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Abstract

The Vehicle Routing Problem (VRP) is a criti-
cal combinatorial optimization problem with wide-
reaching real-world applications, particularly in lo-
gistics and transportation. While neural network-
based VRP solvers have shown impressive results
on test instances similar to training data, their per-
formance often degrades when faced with vary-
ing scales and unseen distributions, limiting their
practical applicability. To overcome these limita-
tions, we introduce DGL (Dynamic Global-Local
Information Aggregation), a novel approach that
combines global and local information to effec-
tively solve VRPs. DGL dynamically adjusts lo-
cal node selections within a localized range, cap-
turing local invariance across problems of differ-
ent scales and distributions, thereby enhancing gen-
eralization. At the same time, DGL integrates
global context into the decision-making process,
providing richer information for more informed de-
cisions. Additionally, we propose a replacement-
based self-improvement learning framework that
leverages data augmentation and random replace-
ment techniques, further enhancing DGL’s robust-
ness. Extensive experiments on synthetic datasets,
benchmark datasets, and real-world country map
instances demonstrate that DGL achieves state-
of-the-art performance, particularly in generaliz-
ing to large-scale VRPs and real-world scenar-
ios. These results showcase DGL’s effectiveness in
solving complex, realistic optimization challenges
and highlight its potential for practical applications.

1 Introduction

The Vehicle Routing Problem (VRP) is a critical Combinato-
rial Optimization Problem (COP) with numerous real-world
applications in logistics and transportation [Kim et al., 2015;
Alkaya and Duman, 2013]. Given its significance, many ex-
act and heuristic algorithms have been developed over the

years [Applegate er al., 2007; Helsgaun, 2017; Li et al.,
2021]. However, these traditional algorithms often incur high
computational costs. Recently, neural network (NN)-based
models have emerged as a promising alternative for solving
VRPs [Wu et al., 2024]. These models typically leverage
learned NN to acquire heuristics for constructing solutions
or improving the quality of current solutions. By leverag-
ing the underlying patterns in training instances, neural VRP
solvers [Kwon et al., 2020; Xiao et al., 2024a] achieve com-
petitive or even superior solution quality compared to the tra-
ditional algorithms when solving test instances with the same
pattern, while significantly reducing inference time.

Although neural VRP solvers have demonstrated impres-
sive performance on instances matching the size and distri-
bution pattern of the training data, their effectiveness often
degrades significantly when applied to instances with vary-
ing scales or unseen distributions [Joshi et al., 2022; Bdeir
et al., 2023]. For instance, fluctuations in customer num-
bers or changes in locations due to factors such as weather
conditions or holidays can significantly alter problem char-
acteristics, limiting the practical applicability of neural VRP
solvers in real-world scenarios. To alleviate parts of these is-
sues, researchers have proposed methods aimed at improving
distribution and size generalization. Distribution generaliza-
tion methods [Jiang er al., 2022; Bi et al., 2022] typically
integrate various generalization algorithms into the model’s
learning framework. However, these approaches often strug-
gle with cross-scale instances, particularly in large-scale
VRPs. Conversely, state-of-the-art (SOTA) size generaliza-
tion methods yield impressive results on large-scale VRPs
by employing either a global-view [Drakulic e al., 2023;
Luo et al., 2023] or local selection method [Fang et al., 2024;
Goh et al., 2024]. However, global-view models suffer from
excessive computational cost, while local selection models
often lead to suboptimal solutions. Furthermore, most mod-
els [Kool et al., 2019; Kwon et al., 2020; Luo et al., 2023;
Gao et al., 2024] rely on static embeddings during solution
construction, failing to dynamically update information based
on partial solutions, which limits the model’s adaptability to
changes in the problem state and hinders generalization.

To address the challenge of efficiently generalizing to the
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diverse and complex nature of real-world VRPs, we propose
a novel model named DGL (Dynamically Global-Local In-
formation Aggregation) that enhances problem awareness by
integrating dynamically adjusted global and local features
into the decision-making process. Specifically, since opti-
mal solutions often emerge in the local neighborhood—a pat-
tern consistently observed across problems of different scales
and distributions—we select neighboring nodes as candidates
for subsequent node selection, thereby capturing the prob-
lem’s local invariance [Gao er al., 2024]. Simultaneously,
global information is incorporated into the representations of
these neighboring nodes and iteratively updated throughout
the solution construction process, providing contextual un-
derstanding and facilitating the exploration of the solution
space. By leveraging these continuously updated features,
DGL captures the relationship between the current state and
the broader problem context (e.g., direction to the destina-
tion), enabling more informed decision-making in node se-
lection. Furthermore, to ensure DGL’s robustness across di-
verse VRP instances, we propose a replacement-based self-
improvement learning (SIL) method. This method promotes
the diversity of datasets through data augmentation and en-
hances model robustness by randomly removing portions of
the generated dataset during training. Finally, we evaluate
DGL through extensive experiments on the Traveling Sales-
man Problem (TSP) and Capacitated VRP (CVRP), including
synthetic datasets of varying scales and distribution patterns,
two widely adopted benchmark datasets, and eight real-world
country map instances. The results demonstrate that DGL ex-
hibits excellent generalization capability, especially in solv-
ing large-scale VRP and real-world scenarios.
The key contributions of this work are as follows:

