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Abstract
Neural architecture search-based multi-modal clas-
sification (NAS-MMC) aims to automatically find
optimal network structures for improving the
multi-modal classification performance. However,
most current NAS-MMC methods are quite time-
consuming during the training process. In this pa-
per, we propose a knowledge sharing-based neu-
ral architecture search (KS-NAS) method for multi-
modal classification. The KS-NAS optimizes the
search process by introducing a dynamically up-
dated knowledge base to reduce the consumption
of computational resource. Specifically, during the
deep evolutionary search, individuals in the ini-
tial population acquire initial parameters from a
knowledge base, and then undergo training and op-
timization until convergence is reached, avoiding
the need for training from scratch. The knowl-
edge base is dynamically updated by aggregating
the parameters of high-quality individuals trained
within the population, thus progressively improv-
ing the quality of the knowledge base. As the
population evolves, the knowledge base continues
to optimize, ensuring that subsequent individuals
can obtain higher-quality initialization parameters,
which significantly accelerates the training speed of
the population. Experimental results show that the
KS-NAS method achieves state-of-the-art results in
terms of classification performance and training ef-
ficiency across multiple popular multi-modal tasks.

1 Introduction
With the advent of the big data era, the internet generates a
vast amount of data in various modalities such as image, text,
and sound. Compared to single-modal data, multi-modal data
contain more diverse relationships and deeper semantic infor-
mation. Multi-modal classification refers to the utilization of
multi-modal data for understanding and categorizing targets,
with its core lying in how to effectively fuse these multi-
modal information [Liang et al., 2022; Jiang et al., 2023;
Han et al., 2022].

∗Corresponding Author

In order to find the optimal network structure for multi-
modal information fusion, researchers have focused on NAS.
NAS-MMC can automatically search for more efficient and
well-generalized multi-modal fusion strategies within a vast
architectural space, such as DC-NAS [Liang et al., 2024],
CSG-NAS [Fu et al., 2024], BM-NAS [Yin et al., 2022],
EDF [Liang et al., 2021], and MFAS [Pérez-Rúa et al., 2019].
Based on different search strategies, NAS is mainly divided
into methods based on reinforcement learning (RL), evo-
lutionary algorithms (EA), and gradient-based approaches.
Each strategy possesses its unique strengths and limitations.
Compared to RL, EA demonstrates certain advantages in
training speed, however, it still entails considerable compu-
tational costs. As for gradient-based methods, although they
excel in training efficiency, due to the adoption of batch train-
ing mode, their global search capability is relatively weak,
making them prone to getting stuck in local optimal solutions.
Therefore, it is highly necessary to seek a search strategy that
is both fast and capable of producing excellent results.

In this paper, we innovatively propose a fast neural ar-
chitecture search method for multi-modal classification via
knowledge sharing, termed KS-NAS. Its core lies in leverag-
ing a knowledge-sharing mechanism to optimize the search
process and reduce computational resource consumption.
Specifically, we first define a dynamically updated knowl-
edge base, which exists in the form of a supernet and encom-
passes potential representations of all possible network archi-
tectures within the search space. Subsequently, the supernet
is trained using a gradient-based optimization strategy to ini-
tialize the knowledge base. During the subsequent search
process, individuals in each generation of the population ac-
quire initialization parameters from the current knowledge
base, thereby avoiding the time-consuming process of train-
ing from scratch. These individuals are then trained and op-
timized in the deep evolutionary search process until conver-
gence. Once this generation of individuals converges, param-
eters of the outstandingly performing individuals are selected
and fed back into the knowledge base for updating. In this
manner, the quality of the knowledge base continues to im-
prove as the population evolves, ensuring that subsequent in-
dividuals can obtain more excellent initialization parameters.
By continuously iterating this process, the KS-NAS method
achieves dual enhancements in population quality and train-
ing speed. The quality of the initial population in each gen-
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eration becomes increasingly high, resulting in progressively
faster training speeds in each subsequent generation.

