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Abstract
Domain adaptation (DA) is crucial for transfer-
ring models trained in one domain to perform
well in a different, often unseen domain. Tra-
ditional methods, including unsupervised domain
adaptation (UDA) and source-free domain adapta-
tion (SFDA), have made significant progress. How-
ever, most existing DA methods rely heavily on
Batch Normalization (BN) layers, which are not
optimal in source-free settings, where the source
domain is unavailable for comparison. In this study,
we propose a novel method, ESBN, which ad-
dresses the challenge of domain shift by adjusting
the placement of normalization layers and replac-
ing BN with Batch-free Normalization (BFN). Un-
like BN, BFN is less dependent on batch statistics
and provides more robust feature representations
through instance-specific statistics. We systemat-
ically investigate the effects of different BN layer
placements across various network configurations
and demonstrate that selective replacement with
BFN improves generalization performance. Ex-
tensive experiments on multiple domain adaptation
benchmarks show that our approach outperforms
state-of-the-art methods, particularly in challeng-
ing scenarios such as Open-Partial Domain Adap-
tation (OPDA).

1 Introduction
Deep learning exhibits excellent performance when the test
domain matches the training set; however, performance dete-
riorates when a domain shift occurs. Domain adaptation (DA)
allows the model to maintain its performance in the target do-
main by mitigating the domain shift. DA has evolved through
several paradigms, each addressing increasingly complex

∗Corresponding author.

scenarios. Classical unsupervised domain adaptation (UDA)
methods initially focused on situations with shared label
spaces between domains, employing various techniques such
as adversarial training [Ganin et al., 2016; Rangwani et al.,
2022] and feature alignment [Tranheden et al., 2021; ?;
Wang et al., 2024c] to bridge the domain gap. However, these
approaches often face a fundamental limitation: the assump-
tion of identical label spaces between source and target do-
mains rarely holds in real-world scenarios [Liang et al., 2020;
Qu et al., 2022; Qu et al., 2024a].

To address this limitation, researchers have proposed sev-
eral specialized frameworks. Partial Domain Adaptation
(PDA) [Cao et al., 2019] handles cases where target la-
bels form a subset of source labels, while Open-set Domain
Adaptation (OSDA) [Liu et al., 2019] deals with scenar-
ios where the target domain contains unknown categories.
Open-Partial Domain Adaptation (OPDA) [You et al., 2019;
Saito and Saenko, 2021] combines both challenges, where the
target domain contains unknown categories and only a partial
set of labels from the source domain. However, these methods
still require prior knowledge about the relationship between
source and target label spaces in Universal Domain Adapta-
tion (UniDA) [Li et al., 2024]. UniDA [You et al., 2019;
Fu et al., 2020] represents a significant advancement by elim-
inating the need for such prior knowledge. It tackles the most
general case where label spaces may overlap arbitrarily be-
tween domains, without assuming any information about the
nature or extent of this overlap. This flexibility makes UniDA
particularly relevant for real-world applications where la-
bel relationships between domains are unknown or uncer-
tain. Recent developments have further considered practi-
cal constraints, particularly data privacy concerns [Wang et
al., 2024d]. Source-free Universal Domain Adaptation (SF-
UniDA) [Liu and Zhou, 2024; Qu et al., 2024b; Schlachter
and Yang, 2024] addresses scenarios where direct access to
source domain data is restricted, working instead with a pre-
trained source model.

In the current study, some researchers have attempted to
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improve Batch Normalization (BN) for addressing domain
shift, it is important to note that a model’s feature extraction
capability remains fundamentally unchanged across domains.
The performance degradation primarily arises from the inval-
idation of previously calculated BN statistics when encoun-
tering domain shifts, which subsequently affects the qual-
ity of feature representation. This observation has prompted
various approaches that focus on adjusting BN statistics
to mitigate the effects of domain shift [Liu et al., 2021;
Li et al., 2024]. For instance, methods like batch normaliza-
tion statistics transfer explicitly align BN statistics between
source and target domains [Fang et al., 2024]. Other re-
searchers have addressed domain adaptation by updating only
the affine parameters in the BN layer, while preserving the
source domain statistics to reduce label-domain interference
and enhance domain knowledge learning [Wu et al., 2024].