* We propose a novel model, DGL, that dynamically ag-
gregates global and local information to enhance its per-
ception of the current solving state, enabling it to effi-
ciently solve diverse real-world VRPs.

* We introduce a replacement-based SIL method that uses
data augmentation and random replacement to enhance
DGL’s robustness across different scenarios.

* We demonstrate DGL’s excellent generalization perfor-
mance through extensive experiments across a wide
range of synthetic and real-world VRP instances, cov-
ering various scales and distribution patterns.

2 Related Work

In this section, we introduce several recent works aimed at
enhancing model’s generalization and review existing train-
ing paradigms for neural VRP solvers.

2.1 Generalization of Neural VRP Solvers

NN-based methods have shown promising results in solving
VRPs [Kool et al., 2022; Qiu et al., 2022; Sun and Yang,
2023; Min et al., 2023; Xia et al., 2024; Xiao et al., 2020;
Xiao et al., 2024b; Xiao et al., 2025] but with suboptimal
generalization in unseen (especially in real world) scenarios
that may deviate from the training data [Joshi et al., 2022].
Recent studies have been proposed to enhance model distri-
bution and size generalization of these models, respectively.
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Figure 1: Comparative illustration of DGL and existing models.
Global-view models incur excessive computational cost, while local
selection models may lead to suboptimal solutions due to the limited
views. Furthermore, The static nature of existing models limit their
capacity to fully leverage updating state information. DGL enhances
its perception of the current solving state by integrating dynamically
updated global and local features into the decision-making process,
thereby improving model generalization.

Distribution generalization methods [Zhang er al., 2022;
Geisler et al., 2022; Jiang et al., 2022; Bi et al., 2022;
Zhou et al., 2023] aim to generalize models learned from
VRPs of multiple predefined distribution patterns to instances
with unseen distribution by adopting various generalization
algorithms, such as adversarial training and meta-learning.
However, these methods often face challenges when dealing
with instances of varying scales, particularly in large-scale
VRPs. As shown in Tables 1 and 2, even OMNI-VRP, the
SOTA model trained on multiple distribution patterns, ex-
hibits unsatisfactory performance on large-scale VRPs.

Prior size generalization methods [Zong et al., 2022;
Zheng et al., 2024; Ye et al., 2024] often involve decompos-
ing a large-scale problem into smaller sub-problems, which
are then solved independently. However, decomposing VRP
with complex constraints can be difficult and may produce
suboptimal solutions by failing to capture inter-dependencies
among sub-problems [Luo ef al., 2024]. Recently, several
SOTA VRP solvers that do not rely on D&C have been pro-
posed. These solvers frequently utilize an encoder-decoder
framework, where the encoder extracts node features, and the
decoder selects the next node from a candidate set of unvis-
ited nodes based on the encoded features. These methods
have demonstrated promising results in large-scale problems
and can broadly be categorized into global-view [Zhou et
al., 2023; Drakulic et al., 2023; Li et al., 2024; Gao et al.,
2024] and local selection [Fang er al., 2024; Lyu et al., 2024;
Goh et al., 2024]) models. Global-view models consider all
unvisited nodes as candidates, while local selection models
restrict candidate nodes to the k-nearest neighbors. Further-
more, existing models often employ static embeddings, where
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Figure 2: Overall framework of our proposed DGL and self-improvement learning method.

the node features to determine the next node remain fixed
throughout the solution process. This static nature limits the
solver’s ability to dynamically adapt to changes in the solu-
tion stage. We illustrate these limitations and the distinctions
between DGL and the existing model in Figure 1.

2.2 Training Paradigms

Neural VRP solvers typically rely on either Supervised
Learning (SL) or Reinforcement Leaning (RL). SL-based
methods [Drakulic et al., 2023; Luo et al., 2023] require
optimal solutions as training labels, which are often chal-
lenging to obtain and computationally expensive. In con-
trast, RL-based approaches [Gao et al., 2024; Fang et al.,
2024] suffer from sparse rewards and excessive computing
costs, making them difficult to scale to larger instances [Luo
et al., 2023]. Recently, a novel SIL paradigm has been ex-
plored, which selects the best solution from multiple sam-
pled solutions to serve as an expert trajectory for super-
vised imitation learning. SIL methods avoid the need for
expensive labels required by SL and address some of the
challenges associated with RL, achieving promising results.
However, existing SIL methods [Pirnay and Grimm, 2024;
Luo et al., 2024] rely on fixed training instances without re-
placement during each epoch, which limits the model’s ex-
ploration capabilities and reduces robustness. Additionally,
these SIL methods determine policy updates based solely on
performance over a validation set, which not only reduces
training efficiency but also risks overfitting to the validation
set, potentially leading to suboptimal solutions.