We conducted experimental validations on multiple multi-
modal datasets, and the results indicate that the aforemen-
tioned virtuous cycle design strategy not only reduces the
consumption of computational resources but also success-
fully alleviates the prevalent inefficiency issue faced by cur-
rent EA-based NAS methods. This achievement fully demon-
strates the exceptional performance of our method in terms of
both efficiency and accuracy. Specifically, our contributions
are as follows:

• Individuals can obtain initial parameters from a dynam-
ically updated knowledge base, avoiding the need for
training from scratch, which accelerates the Neural NAS
process. In traditional NAS methods, each candidate ar-
chitecture requires training from scratch, which is an ex-
tremely time-consuming and resource-intensive process.
However, in KS-NAS, by introducing a dynamically up-
dated knowledge base, individuals can directly obtain
pre-trained, high-quality initialization parameters, sig-
nificantly reducing the training time for each generation
of individuals.

• The knowledge base is dynamically updated by aggre-
gating the parameters of high-quality individuals in the
population, gradually improving its quality. As a core
component of the KS-NAS method, the quality of the
knowledge base directly affects search efficiency and
the accuracy of the final results. After each generation
of search, outstanding individuals are selected from the
population, and their parameters are integrated into the
knowledge base to ensure that it continues to improve its
quality as the population evolves. This dynamic update
mechanism allows the knowledge base to continuously
accumulate excellent network architecture features, pro-
viding more valuable initialization parameters for sub-
sequent searches.

• As the population evolves, both the initialization param-
eters of the population and the quality of the knowl-
edge base improve, forming a virtuous cycle that pro-
motes each other. Compared with existing EA-based
NAS methods, KS-NAS maintains high accuracy while
achieving faster search speeds and reduced computa-
tional load, providing new ideas and methods for ad-
dressing the computational challenges in the NAS field.

2 Related Work
Multi-Modal Fusion: Multi-modal classification integrates
information from different modalities or views to enable
models to better understand data and make accurate classi-
fications [Liang et al., 2025; Guo et al., 2024]. Among them,
multi-modal fusion plays a crucial role. Within the frame-
work of deep neural networks, multi-modal fusion techniques
can primarily be categorized into three major types based on
the fusion stage: early fusion, intermediate fusion, and late
fusion. Early fusion focuses on integrating low-level features
from different modalities at the early stage of data process-
ing [Wang et al., 2018; Yu et al., 2018]. Intermediate fusion

refers to the integration of features from different modali-
ties at the intermediate levels of a model [Joze et al., 2020;
Vielzeuf et al., 2019]. Late fusion emphasizes the fusion
of information from different modalities at the decision level
[Han et al., 2020]. In practical applications, the choice of
fusion strategy depends on the specific application scenario,
data characteristics, and the design objectives of the model.

NAS: NAS aims to automatically discover an optimal net-
work structure [Elsken et al., 2019]. Based on different
search strategies, NAS can be mainly divided into the fol-
lowing three categories: RL-based, EA-based, and gradient-
based method. (1) The RL-based search strategy [Jaafra et
al., 2019; Balaprakash et al., 2019] frames the neural ar-
chitecture search problem within a Markov decision process
framework, employing reinforcement learning algorithms to
acquire optimal search policies. A notable disadvantage of
these strategy is the high computational cost. (2) The EA-
based search strategy [Fu et al., 2024; Han et al., 2024] mod-
els neural architecture search as an evolutionary optimization
problem, where candidate network structures are regarded as
individuals, their performance as fitness, and new individu-
als are generated through genetic operators, with the opti-
mal individuals being preserved. Although EA are generally
faster than RL methods, they still face considerable compu-
tational costs. (3) Gradient-based methods [Yu et al., 2022;
Ye et al., 2022] require the prior establishment of a super-
net, updating parameters by computing gradients of the loss
function with respect to the network architecture parame-
ters. They generally exhibit high computational efficiency.
Compared to EA, gradient-based methods typically possess
weaker global search capabilities and are prone to getting
trapped in local optima.

