitively
expensive as it requires n + 1 forward passes (n is the num-
ber of parameters). By relaxing the binary constraint on the
indicator variable, we obtain an approximation of MMCA.

Proposition 1. For any task T; = (D§, D}), the change of
loss value on D} before and after removing the j-th parame-
ter ;) can be approximated by

aL (6, DY)

AE(]*)(Q;Dg) ~ 89(-)
J

We defer the proof to Appendix A. Similar approximation
strategies [Koh and Liang, 2017; Lee et al., 2019] have also
been used to measure the impact of a data point or connection
on the loss. The key difference is that we leverage the fact
that the query loss depends on meta-knowledge. Based on
this MMCA score, we further compute the value of the binary
mask m by the designed memorization-breaking pruning cri-
terion. Similar to PP, the parameters 6, in the I-th layer are
then pruned by 6, ;) = m() © 6y, where [|m[lo/na) < ps
where ;) is the number of parameters in the I/-th layer.

Definition 2. (Memorization-breaking pruning criterion).
Given a MMCA score mask, the parameters corresponding
to the high score positions are removed to break the memo-
rization state as much as possible, i.e.,

0
M, () = 1

where (j,1) refers to the j-th parameter in the I-th layer.

if [MMCA,,(;,1)| is in the top-p% largest value

otherwise ’

(6)

Thus, we obtain a layer-level binary mask and can further
compute the sub-network predictions via forwarding propa-
gation. During backward propagation, we apply the same
mask to the gradient so that the pruned parameters are no
longer updated while the others are trained normally.
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Figure 2: MMCA distribution of the last layer in Conv-4.

Remark 1. CP breaks rote memorization to combat memo-
rization overfitting and generates augmented meta-gradients
containing diversity task information, with two differences
from connection-sensitivity-based network pruning methods
[Koh and Liang, 2017; Tanaka et al., 2020; Frankle et al.,
2021]. One is that CP prunes in the inner loop, so the crite-
rion is based on the query set rather than the regular training
samples [Wang et al., 2020]. Another essential difference is
that normal pruning usually removes insensitive parameters
for accuracy preservation, which is even the exact opposite
of our memorization-breaking criterion [ Frankle and Carbin,
2019; Wang et al., 2022]. We highlight this difference in Fig.
2 by visualizing the MMCA distribution of the last layer pa-
rameters in the Conv-4 backbone with a 20% pruning rate.

4.2 Outer-loop with Augmented Meta-Gradients

We now obtain two group gradients with respect to the meta-
parameters w°: one is the (original) meta-gradients obtained
by backward-propagation on the full network, and the other
is derived from several pruned sub-networks. The former re-
tains full meta-knowledge to speed the training process and
avoid underfitting at the early learning stage. The latter is
the meta-gradient augmentation resulting from network prun-
ing. The meta-parameters are finally updated by accumulat-
ing these two-group gradients and formalized as

ﬁ T
wo+1 = wo — ? (vwﬁouteT(et(w)7 D?)

t=1

(N
U
+ Z VWﬁouter(gu,t(w)v D?)) ’
u=1

where U is a hyper-parameter representing the number of
sub-networks in each task and 6,, ;(w) is the parameter of the
u-th sub-network for the ¢-th task. Since the meta-learner
is trained with shared initialization parameters, it naturally
shares diversity attention across all sub-networks, which is
the key to combating learner overfitting. The entire proce-
dure of MGAug is provided in Appendix C.

Remark 2. MGAug is designed for the two-loop meta-
framework and is quite different from the Dropout-style ap-
proaches [Srivastava et al., 2014; Tseng et al., 2020]. The
former prunes base parameters before each inner loop in or-
der to break the rote memorization state, while the latter di-
rectly prunes meta-parameters in the outer loop, essentially
to alleviate learner overfitting.
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Remark 3. The augmented meta-gradients derived from CP
in MGAug are based on the task response rather than directly
changing training tasks, which is also essentially different
Jfrom the gradient noise strategy [Tseng et al., 2020].

4.3 A PAC-Bayes Generalization Bound

We provide a PAC-Bayes-based generalization bound [D. A.
McAllester, 2013] for the two-loop meta-learning framework
with inner-loop pruning, which gives a theoretical guarantee
to our MGAug. To simplify the analysis, we prune a sub-
network for each task (i.e., U = 1). Following the PAC-
Bayes meta-learning framework [Amit and Meir, 2018], let
P and Q be the hyper-prior and hyper-posterior of the meta-
learner, and assume that loss function is bounded to the in-
terval [0, 1]. For a given pruning rate p € [0,1] and pruned
initial parameters w; of the base learner on task ¢, we take the
pruned parameters distribution @, .,, as posterior distribution
and the corresponding @, o ~ @ as the prior distribution.