Unlike existing training methods, in this paper, we propose
a replacement-based SIL approach that eliminates the depen-
dence on validation sets and introduces random replacement
of training instances at each epoch. This strategy enhances
model robustness and expands the exploration space, improv-

ing overall training efficiency and solution quality.

3 Methodology

This section first presents the formulation of VRPs and then
proposes a novel model named DGL that dynamically aggre-
gates global and local information to efficiently solve VRPs
of varying scales and distributions. Furthermore, we propose
a replacement-based SIL training method to enhance DGL’s
robustness. The framework of DGL is presented in Figure 2.

3.1 Problem Setting

We define a VRP-n instance as a graph with n nodes, where
each node is represented by its h-dimensional coordinates
v; € R The optimal solution to a VRP is the tour 7*
that visits all nodes with the minimum cost, ¢(7*), corre-
sponding to the shortest overall length of the tour. Solving
different VRP variants involves adhering to various problem-
specific constraints. This study focuses on two prominent
VRP variants, i.e., TSP and CVRP, due to their representa-
tiveness and extensive applications across diverse domains
[Kim et al., 2015]. In TSP, each node must be visited exactly
once. CVRP extends TSP by introducing a depot, vehicle
capacity constraints, and node demands smaller than the ve-
hicle’s capacity. A CVRP tour comprises multiple sub-tours,
each representing a vehicle that starts and ends at the depot,
visiting a subset of nodes, with the total demand of each sub-
tour not exceeding the vehicle’s capacity.

3.2 DGL: Dynamic Information Aggregation

Neural VRP solvers often exhibit unsatisfactory performance
when applied to problems with varying sizes and distribu-
tions. While local selection-based approaches are effective
for large-scale problems, they tend to converge to suboptimal
solutions due to their reliance on limited local information.
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To address these challenges, we propose a novel and efficient
DGL model that incorporates global information into the fea-
tures of local candidate nodes, which are then processed by a
decoder to construct the solution. This strategy combines the
computational efficiency of local selection with the broader
perspective provided by global information. Furthermore,
instead of using static embeddings to predict the next node,
DGL dynamically updates global features at each step of the
solution process, offering a more comprehensive representa-
tion of the current state and improving the model’s ability to
capture state-dependent changes.

Information Aggregation from Local and Global Views
Local View. A common observation in solving VRPs is that
the optimal action (i.e., selecting the next node) lies within
a small local neighborhood of the current node [Helsgaun,
2017]. This local neighborhood pattern has been consistently
observed across VRPs with diverse scales and distributions
[Gao et al., 2024]. To leverage this property, we focus DGL’s
action space on the local k-nearest neighbors, capturing local
invariance across different VRPs and then enhancing model
generalization capabilities.

Global View. However, focusing solely on local view of-
ten leads to suboptimal solutions, as shown by our ablation
study (Section 4). Conversely, simply using the features of
all nodes to capture global information as previous methods
disrupts local invariance and significantly increases computa-
tional cost, making it impractical for large-scale problems.
Consequently, the primary challenge lies in integrating lo-
cal selection with global information effectively. The key
challenge, therefore, is effectively integrating local selection
with global information. To address this, we incorporate four
global features—spatial relationships, distribution patterns,
and relative positioning—into the candidate node represen-
tation within the local selection range.

1. Distance to the current node: We prioritize candidate
nodes based on their distance to the current node to minimize
cost and prevent distant routing. The global feature dist for
candidate node i is computed as the euclidean distance d (4, 5)
between nodes i and j. m; denotes the current node at step .

2. Average distance to all unvisited nodes: This feature
allows the model to anticipate the impact of future steps by
considering the spatial distribution of unvisited nodes. By
integrating this information, we guide the model to consider
not only the immediate next step but also the broader VRP
topology. We compute this feature for candidate node ¢ as:

_Sim() - dG.5) "
M TTImG)
where m(i) = 1 if node ¢ has been visited and m(i) = 0
otherwise.