Unlike the aforementioned methods, individuals in KS-
NAS can acquire initial parameters from a dynamic knowl-
edge base that is initially obtained via training a supernet,
thereby avoiding training from scratch; The knowledge base
is dynamically updated by aggregating high-quality individ-
ual parameters from the population, leading to gradual qual-
ity improvement. As the population evolves, the initial pa-
rameters of the new individuals become better and better, and
so does the quality of the knowledge base; the two reinforce
each other. Ultimately, this significantly reduces the compu-
tational load and addresses the inefficiency issue of existing
population-based NAS methods.

3 Methods
In this paper, we propose the KS-NAS for multi-modal classi-
fication to find the optimal multi-modal fusion network struc-
ture. The main idea of this method is to construct a dynamic
knowledge base for knowledge sharing. By retrieving initial
parameters from the knowledge base, we avoid training from
scratch, addressing the issue of high computational cost in
EA-based NAS. Meanwhile, high-quality individual parame-
ters within the population are aggregated through a fair selec-
tion process, dynamically updating the knowledge base and
gradually improving its quality, which facilitates the search
for the optimal architecture. The overall framework of the
KS-NAS is shown in Figure 1.
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Figure 1: The framework of the proposed method.

3.1 Concept Description
In this section, we explain some of the terms in the paper to
avoid conceptual confusion.

Population is a collection of several individuals.
Individual is an integer encoding of a multi-modal fusion

network that includes multiple views and fusion operators.
Supernet is a network that contains potential representa-

tions of all possible network architectures in the search space
and is a concrete representation of the knowledge base.

Subnet is sampled from the supernet and represents the
decoded form of an individual.

3.2 Construction of Knowledge Base
The KS-NAS utilizes an evolutionary search approach to find
the optimal fusion network. During the evolutionary process,
we construct a dynamically updatable knowledge base with
the purpose of enabling knowledge sharing among individu-
als in the population. In this paper, the knowledge base is im-
plemented in the form of a supernet, which contains potential
representations of all possible network architectures within
the search space. Initially, the knowledge base contains no
knowledge, and a gradient-based optimization algorithm is
used to train the supernet to initialize the knowledge base.

As the evolutionary process continues, individuals in the
population retrieve initial parameters from the knowledge
base, thus avoiding the need to train from scratch. In each
generation, all individuals begin with the same starting point.
After training and evaluation, high-quality individuals are
fairly selected by comparison with the worst fitness of the
previous generation, the network parameters of high-quality
individuals are integrated to update the knowledge base. The
corresponding layer parameters from all high-quality individ-
uals’ networks are aggregated through averaging and sub-
sequently integrated with the homologous layers of the su-

pernetwork, thereby ensuring that the quality of knowledge
stored in the library is continuously improved. This process
facilitates the dynamic updating of the knowledge base with
high-quality information. Furthermore, individuals within
the same generation undergo fair competition, as they all
share the same starting conditions so that good individuals
will not be selected because of different starting points. The
knowledge from previous generations serves as a foundation
for the subsequent generations, helping to accelerate their
training processes and enabling them to find better solutions.
Their synergistic relationship contributes to reducing compu-
tational costs and enhancing classification performance.

3.3 Optimal Network Search
We accelerate the training of individuals in the population by
sharing knowledge through the knowledge base, adopt the fair
selection method to ensure the fairness of individual selection
and improve the quality of knowledge in the knowledge base.

First, we define and initialize the supernet as the knowl-
edge base. N subnets are sampled from the supernet, with
parameter sharing among them. Features are extracted from
multi-modal data using a feature extractor, and then subnets
are trained using batch training to update the parameters of
the supernet, which also serves as the knowledge base. In the
subsequent deep evolutionary search process, subnets are re-
garded as individuals. Individuals of the same generation ac-
quire knowledge from the same knowledge base for param-
eter initialization, followed by training. After training for a
few generations, evaluation is performed, and the parameters
of high-quality individuals are selected to update the knowl-
edge base, facilitating the initialization of individuals in the
next generation. The key steps of KS-NAS include popula-
tion initialization, fitness evaluation, selection, offspring gen-
eration, and environmental selection.
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Algorithm 1 Pseudo-code of KS-NAS.
Input: Training data Dtrain, validation data Dvalid, feature
extractor E.
Parameter: Population size N , maximum number of gener-
ations T .
Output: Last generation population PT .