Theorem 1. (Meta-learning PAC-Bayes bound with inner-
loop pruning). Let er(Q) and €r(Q,.,,T) be the expected
and empirical errors in meta-learning, and let m; denote the
number of samples in the t-th task. Then for any 6 € (0, 1] the
following inequality holds uniformly for all hyper-posterior
distributions Q with probability at least 1 — 0,

L& . [D(Q|IP) + log 2L
er(Q) < T §QP.E:NQETt(Qp,wt77’t) + T

DA ®)
+ii¢mmm+mﬂ%+%ﬁmw
T t=1 '

2(my — 1)

The expected error is bounded by the empirical multi-task
error plus two complexity terms. The first is the average
of task-complexity terms for observed tasks, and the second
is the environment-complexity term [Amit and Meir, 2018].
MGAug prunes parameters in the inner loop, reducing the
complexity cost of base learners by a factor of 1 — p and fur-
ther reducing the task-complexity terms. Appendix B pro-
vides proof of Theorem 1.

5 Experiments

5.1 Experimental Settings

Datasets. We conduct experiments with two widely-used
datasets: mini-ImageNet [Vinyals ef al., 2016] and CUB
[Wah et al., 2011]. Mini-ImageNet consists of 100 classes
of natural images, with 600 images per class. It is split into
non-overlapping 64, 16, and 20 classes for training, valida-
tion, and testing. The CUB contains 200 species of birds and
11,788 images in total. We randomly select 100 classes as
the training set, and the others are equally divided for vali-
dation and testing. Experiments involve 5-way 1-shot and 5-
shot tasks in both mutually exclusive (ME) and non-mutually-
exclusive (NME) settings [Yin ef al., 2020].

Backbones. We use three backbones with different depths,
including Conv-4, ResNet-10, and ResNet-18. The Conv-4
contains four convolution blocks, each block is concatenated
by convolution, BatchNorm, nonlinear activation (ReLU),
and max pooling layers. The ResNet-10 is a simplified
ResNet-18 [He et al., 2016] where only one residual building

block is used in each layer. Following previous works [Chen
et al., 2019; Yang et al., 20201, we respectively resize images
to 84 x 84 and 224 x 224 before feeding the Conv and ResNet
backbones and randomly scale to [84, 64, 48] and [224, 192,
160, 140] as the basic augmentation.

Baselines. We choose MAML [Finn et al., 2017] and Proto-
typical Network [Snell ef al., 2017] (abbreviated as ProtoNet)
as GBML and MBML instance baselines, respectively. For
MAML, we implement a first-order approximation FoOMAML
for efficiency [Finn et al., 2017]. We further take the trans-
formations designed in Baseline++ [Chen et al., 2019] as the
data regularization baseline and mark it with ‘Aug’. Below,
we mark the pruning strategy with “-XX" and make MGAug-
CP as the default setting, abbreviated as MGAug.
Implementation details. For 1-shot tasks, we respectively
train 4800 and 1600 epochs for GBML and MBML meth-
ods, and each epoch includes 100 episodes. For 5-shot tasks,
the number of epochs is halved. All results are average re-
sults over 600 episodes with confidence intervals of radius
one standard error. Following the training procedure of [Chen
et al., 2019], all methods are trained from scratch and use the
Adam optimizer with 10~3 learning rate.

5.2 Comparison with existing meta-regularization

MBML-based strategies. The results of ProtoNet baseline
with different meta-regularization methods are listed in Ta-
ble 1, where the best results are marked in bold and the
second-best with an underline. In addition to Aug [Chen
et al., 2019], we also compare two state-of-the-art regular-
ization methods designed for the MBML branch, including
TaskAug [Liu et al., 2020], Meta-MaxUp [Ni et al., 2021].
Results show that memorization-breaking and augmented di-
versity gradients greatly improve classification accuracy. For
example, in the 5-way 1-shot + ResNet-10 scenario, MGAug
improves the accuracy by 6.96% and 6.67% on CUB and
mini-ImageNet, respectively.

GBML-based strategies. Table 2 gives the results of Fo-
MAML baseline with different meta-regularization methods,
where the best results are marked in bold and the second with
an underline. We compare four state-of-the-art regularization
methods designed for the GBML branch, including MR [Yin
et al., 20201, TAML [Jamal and Qi, 2019], MetaMix [Yao
et al., 2021] and GradDrop [Tseng et al., 2020]. The former
two design explicit regularization terms to address memoriza-
tion and task bias issues in fast adaptation, respectively. The
latter two are typical methods of data and gradient regular-
ization, where MetaMix mixes the input and its features us-
ing the MixUp strategy and GradDrop randomly drops meta-
gradients to increase its diversity. Compared to random-based
strategies, gradient diversity in MGAug is learned by differ-
ent sub-networks on the same task, which leads to self-guided
augmentation and higher classification accuracy.