3. Standard deviation of distances to unvisited nodes: We
consider the variability in distances from candidate node ¢ to
unvisited nodes. A higher standard deviation indicates greater
variability in the node’s spatial relationships, which could af-
fect routing efficiency. We compute this feature as follows:
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4. Directional vector to the starting node (or depot in
CVRP): We include the directional information from the
candidate node to the starting point (or depot) to align the
model’s decisions with the overall route direction, helping
it avoid detours and move efficiently toward the destination
(i.e., the starting node). The global feature for candidate node
1 is computed as follows:
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where 7y denotes the starting node, v denotes the coordi-
nates of the jth dimension of node 7, and [-, -] denotes the
horizontal concatenation operator.

The distance-related features 1-3 provide insights into
node positions within the VRP topology, ensuring the model
can assess both local proximity and global distribution. The
directional feature 4 adds orientation awareness, ensuring de-
cisions align with the optimal path from the starting node. By
integrating these position and orientation features into the k-
nearest candidate nodes, DGL effectively maintains a global
perspective when deciding the next node in the solution.

Finally, we concatenate these features for the k-nearest
neighbor node ¢ of the current node to form the model inputs
as follows:

X = [Uiv disti, His Oy dlrel] (4)

Normalization. To unify the scale of features and improve
the robustness of the model, we normalize the node’s features
as follows: )

x; — min(x)

Xi = &)

max(x) — min(x)

Efficient Dynamic Feature Update. As the solution is con-
structed, the state at each step evolves, and the correspond-
ing global features should be updated accordingly. How-
ever, recalculating the global features 2 and 3 at each step is
computationally expensive and time-consuming due to their
quadratic time complexity (O(n?)). To address this issue, we
propose using a recursive equation to update the mean and
variance at each step ¢ < n, preserving accuracy while reduc-
ing the time complexity to O(n) as follows:

(t—1) X
—t+1)u, —
Mgt) _(n=t+ 1)y, d(z,ﬂ-t)7 &
n—t
o® = (n—t 1)(Jz(t_1))2 — (d(4,m) — ugt_l))Q
i n—t :
(7

Model Architecture

Unlike conventional encoder-decoder architectures, we adopt
a decoder-only architecture to better capture the dynamic
properties of the state during VRP solution construction. As
demonstrated by the design of the GPT family [Chen e al.,
2024], decoders, compared to encoders, are more effective
in capturing dynamic patterns from the changing state, lead-
ing to improved generalization. Specifically, we use the fea-
tures of the k-nearest nodes, processed via dynamic feature
computation, as input. These features are then mapped to a
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probability distribution for the next node selection through L
attention layers, as shown in eq. 9.

The initial embeddings are generated using a linear layer,
expressed as {s!}X_ | = {Wi¥;}X_|, where W denotes learn-
able parameters. The embedding at the first attention layer is
then defined as follows:

St = [Wsn,, 515,58, 8)

where s, denotes the embeddings of current node 7 at step
t. Notably, instead of explicitly including the starting node
information in the input as done in conventional methods
[Drakulic et al., 20231, we implicitly encode it into the global
feature representation, i.e., through features 3 and 4. This de-
sign choice is based on the observation that the starting node
often falls outside the local view of the current node after
several steps. Explicit inclusion of the starting node could
therefore interfere with the local focus on the current node.

Finally, DGL maps these embeddings to the probabil-
ity distribution of each candidate node being the next node
through L attention layers Attnlayer as follows:

S! = Attnlayer(S'™1),1 € {1,...,L}, ©)

p;i(#) = Softmax(Wsk), (10)

where 6 denotes model parameters. In each step of ¢, DGL
selects an unvisited node 7; according to €, while masking in-
valid nodes (those already visited or exceeding capacity con-
straints) to ensure solution feasibility. This process continues
until the tour is complete.

3.3 Replacement-based SIL Method

Considering the limitations of conventional learning
paradigms (see Section 2.2), we propose a replacement-
based SIL method to improve the diversity of the dataset
through data augmentation and enhance DGL’s robustness by
randomly removing portions of the generated dataset during
training. We outline the five key steps as follows:
Initialization. We randomly generate B VRP instances from
a uniform distribution X and use a simple nearest-neighbor
heuristic algorithm to generate initial solutions, which serve
as initial pseudo-labels to warm up DGL.

Sampling. At each update step, we employ the current policy
to sample M solutions for each instance via beam search. If
the best solution among the M sampled solutions improves
upon the current best solution for a given instance, it replaces
the current solution.

Data Augmentation. To enhance model robustness, we ap-
ply data augmentation techniques to both the problem and
solution sides, thereby increasing the diversity of training in-
stances. For the problem side, we use transformations such as
rotation, reflection, and normalization on the VRP topology.
On the solution side, we use problem-specific enhancement
methods: for TSP, considering the solution forms a cyclic se-
quence, we randomly apply an integer offset € to the solution,
i.e., m; = Ti+.; for CVRP, considering the solution comprises
multiple sub-tours, we randomly flip sub-tours and swap the
order of adjacent sub-tours. The augmented problem and so-
lution then replace the current dataset.