1: Extract Vtrain, Vvalid from Dtrain and Dvalid using the
well-trained E;

2: KS ← Build the knowledge base by training a supernet
with gradient-based method;

3: Generate initial population P0;
4: Initialize the individual network in P0 with KS;
5: F0 ← Train and evaluate individual networks of P0 using

Vtrain and Vvalid;
6: Pm← Record individual networks parameters of P0;
7: t← 0
8: while t < T do
9: Wst← Find the worst fitness in Ft;

10: KS ← Calculate the mean of the Pm and update
knowledge base;

11: Select mating pool from Pt by the roulette wheel;
12: Qt ← Generate offspring by crossing operator and

mutation operator
13: for each individual q in Qt do
14: q ← Initialize by KS;
15: end for
16: Train and evaluate individual networks in Qt using

Vtrain and Vvalid;
17: for each individual q in Qt do
18: if the fitness of q > Wst then
19: Pmq ← Save the parameters of q;
20: end if
21: end for
22: Pm← Pmq;
23: Pt+1 ← Select N individuals from Pt and Qt by envi-

ronment selection;
24: Ft+1 ← Record the fitness of Pt+1;
25: t← t+ 1;
26: end while
27: return PT .

Population initialization: Individuals are specifically im-
plemented in the form of subnets, each of which is composed
of input views and fusion operators arranged in a certain fu-
sion order. There is a schematic diagram representing the
subnet in Figure 2. N subnets are generated through ran-
dom sampling to serve as individuals in the initial popula-
tion. Each individual selects k non-repeating features from
the available view features, thereby avoiding local optimal
solutions caused by abnormal concentration of feature infor-
mation in the initial population. The number of fusion oper-
ators used in each individual is k − 1, which corresponds to
the number of fusion nodes for the selected feature.

Fitness evaluation: Each individual is decoded into a
multi-modal fusion network. The detailed decoding process
is shown in Subsection 3.4. Each network is initialized with
the knowledge base and then trained with the dataset. The
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Figure 2: Encoding and decoding of individuals for EgoGesture
dataset

adaptive value is evaluated after the training.

Selection: We use roulette wheel selection to determine
which individuals to mate with. The specific step is to gen-
erate a random number r ∈ [0, 1], and then select the first
individual whose cumulative probability exceeds the random
number r. Through this approach, individuals with higher fit-
ness have a greater chance of being selected, while also pre-
serving the possibility of individuals with lower fitness being
selected, helping to avoid falling into local optimal solutions.

Crossover and mutation: The CSG-NAS method inspires
us [Fu et al., 2024] to design an adaptive crossover rate and
mutation rate, two parameters that are constantly adjusted
over the course of evolution. The crossover rate gradually
increases with evolutionary generations, while the mutation
rate decreases accordingly. A higher initial mutation rate en-
hances population diversity and broadens the search space to
prevent premature convergence. As evolution progresses, el-
evating the crossover rate facilitates effective gene recombi-
nation for fine-grained local optimization. This mechanism
balances global exploration and local exploitation, ensuring
both solution quality and convergence efficiency.

Environment selection: After combining parents and chil-
dren, we adopted a meritocracy selection strategy to select the
next generation of parent individuals to ensure that the best
individuals reach the next generation and continue to pass
on their good genes. The elite selection method effectively
avoids the possible information loss in genetic manipulation
by preferentially retaining the individuals with the highest fit-
ness. At the same time, this strategy can accelerate the con-
vergence process, reduce unnecessary fluctuations in the evo-
lutionary process, and ensure the stable transmission of ex-
cellent genes.

The pseudo code of KS-NAS is shown in Algorithm 1.
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3.4 Encoding and Decoding
In the population, each individual is encoded using integers
and consists of multiple nodes. Each node is comprised of
three digits, where the first two digits represent input features,
and the third digit indicates the fusion operation performed on
the two input features. The node itself represents the result of
the fusion. The fusion operations include addition, multipli-
cation, concatenation, maximize, and average. The relevant
definitions can be found in work [Liang et al., 2021]. Before
decoding each individual into multi-modal fusion network, it
is necessary to align the modal features in a fully connected
way to facilitate fusion in the fusion network. Then, the cor-
responding modal features are fused according to the fusion
network generated by decoding. After fusion, the final fusion
results are transmitted to the FC and Softmax layers for the
final output. The detailed explanation is shown in Figure 2.