Besides accuracy, we plot the loss and accuracy curves
in Fig. 3 to observe meta-overfitting in FOMAML baseline,
Aug, and MGAug. Among them, the FOMAML baseline has
the lowest loss and the highest accuracy during training, es-
pecially in CUB, while it performs the worst over validation
epochs. This inversion is powerful evidence of overfitting.
In contrast, Aug and MGAug do not significantly overfit the
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CUB minilmageNet
5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot
Conv-4 ResNet-10  Conv-4 ResNet-10  Conv-4 ResNet-10  Conv-4 ResNet-10
ProtoNet 45264090  50.29+089  66.25+071  T1.41+067 31374062 43.54+080  65.10+072  63.29+0.67
+ Aug 55.18+097  71.614087  75.93+067 84.26+053  44.79+0s2 51.65+083  65.98+072  74.02+0.65
+ TaskAug 57.64+097  73.44+080  78.21+065 85.78+050  42.55+078 56.33+080  63.97+076  74.79+0.65
+ Meta-MaxUp  59.79+090  75.20+085  78.86+057 86.02+042  45.47+082 57.52+082  66.22+072  74.83+0.60
+ MGAug-WP  62.35+097 76304088  79.57+062 85.19+049  46.79+084 57.87+086 67.31+070 74.26+0.64
+ MGAug-PP 61.284+098  76.01+088  79.06+061 85.74+049  47.68+083 55.26+086  67.84+071  75.53+0.64
+ MGAug-CP  63.00+095  78.57+092  80.33+062 87.09+046 48.77+0s6 58.32+086 67.99+073 75.77+0.63
Table 1: Classification accuracy with the ProtoNet baseline.
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Figure 3: Loss and accuracy curves of FOMAML, Aug, and MGAug using ResNet-10 on mini-Imagenet (top) and CUB (bottom). From left
to right, the first two are the loss curves during training and validation, respectively, and the last two are the corresponding accuracy curves.

training task and generalize better to unseen tasks. Another
interesting trend is the trade-off between training loss and
validation accuracy. The training loss of MGAug is always
lower than Aug, but it yields more accurate predictions. This
phenomenon means that MGAug learns more generalizable
meta-knowledge during training.

5.3 Behavioral Analysis of MGAug

Rote memorization breaking. We observe the behavior of
the base learner to investigate the memorization breaking in
the inner loop. To this end, we visualize the gap in fine-
tuning accuracy between the full-network and sub-networks
with different pruning rates via a modified hat graph [Witt,
2019]. Fig. 4 shows the average accuracy of FOMAML with
MGAug using ResNet-10 on 100 tasks sampled from CUB.
Results for the full-network are indicated by the dashed line
with asterisks. The histogram reflects the gap between the ac-
curacy of sub-networks and the full-network, i.e., the upward
bar indicates higher accuracy than the full-network and vice
versa. The trend in Fig. 4 reflects whether fine-tuning relies
on rote memorization or rapid adaptation of meta-knowledge.

i. NME tasks suffer from severe memorization overfit-
ting. Observing Fig. 4 (c) and (d), due to label mu-
tual exclusion, each ME task cannot be handled solely
on memorization, i.e., the accuracy at step-0 is simi-
lar to random classification and improves rapidly after
fine-tuning. In contrast, for NME tasks, there is rote
memorization in meta-learned parameters that resulted in

ii.

iii.

iv.

28% classification accuracy without fine-tuning (at step-
0) and further limited the fine-tuning performance.

The ME setting is short-lived for solving memoriza-
tion issues. Although the ME setting avoids the re-
liance on memorization at step-0, the accuracy increases
sharply after only one step and remains almost un-
changed until the step-5 (fine-tuning five steps by default
[Finn et al., 2017]). This trend means that memoriza-
tion is almost recovered with just one iteration and still
prevents subsequent fine-tuning.

Our MGAug breaks rote memorization. Unlike con-
structing ME tasks, MGAug directly breaks memoriza-
tion and inhibits its recovery. An intuitive phenomenon
is that accuracy slowly increases during fine-tuning, even
with only a 0.1% pruning rate. Following the same ME
setting, Fig. 5 visualizes fine-tuning curves to verify
whether fine-tuning is reactivated with broken memo-
rization, which is the key to overcoming memorization
overfitting. Further, we plotted the curve fine-tuned from
random initialization as a baseline with no memory at all.
Clearly, the accuracy of MGAug has a consistent trend
with random initialization but improves faster, indicating
that the memorization issue is significantly alleviated and
fine-tuning is reactivated to rapidly adapt to new tasks.