Algorithm 1 Replacement-based SIL method of DGL

Require: Uniform distribution X, number of epochs FE,
batch size B, sampling number M, replacement rate .

1: Initialize policy 6

2: x' < Generate B instances from X Vi € {1,..., B}

3: 7' « Nearest-neighbor(z®) Vi € {1,...,B}

4. fore=1,...,F do

50 fori=1,...,Bdo

6: 7/« Sampling(DGL,z%, M,0) Vj €
{1,..., M}

7: if ¥ = Null or c(r%) > minjegq 2, 0} ()
then

8: IR I

9: end if

10:  end for

11: 2% 7" < Augmentation(z*,7") Vi€ {1,...,B}

122 6« DGL(z',7*,0) Vie{l,...,B}

13: @9 < Generate « - B instances from X Vj €

{1,...,a- B}
14:  j + Randomly select «- B indices Vj € {1,...,a-
B}

15:  ad, 70« 29 Null Vie{l,...,a-B}
16: end for

Imitation Learning. Using the augmented dataset as training
instances with pseudo-labels y;, we apply the cross-entropy
loss function £(0) = — Y"1 y; log(p;(#)) to maximize the
likelihood of selecting the current best node at each step.
Random Replacement. To mitigate overfitting to a fixed
dataset, which often impedes generalization to unseen scenar-
ios, we propose a data replacement strategy that reduces the
model’s dependence on specific instances, promoting more
flexible and generalizable learning. Specifically, we ran-
domly replace a fraction « of the training instances with re-
sampled data and set the solution length of these instances to
infinity during the subsequent update. This introduces con-
trolled variability into the dataset and encourages the model
to learn from a broader range of data distributions, thereby
enhancing its generalization capability.

In contrast to existing SIL methods that rely on static
datasets without replacement, our approach eliminates the
need for a separate validation set. This enables the model
to improve continuously throughout training, avoiding the
computational overhead of cross-validation. Consequently,
our method streamlines the training process and boosts the
model’s robustness by exposing it to a more diverse range of
data variations. We present the overall SIL strategy of DGL in
Algorithm 1. The source code of DGL is accessible online'.

4 Experimental Results

In this section, we conduct extensive experiments on both
synthetic and real-world dataset to evaluate the generalization
performance of our DGL compared to baselines.

DGL Settings. To demonstrate superior generalization abil-
ity of our method, we train a single model exclusively on ran-

'https://github.com/wuyuesong/DGL
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Distribution Uniform Clustered

Category TSP-100 TSP-1000 TSP-5000 TSP-10000 TSP-100 TSP-1000 TSP-5000 TSP-10000
Measurements gap(%)J, time  gap(%)], time  gap(%)], time gap(%)], time | gap(%)], time gap(%)), time gap(%)), time gap(%)l, time
(Near-)Optimality 0.00, 23.8m 0.00, 16.3h 0.00, 2.1h 0.00, 1.4d 0.00, 34.4m 0.00, 16.9h 0.00, 4.6h 0.00, 1.7d
Omni-TSP(ICML’23) 1.28, 8.4s 19.56, 1.3m 49.43, 16.1m 61.39,2.0h 1.38, 8.3s 21.23,1.3m 54.49, 16.1m 71.60, 2.0h
ELG(IJCAT’24) 0.24, 23.5s 12.22, 13.4s 18.84,39.7s 18.32, 5.6m 1.45,23.3s 15.27, 13.4s 25.74, 39.6s 31.01, 5.6m
INVITICML 24) 2.08, 46.8s 5.13,2.6m 6.49, 6.6m 4.82,20.2m 3.05, 48.6s 6.39,2.5m 7.20, 7.0m 6.02, 20.8m
UDC(NeurIPS’24) 0.40, 1.4m 2.06, 1.9m 6.99, 2.0m 8.73,3.7m 2.54,1.4m 8.26, 1.9m 15.19, 2.0m 15.41,3.1m
LEHD(NeurIPS’23) 0.57,4.8s 2.76, 1.9m 15.80, 18.2m 24.10, 2.3h 1.83,4.2s 8.56, 1.9m 23.46, 18.2m 35.33,2.3h
BQ(NeurIPS’23) 5.14,13.5s 3.82,9.6m 12.68, 1.9h 18.74, 13.5h 5.73,13.0s 9.43,9.6m 27.65, 1.9h 41.80, 13.5h
GD(TMLR’24) 0.72, 1.0m 4.26, 11.8m 60.26, 1.1h 198.65, 6.7h 2.29, 1.0m 25.26, 11.8m  329.10, 1.1h 627.83, 6.8h
DGL(ours) 0.60, 1.1m 2.36, 41.4s 5.20, 38.4s 4.46, 5.9m 1.76, 1.1m 4.26,41.4s 6.12,38.4s 6.02, 5.9m
DGL(ours)+BS(4) 0.27, 4.8m 1.47,2.7m 3.42,19m 2.58, 6.4m 1.19, 4.8m 3.24,4.4m 4.81, 1.9m 4.49, 6.4m
Distribution Explosion Implosion