4 Experiments
4.1 Datasets
All of our experiments are implemented using Torch 2.4.1
on Ubuntu 16.04.4. It is equipped with 512GB DDR4
RDIMM memory, two 40-core Intel Xeon CPU E5-2698v4
@ 2.20GHz processors, and uses an NVIDIA Tesla P100
GPU. The effectiveness of our method is verified on five pop-
ular multi-modal datasets. The following is the introduc-
tion of the datasets: (1) ChemBook-10k (CB) [Liang et al.,
2021] dataset, which is a chemical structure image recogni-
tion dataset for patent search research. The dataset consists of
1 million images of chemical structures belonging to 10,000
categories. (2) The NUS-Wide-128 (NUS) [Tang et al., 2016]
dataset contains 43,800 single-label images from 128 cate-
gories. In our experiment, we used a subset of this dataset
containing 23,438 images from 10 categories, each associated
with a label, with at least 1,500 images per category. (3) The
MM-IMDB dataset [Arevalo et al., 2017] is a multi-modal
dataset collected from the Internet Movie Database, includ-
ing 25,959 movies and their associated posters, plots, genres,
and other metadata, comprising a total of 27 non-mutually
exclusive genres. Due to a severe class imbalance, we chose
to use only 23 types for the classification task, and the dataset
was divided into 15,552 movies for training, 2,608 movies for
validation, and 7,799 movies for testing purposes. (4) NTU
RGB-D [Shahroudy et al., 2016] is a large-scale multi-modal
action recognition dataset with 56,880 samples, divided into
60 categories in total. The training, validation, and test sets
included 23,760, 2,519, and 16,558 samples, respectively. (5)
EgoGesture [Zhang et al., 2018] is a multi-modal gesture
recognition task dataset containing 24,161 gesture samples,
with a total of 83 categories. There were 14,416 samples
in the dataset for training, 4,768 samples for validation, and
4,977 samples for testing.

4.2 Comparison Methods
To better validate the effectiveness of KS-NAS, we compared
it to a variety of methods including several SOTA algorithms.

(1) Single-mode method: Inflated ResNet-50 [Baradel et
al., 2018], Co-occurrence [Li et al., 2018], VGG-16+LSTM
[Yang and Tian, 2014], C3D+LSTM+RSTTM [Molchanov

Method CB NUS
Advanced fusion operators

MBL 82.38±0.32 70.60±0.29
MFB 87.94±0.32 71.34±0.40
TFN 73.45±0.30 63.66±1.22
LMF 82.81±0.18 71.74±0.70
PTP 85.08±0.11 71.83±0.50

Multi-modal methods
TMC 77.88±0.20 72.73±0.30
TMOA 86.81±0.09 72.60±0.48
EmbraceNet 85.85±0.09 72.43±0.38
AWDR 86.66±0.16 72.44±0.66
RAMC 85.36±0.46 72.51±0.67
EDF 88.46±0.27 73.67±0.64
DC-NAS 88.52±0.13 74.20±0.32
CSG-NAS 89.20±0.06 74.52±0.40
KS-NAS(ours) 93.21±0.15 75.64±0.48

Table 1: The accuracy on the CB and NUS dataset are reported

et al., 2016], I3D [Carreira and Zisserman, 2017], ResNext-
101 [Köpüklü et al., 2019], Maxout MLP [Goodfellow et al.,
2013], VGG Transfer [Simonyan, 2014].

(2) Traditional multi-modal methods and advanced fusion
operators: TMC [Han et al., 2022], TMOA [Liu et al., 2022],
AWDR [Yang et al., 2019], RAMC [Jiang et al., 2022], Two-
stream [Simonyan and Zisserman, 2014], GMU [Arevalo et
al., 2017], CentralNet [Vielzeuf et al., 2019], MMTM [Joze
et al., 2020], MTUT [Gupta et al., 2019], MBL [Kim et al.,
2016], MFB [Yu et al., 2018], TFN [Zadeh et al., 2017], LMF
[Liu et al., 2018], PTP [Hou et al., 2019].