CP has stronger breaking capability than WP and PP.
All three prunings hindered memorization recovery, CP
was the most effective, followed by PP, and finally WP
(see step-1 in Fig. 4 (a), (b), and (c)).
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CUB minilmageNet
5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot
Conv-4 ResNet-10  Conv-4 ResNet-10  Conv-4 ResNet-10  Conv-4 ResNet-10

FoMAML 53.21+048  54.69+051  69.08+039 64.49+043  43.50+039 46.79+046  59.28+038  57.86+039

+ Aug 53.98+048  68.14+050  73.66+036 78.17+036  44.41+040 52.16+047  60.82+038  66.93+0.38

+ MR 56.11+054  69.54+052  74.73+045  79.26+040  44.57+041 52.65+056  61.15+038  68.20+0.51

+ TAML 55.64+085  70.224+081  75.39+074  78.72+060  45.72+030 51.78+053  61.93+036 67.01+077

+ GradDrop 55.39+051  69.03+052  74.88+038  80.59+034  45.57+037 52.30+047  62.35+038 67.33+038

+ MetaMix 57.53+053  70.38+044  76.24+040 80.83+035  46.06+044 53.32+049  62.86+038 68.81+041

+ MGAug-WP  56.85+0s50 70.73+046  75.89+042  81.53+044  45.65+032 52.97+045  61.34+040 67.53+039

+ MGAug-PP  55.35+047 71.17+047  76.16+036 81.47+035  45.77+030 54.53+045  62.10+041 68.95+038

+MGAug-CP  58.19+049 72.14+051  76.28+035 81.97+033  45.95+041 54.70+04s  62.41+040 69.27+038

Table 2: Classification accuracy with the FOMAML baseline.
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Figure 4: Hat graphs of the base learner’s accuracy on ME tasks with (a) WP, (b) PP, and (c) CP. As a comparison to (c), (d) shows the
result of MGAug-CP on NME tasks. The dotted line indicates the results of a full network (i.e., 0% pruning), and the histogram indicates the

accuracy gap between the full and sub-networks with different pruning rates.
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Figure 5: Comparison of the  Figure 6: Accuracy trend

base learner after fine-tuning
w/ and w/o catfish pruning.

of training w/ catfish pruning
starting from different epochs.

Augmented meta-gradients. We empirically infer that the
effectiveness of the meta-gradient augmentation derived from
pruned sub-networks is twofold. One is the improvement
from resolving memorization overfitting, which has been ver-
ified in the previous subsection. The other is the diversity
of attention introduced by sub-networks with different prun-
ing rates, even for the same task. To verify this, Fig. 7 vi-
sualizes the attention regions of different sub-networks us-
ing Grad-CAM [Selvaraju et al., 2020] and lists representa-
tive examples. Interestingly, attention changes seem to occur
more often in samples containing insignificant objects (bot-
tom). Conversely, for the salient ones (top), the learner is
more confident in the predictions.

Plug-and-play property. In addition, MGAug can also im-
prove meta-generalization in a flexible plug-and-play way.
Fig. 6 shows the results of training with MGAug starting
from epochs 0, 400, 800, and 1200 on 5-way 5-shot CUB
tasks. Both train and test curves show that MGAug consis-
tently improves ProtoNet baseline performance and avoids

"‘L

Inputs 0% 10.12%  19.81%  20.00%

Figure 7: Grad-CAM visualization of two typical CUB samples.

meta-overfitting, even if it is only used for the last 400 epochs.

6 Conclusion

This work proposes a data-independent meta-regularization
method, termed MGAug, which alleviates both memorization
and learner overfitting in the two-loop meta-learning frame-
work. Unlike existing task augmentation and explicit regu-
larization terms, the key idea is to first solve the rote memo-
rization issue in the inner loop via network pruning and then
alleviate learner overfitting with augmented meta-gradients
derived from pruned sub-networks. We explore two random
pruning strategies and propose a novel catfish pruning that
achieves the most significant memorization breaking. We de-
duce a PAC-Bayes-based generalization bound for MGAug.
Extensive experimental results show that MGAug signifi-
cantly outperforms existing meta-learning baselines. We be-
lieve that MGAug’s ideas can inspire and drive the develop-
ment of regularization strategies in conventional learning.
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