Category TSP-100 TSP-1000 TSP-5000 TSP-10000 TSP-100 TSP-1000 TSP-5000 TSP-10000
Measurements gap(%)|, time gap(%)|, time gap(%)|, time gap(%)|, time | gap(%)|, time gap(%)|, time gap(%)|, time gap(%)|, time
(Near-)Optimality 0.00, 28.3m 0.00, 17.5h 0.00, 2.0h 0.00, 1.4d 0.00, 28.7m 0.00, 17.5h 0.00, 3.5h 0.00, 1.4d
Omni-TSP(ICML’23) 1.22,8.3s 19.96, 1.3m 51.28, 16.1m 65.37,2.0h 1.21, 8.3s 19.20, 1.3m 50.37, 16.1m 62.58, 2.0h
ELG(IJCAT’24) 0.36, 23.3s 13.67, 13.4s 22.79, 39.7s 23.45,5.6m 0.31, 23.4s 12.40, 13.4s 18.95,39.7s 18.73, 5.6m
INVIT(ICML 24) 2.24,49.2s 7.85,2.6m 10.04, 6.9m 8.70, 20.2m 2.37,45.0s 5.92,2.5m 6.79, 6.3m 5.31,19.3m
UDC(NeurIPS’24) 0.66, 1.4m 6.96, 1.9m 16.15, 2.0m 17.44,2.4m 0.54, 1.4m 3.74, 1.9m 7.74,2.0m 10.04, 2.4m
LEHD(NeurIPS’23) 0.67,4.2s 5.76, 1.8m 21.07, 18.2m 30.55,2.3h 1.11,4.2s 4.10, 1.8m 17.48, 18.2m 26.46, 2.3h
BQ(NeurIPS’23) 5.57,12.9s 7.11,9.6m 29.39, 1.9h 51.54, 13.5h 5.63, 12.9s 5.22,9.6m 16.42, 1.9h 25.23,13.5h
GD(TMLR’24) 0.68, 1.0m 12.33,11.8m 271.55, 1.1h 682.40, 6.7h 1.45, 1.1m 8.68, 11.9m 100.05, 1.0h 259.46, 6.7h
DGL(ours) 0.72, I.1m 4.25,41.4s 7.56, 38.4s 6.87, 5.9m 0.94, 1.1m 3.14,41.4s 5.45,38.4s 4.92, 5.9m
DGL(ours)+BS(4) 0.35, 4.8m 3.43,2.7m 6.07, 1.9m 5.22, 6.4m 0.60, 4.8m 2.23,4.4m 3.68, 1.9m 3.11, 6.4m

Table 1: Performance comparison of different methods on synthetic TSP instances. Symbol“BS(4)” denotes Beam search with width of 4.
The best and second results are bolded and underlined, respectively. Furthermore, UDC fails to solve TSPs under 100 nodes and CVRPs

under 200 nodes due to unknown errors.

domly generated instances with 100 nodes and a uniform dis-
tribution, then directly evaluate it on test instances of varying
sizes and distributions. Our proposed DGL consists of 4 de-
coder layers with a hidden dimension of 128 and 8 attention
heads. The learning rate is le-4 with a decay rate of 0.97.
Training spans 100 epochs with 100 iterations per epoch, a
batch size of 256, 64 samples per iteration, and a replacement
rate of 12.5%. The hyperparameter £ is set to 30 for TSP and
50 for CVRP.

Baselines Settings. We select seven SOTA models for com-
parison, including 1) RL-based models: Omni-VRP [Zhou et
al., 20231, ELG [Gao et al., 2024], INVIT-3V [Fang ef al.,
2024] and UDC [Zheng et al., 2024]; 2) SL-based models:
LEHD [Luo et al., 2023] and BQ [Drakulic et al., 2023]; and
3) SIL based models: GD [Pirnay and Grimm, 2024]. We fol-
low the publicly available pre-trained parameters and default
settings for all baselines. We report results for LEHD and
BQ with the greedy search for a fair comparison in terms of
computational efficiency. We apply the same inference setup
for both DGL and INVIT. All experiments were conducted on
an Intel(R) Xeon(R) Platinum 8352V CPU and an NVIDIA
RTX 4090 GPU (24GB).