(3) Multi-modal fusion method based on NAS: EDF [Liang
et al., 2021], MFAS [Pérez-Rúa et al., 2019], BM-NAS [Yin
et al., 2022], 3D-CDC-NAS2 [Yu et al., 2021], DC-NAS
[Liang et al., 2024] and CSG-NAS [Fu et al., 2024].

4.3 Experiments Results and Analysis
For the CB and NUS datasets, we employ a five-fold cross-
validation approach to partition the data into training and test-
ing sets, allowing a more accurate estimation of the model’s
performance and generalization ability. To ensure a fair com-
parison with other multi-modal fusion methods, we follow
the setup of EDF [Liang et al., 2021], using the same feature
extractors for data processing and the same fusion operator
for constructing the search space. We compare KS-NAS with
several advanced multi-modal fusion operators and methods,
among which only EDF, DC-NAS and CSG-NAS are NAS-
based. The results are shown in Table 1, indicating that KS-
NAS achieves state-of-the-art classification performance. On
the CB dataset, our method outperforms the advanced NAS-
based multi-modal methods EDF, DC-NAS, and CSG-NAS
by 4.75%, 4.69%, and 4.01%, respectively. On the NUS
dataset, it surpasses them by 1.97%, 1.44%, and 1.12%, re-
spectively. This suggests that knowledge sharing can indeed
improve the performance of multi-modal classification tasks.

For the MM-IMDB dataset, to ensure a fair comparison
with other multi-modal fusion methods, we follow the setup
of BM-NAS [Yin et al., 2022], using Maxout MLP as the
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Method Modality F1-W(%)
Unimodal methods

Maxout MLP (ICML13) Text 57.54
VGG Transfer (ICLR15) Image 49.21

Multi-modal methods
Two-stream (NIPS14) Image + Text 60.81
GMU (ICLR17) Image + Text 61.7
CentralNet (ECCV18) Image + Text 62.23
MFAS (CVPR19) Image + Text 62.5
BM-NAS (AAAI22) Image + Text 62.92±0.03
DC-NAS (AAAI24) Image + Text 63.70±0.11
CSG-NAS (IJCAI24) Image + Text 64.12±0.12
KS-NAS(ours) Image + Text 66.57±0.08

Table 2: Multi-label genre classification results on MM-IMDB
dataset. Weighted F1 (F1-W) is reported.

Method Modality Acc (%)
Unimodal methods

Inflated ResNet-50 (CVPR18) Video 83.91
Co-occurrence (IJCAI18) Pose 85.24

Multi-modal methods
Two-stream (NIPS14) Video + Pose 88.6
GMU (ICLR17) Video + Pose 85.8
MMTM (CVPR20) Video + Pose 88.92
CentralNet (ECCV18) Video + Pose 89.36
MFAS (CVPR19) Video + Pose 89.50±0.60
BM-NAS (AAAI22) Video + Pose 90.48±0.24
DC-NAS (AAAI24) Video + Pose 90.85±0.05
CSG-NAS (IJCAI24) Video + Pose 91.12±0.03
KS-NAS(ours) Video + Pose 91.11±0.04

Table 3: Action recognition results on NTU RGB-D dataset

backbone model for the text modality, and VGG Transfer as
the backbone model for the RGB image modality. The eval-
uation metric used is the weighted F1 score, which is a re-
liable indicator for measuring multi-label classification per-
formance due to the highly imbalanced nature of the dataset,
rather than other types of F1 scores. The use of the weighted
F1 score is also consistent with previous methods for easy
comparison. For the parameters of our architecture, we set
the population size to N = 20, the number of iterations to
T = 20, the dimension of the fusion vector FD = 256, and
the modality features are all reproducible. As shown in Ta-
ble 2, KS-NAS outperforms existing multi-modal classifica-
tion methods in terms of the weighted F1 score, surpass-
ing MFAS, BM-NAS, DC-NAS, and CSG-NAS by 4.07%,
3.65%, 2.87%, and 2.45%, respectively.