Dataset. For the synthetic data, we adopt the MSVDRP
dataset [Fang ef al., 2024], which comprises 16 subsets for
TSP, encompassing 4 distributions (uniform, clustered, ex-
plosion, and implosion) and 4 scales (TSP-100, TSP-1000,
TSP-5000 and TSP-10000), and 12 subsets for CVRP under
the same distributions but at three scales (CVRP-50, CVRP-
500, and CVRP-5000).

For real-world data, we adopt the widely recognized
TSPLIB and CVRPLIB benchmarks. TSPLIB95 contains 77
instances varying in scale from 51 to 18512. CVRPLIB Set-X

[Uchoa et al., 2017] contains 100 instances varying in scale
from 100 to 1,000. Furthermore, we test on eight country
maps to further evaluate model’s performance in real-world
scenarios with city counts from 194 to 22775.

For all baselines and DGL, we report their average gap to
the (near-)optimal solutions, i.e., LKH results for synthetic
data and the best known solutions for real-world data.

Performance on Synthetic Datasets. We compare DGL
against baseline models on synthetic datasets. The key find-
ings are as follows: 1) Most models experience performance
degradation when generalizing to VRPs with varying scales
and distributions. 2) As shown in Table 1, DGL achieves
state-of-the-art performance compared to global-view-based
baselines like Omni-VRP, LEHD, and BQ, demonstrating the
effectiveness of local selection. 3) DGL outperforms IN-
ViT in both solution quality and inference speed, leverag-
ing global information and dynamically updating features
to avoid local optima and better adapt to problem varia-
tions. 4) Compared to other SIL models like GD, DGL with
replacement-based SIL significantly improves solution qual-
ity. 5) The increased number of nodes leads to more complex
route patterns and greater diversity (CVRP-5000 in Table 2).
DGL efficiently integrating information and handling this in-
creased complexity compared to baselines.

Performance on Real-world Datesets. We compare DGL
against baseline models on TSPLIB, CVRPLIB, and Country
maps datasets (see Table 3). On these real-world instances,
DGL consistently demonstrates superior generalization per-
formance compared to the baselines. Real-world instances
have more complex distributions than synthetic datasets, and
DGL effectively integrates global information via dynamic
feature computation while leveraging local invariance to han-
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Distribution Uniform Clustered
Category CVRP-50 CVRP-500 CVRP-5000 CVRP-50 CVRP-500 CVRP-5000
Measurements gap(%)l, time  gap(%)], time gap(%)], time | gap(%)l], time gap(%)|, time gap(%)|, time
(Near-)Optimality 0.00, 5.1h 0.00, 1.1d 0.00, 3.3d 0.00, 5.7h 0.00, 2.3d 0.00, 3.3d
Omni-TSP(ICML’23) 4.04,2.4s 6.32, 1.6m 48.74,21.5m 2.81,2.1s 4.43, 1.6m 24.21,20.8m
ELG(IICAI'24) 8.88, 6.9s 7.86,12.5s 8.20,4.7m 13.49, 6.8s 12.17, 12.6s 25.34,4.7Tm
INVIT(ICML'24) 5.06, 1.9m 9.57,2.4m 7.62,9.8m 5.15,1.9m 9.15,2.4m 7.48,10.3m
UDC(NeurIPS’24) N/A 5.62,7.4m 3.33, 16.7m N/A 4.51,7.4m 3.46, 16.6m
LEHD(NeurIPS’23) 5.29,2.4s 3.63, 1.8s 7.86, 19.4m 491, 1.8s 5.00, 1.8s 24.00, 19.3m
BQ(NeurIPS’23) 3.18, 4.4s 3.31, 1.4m 5.19,2.0h 3.12,4.0s 4.54, 1.3m 14.60, 2.0h
GD(TMLR’24) 5.40, 19.1s 8.71, 1.5m 13.48, 4.3m 5.55,19.2s 9.87,1.5m 16.65, 4.3m
DGL(ours) 4.69, 1.1m 8.38, 1.2m 3.08, 1.2m 4.33, 1.1m 6.26, 1.2m 2.35,1.2m
DGL(ours)+BS(4) 3.29,4.5m 7.20,4.5m 2.83,3.3m 3.23,4.5m 5.50, 4.5m 2.22,3.3m
Distribution Explosion Implosion
Category CVRP-50 CVRP-500 CVRP-5000 CVRP-50 CVRP-500 CVRP-5000
Measurements gap(%)l, time gap(%)|, time gap(%)|, time | gap(%)],time gap(%)], time gap(%). time
(Near-)Optimality 0.00, 5.0h 0.00, 2.8d 0.00, 3.3d 0.00, 5.0h 0.00, 2.0d 0.00, 3.3d
Omni-TSP(ICML’23) 3.76, 2.1s 6.16, 1.6m 34.62,21.1m 3.89,2.1s 5.77, 1.6m 41.04,21.0m
ELG(IJCAI'24) 9.76, 6.6s 8.50, 12.1s 17.92,4.7m 9.56, 6.7s 7.97,12.1s 9.68, 4.6m
INVIT(ICML 24) 5.34,1.9m 9.58, 2.4m 7.69,9.7m 5.27,1.9m 9.14,2.4m 7.20, 9.8m
UDC(NeurIPS’24) N/A 5.57,7.4m 3.65, 16.5m N/A 5.45,7.4m 3.34,16.7m
LEHD(NeurIPS’23) 5.20, 1.8s 4.27,1.8s 16.78, 19.4m 5.56, 1.8s 4.70, 1.8s 16.28, 19.4m
BQ(NeurIPS’23) 3.26,4.0s 4.50, 1.3m 14.94, 2.0h 3.48,4.0s 3.87, 1.3m 6.47,2.0h
GD(TMLR’24) 5.66, 19.1s 10.06, 1.5m 19.84,4.3m 5.73, 19.1s 9.50, 1.5m 13.74, 4.3m
DGL(ours) 440, 1.1m 8.09, 1.2m 3.20, 1.3m 4.46,1.1m 7.95,1.2m 2.77,1.3m
DGL(ours)+BS(4) 3.10,4.5m 7.03,4.5m 2.98, 3.3m 3.22,4.5m 6.90, 4.6m 2.54, 4.3m
Table 2: Performance comparison of different methods on synthetic CVRP instances
TSPLIB Country Maps
Nodenumber | _1500 100110000  >10000
(Count) (48) (24) ) QA19%4 UY734 MU1979 EG7146 YM7663 AR9152 GR9882 VM22775
Omni-TSP 9.66% 34.89% OOM 10.44% 14.83% 52.06% 151.05% 79.25% 72.70% 70.10% OOM
ELG 4.39% 12.99% OOM 7.06% 10.77% 22.54% 209.58% 60.21% 21.66% 23.95% OOM
INVIT 3.20% 7.63% 7.57% 2.88% 5.38% 13.06% 12.88% 13.37% 12.63% 13.25% 9.75%
UDC 3.10% (42) 14.11% 23.36% (1) | 0.58% 5.54% 15.41% 27.11% 28.03% 29.17% 19.44% OOM
LEHD 2.51% 12.34% 50.21% (3) | 27.15% 20.98% 42.65% 42.15% 93.84% 56.54% 74.69% OOM
BQ 8.42% 14.50% 45.21%(1) | 12.18% 9.26% 48.92% 170.87% 82.37% 64.43% 78.22% OOM
GD 4.19% 74.95% 991.24% | 236.40% 284.43% 1351.43% 1281.81% 3632.62% 1753.86% 2245.37% OOM
DGL 2.42% 6.49% 8.24% 1.27% 3.11% 10.53% 8.56% 11.10% 9.51% 10.35% 7.78%
DGL+BS(4) 2.23% 5.64% 5.77 % 0.50% 1.55% 10.46 % 7.60% 10.21% 12.46% 9.11% 6.54%

Table 3: Performance comparison of different methods on real-world instances. Symbol “OOM?” is used to indicate cases where the model
fails to solve all instances in the set due to GPU memory constraints. Symbol “(¢)” denotes the number of instances the model successfully
solves in this set. In Country Maps, the first two character EG is the abbreviation of ’Egypt’ and 7146 is the node number.

dle these complexities, showcasing its robust applicability in
unseen and pratical scenarios.

Ablation Studies. We conduct extensive ablation studies to
evaluate the design of DGL, focusing on: 1) the effectiveness
of the four global features and 2) the sensitivity to the replace-
ment rate « and local range k. (Please contact the first author
for the detailed experimental results).

The results of the ablation study on global features indi-
cate that their inclusion significantly enhances performance,
while their exclusion results in notable degradation, under-
scoring their critical importance. Sensitivity analysis for «
shows that performance remains stable across configurations,
except when o = 0, where a sharp decline is observed, vali-
dating the necessity of the replace operation. Similarly, vary-
ing k demonstrates DGL’s robustness across different local
range settings.

5 Conclusion

This study presents DGL, a novel approach that integrates
global and local information to effectively solve VRPs. Ex-
tensive experimental evaluations on VRPs of varying sizes
and distribution patterns demonstrate DGL’s superior gen-
eralization capabilities and its promise for real-world appli-
cations. In future work, we aim to further improve DGL’s
computational efficiency. Additionally, we plan to leverage
learning-based methods to automatically derive and better
fuse global features, and to extend DGL to more complex
combinatorial optimization problems.
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