For the NTU RGB-D dataset, to ensure a fair compar-
ison of methods, we follow the setup of BM-NAS, using
the dilated ResNet-50 as the backbone model for the video
modality and Co-occurrence as the backbone model for the
skeleton modality. This design ensures that all methods in
the experiment share the same backbone network. For KS-
NAS, the experimental settings are a population size of 20,
20 iterations, a fusion dimension of 256, and reusable modal-
ity features. As shown in Table 3, our method achieves a

Method Modality Acc (%)
Unimodal methods

ResNext-101 (FG19) RGB 93.75
VGG-16+LSTM (CVPR14) Depth 77.7
C3D+LSTM+RSTTM Depth 90.6
I3D (CVPR17) Depth 89.47
ResNeXt-101 (FG19) Depth 94.03

Multi-modal methods
VGG-16+LSTM (CVPR17) RGB + Depth 81.4
C3D+LSTM+RSTTM RGB + Depth 92.2
I3D (CVPR17) RGB + Depth 92.78
MMTM (CVPR20) RGB + Depth 93.51
MTUT (3DV19) RGB + Depth 93.87
3D-CDC-NAS2 (TIP21) RGB + Depth 94.38
BM-NAS (AAAI22) RGB + Depth 94.96±0.07
DC-NAS (AAAI24) RGB + Depth 95.22±0.05
CSG-NAS (IJCAI24) RGB + Depth 95.25±0.04
KS-NAS(ours) RGB + Depth 95.27±0.06

Table 4: Gesture recognition results on EgoGesture dataset

cross-subject accuracy of 91.11%. Compared to other meth-
ods, KS-NAS performs slightly worse than CSG-NAS but
still outperforms most advanced multi-modal methods, sur-
passing MFAS, BM-NAS, and DC-NAS by 1.61%, 0.63%,
and 0.26%, respectively.

For the EgoGesture dataset, to ensure a fair comparison
of methods, we follow the setup of BM-NAS, using ResNeXt-
101 as the backbone model for both the RGB and depth video
modalities. This design ensures that all methods in the exper-
iment share the same backbone network. We compare KS-
NAS with various unimodal and multi-modal methods. The
experimental settings for KS-NAS include a population size
of 20, 20 iterations, a fusion dimension of 256, and reusable
modality features. As shown in Table 4, our method achieves
a cross-subject accuracy of 95.27%. Compared to other meth-
ods, KS-NAS achieves state-of-the-art classification perfor-
mance.

In summary, KS-NAS, by sharing knowledge through a
knowledge base, has improved model performance to a cer-
tain extent and provided new perspectives and implementa-
tion strategies for multi-modal classification tasks.

4.4 Search Efficiency Comparison
We analyze KS-NAS from three aspects: model parameters,
search efficiency, and classification performance. To better
validate the capability of KS-NAS, we compare it with vari-
ous powerful multi-modal fusion methods, with experimental
results shown in Table 5. From the table, it can be observed
that although KS-NAS has a larger model size, it achieves
superior classification performance while requiring the least
search time.

On the CB and NUS datasets, the search efficiency of KS-
NAS is nearly three and four times faster than the state-of-the-
art method CSG-NAS, with better performance. On the MM-
IMDB dataset, KS-NAS outperforms state-of-the-art meth-
ods in terms of search efficiency and classification perfor-
mance, and has a small number of parameters. Although
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Method Dataset Parameters Time CP (%)
EDF NUS 0.31M 11.43 73.67

DC-NAS NUS 0.53M 4.61 74.2
CSG-NAS NUS 0.37M 2.71 74.52

KS-NAS(ours) NUS 0.78M 0.88 75.64
EDF CB 2.28M 78.01 88.48

DC-NAS CB 2.41M 61.88 88.45
CSG-NAS CB 2.47M 24.68 89.2

KS-NAS(ours) CB 6.32M 6.08 93.21
BM-NAS MM-IMDB 0.65M 1.24 62.94
DC-NAS MM-IMDB 0.42M 1.19 63.7

CSG-NAS MM-IMDB 0.56M 0.98 64.12
KS-NAS(ours) MM-IMDB 0.50M 0.81 66.57

MMTM NTU 8.61M - 88.92
MFAS NTU 2.16M 603.64 89.5

BM-NAS NTU 0.98M 53.68 90.48
DC-NAS NTU 0.26M 13.63 90.85

CSG-NAS NTU 0.19M 5.19 91.12
KS-NAS(ours) NTU 0.94M 2.65 91.11

BM-NAS Ego 0.61M 20.67 94.96
DC-NAS Ego 0.19M 4.57 95.22

CSG-NAS Ego 0.20M 3.27 95.25
KS-NAS(ours) Ego 2.71M 1.30 95.27

Table 5: Comparison of model size, time (GPU hours) and classifi-
cation performance (CP) of generalized multi-modal NAS methods.

Version KS FS Time Acc(%)
KS-NAS1 False False 228.59 93.15±0.18
KS-NAS2 True False 7.26 93.12±0.32
KS-NAS True True 6.08 93.21±0.15

Table 6: Ablation study of KS-NAS (CB).

Version KS FS Time Acc(%)
KS-NAS1 False False 11.61 75.46±0.62
KS-NAS2 True False 1.04 74.61±0.65
KS-NAS True True 0.88 75.64±0.48

Table 7: Ablation study of KS-NAS (NUS).

on the NTU RGB-D dataset, our method’s performance is
slightly lower than CSG-NAS, its search efficiency is twice
as fast, and its performance is still better than other advanced
multi-modal fusion methods. On the EgoGesture dataset, KS-
NAS also achieves the highest search efficiency and excellent
classification performance. These results demonstrate the su-
periority of KS-NAS in terms of efficiency.

4.5 Ablation Study
To better analyze KS-NAS, we conducted ablation experi-
ments on the CB and NUS datasets. The results are shown
in Tables 6 and 7. They reveal that, when comparing the
classification performance of KS-NAS1 and KS-NAS2, the
knowledge-sharing (KS) is effective in improving search ef-
ficiency and reducing search time. As shown in Figure 3,
under the same conditions, with the KS from the knowledge
base, the number of training iterations required by individ-
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Figure 3: Comparison of epochs

uals gradually decreases as the population evolves, leading
to an improvement in search efficiency. However, due to the
variability in the quality of stored knowledge, this approach
can lead to local optima, resulting in suboptimal classification
performance. The standard deviations indicate that KS-NAS2

has lower stability, as the uneven quality of knowledge causes
unfair training evaluations for different structures.

Comparing the data between KS-NAS2 and KS-NAS
shows that the inclusion of a fair selection (FS) method im-
proves search efficiency, classification results, and stability.
This improvement is due to fair selection ensuring the qual-
ity of the knowledge in the knowledge base, allowing dif-
ferent structures to be trained to their specified limits in a
short time with similar starting points, increasing the chances
of finding better structures and enhancing classification per-
formance. Finally, it is found that under the joint action of
knowledge sharing and fair selection, the search efficiency is
improved by ten times or even greater, and the classification
performance is also improved to some extent.

5 Conclusion

In this paper, we propose a knowledge sharing-based neu-
ral architecture search (KS-NAS) method to reduce the time-
consuming nature of current NAS-MMC methods during the
training process. The KS-NAS method constructs a dy-
namically updatable knowledge base for knowledge shar-
ing, enabling individuals to obtain initial parameters from
the knowledge base and avoiding the need for training from
scratch. High-quality individuals, in turn, contribute to en-
hancing the quality of the knowledge base, creating a mu-
tually beneficial relationship between the two. This method
significantly reduces computational overhead and improves
the efficiency of existing population-based NAS-MMC meth-
ods. Finally, the experimental results on multiple popular
multimodal tasks demonstrate that our method achieves state-
of-the-art results in terms of classification performance and
training efficiency. In the future, we will conduct in-depth re-
search on improving the quality of the knowledge base, such
as narrowing the search space based on core structures to con-
trol the direction of knowledge base updates and designing
metrics to quantify the quality of the knowledge base numer-
ically.
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