Although numerous approaches have been proposed to ad-
dress unsupervised domain adaptation by adjusting BN, rela-
tively fewer studies focus on source-free domain adaptation.
Existing research predominantly concentrates on altering the
behavior of BN, which is not directly applicable to source-
free unsupervised domain adaptation. This is because, un-
like unsupervised domain adaptation, source-free unsuper-
vised domain adaptation lacks a source domain. Many unsu-
pervised domain adaptation methods rely on comparing the
BN statistics between the source and target domains for do-
main adaptation. However, in the absence of a source do-
main, it is challenging to directly compare the statistics be-
tween the source and target domains. Directly modifying BN
is difficult to apply in source-free domain adaptation, and BN
layers, which overly rely on batch statistics, are ineffective
in reducing domain shift in source-free domain adaptation
tasks. Additionally, we observe that the placement of BN lay-
ers significantly impacts the overall generalization ability of
the model, as different positions correspond to different fea-
ture representations. Existing research primarily focuses on
altering the behavior of BN, overlooking the role of BN layer
placement and its impact on cross-domain generalization.

To address these issues and the limitations of source-free
domain adaptation, we propose ESBN. By addressing the
model’s feature representation impact caused by BN statis-
tics shift due to domain offset, we aim to reduce the influence
of domain shift on BN layers. Specifically, we explore ad-
justing the position of the normalization layers and replacing
them with a more robust, batch-independent normalization
method to mitigate the impact of domain shift on BN layers,
resulting in a more robust model. We introduce Batch-free
Normalization (BFN), which, compared to batch-dependent
statistics, can potentially provide more robust feature repre-
sentations through instance-specific statistics. We systemat-
ically analyze the effectiveness of replacing BN with BFN
at various network positions (such as odd layers, even lay-
ers, and all layers) and configurations (such as alternating
modes). The goal of this strategy is to achieve an optimal bal-
ance between maintaining discriminative power and reducing
domain-specific biases during feature learning. Furthermore,
we investigate the significant impact of the placement of nor-
malization layers on cross-domain feature learning and iden-
tify a more suitable placement for these layers. Overall, our

approach demonstrates superior performance compared to the
state-of-the-art across multiple experiments. The main con-
tributions can be summarized as follows:

• We present the first comprehensive study on the im-
pact of normalization layer placement in domain adap-
tation, revealing how different configurations affect fea-
ture transferability and domain generalization.

• We propose an approach for integrating Batch-free Nor-
malization into existing architectures, demonstrating
that selective replacement of BN layers can significantly
improve generalization performance.

• We conduct extensive experiments across multiple do-
main adaptation benchmarks, providing empirical evi-
dence that our strategic normalization approach outper-
forms traditional DA methods, including in challenging
OPDA scenarios.

2 Related Work

Unsupervised Domain Adaptation. Unsupervised Domain
Adaptation (UDA) focuses on aligning source and target
domains by learning domain-invariant feature representa-
tions [Peng et al., 2019; Zellinger et al., 2017; Wang et al.,
2024a; Wang et al., 2024b]. This challenge is tackled by uti-
lizing labeled data from source domains to train models for
unlabeled target domains in a transductive learning frame-
work. Existing UDA methods can be categorized into two
primary categories: (1) Moment matching approaches, such
as Maximum Mean Discrepancy (MMD) and the Wasser-
stein metric, focus on aligning statistical properties between
source and target distributions [Tranheden et al., 2021; ?]. (2)
Adversarial learning approaches employ domain discrimina-
tors to promote domain-invariant feature extraction [Saito et
al., 2018; Sankaranarayanan et al., 2018; Zhang et al., 2019;
Xiao et al., 2021; Rangwani et al., 2022]. However, the ma-
jority of existing methods operate under the assumption that
the label spaces of the source and target domains are iden-
tical. And despite the extensive theoretical advancements in
Unsupervised Domain Adaptation (UDA), the acquisition of
substantial source data remains impractical. This assumption
restricts their applicability in real-world scenarios.
Source-Free domain adaptation. Source-Free Domain
Adaptation (SFDA) is a domain adaptation approach aimed
at leveraging pre-trained source models to facilitate knowl-
edge transfer to the target domain in the absence of source
data [Tzeng et al., 2017; Hoffman et al., 2018]. Exist-
ing SFDA methods can be categorized into two classes.
Data generation techniques that synthesize source data [Hou
and Zheng, 2020; Qiu et al., 2021; Du et al., 2024] and
model fine-tuning approaches that utilize unlabeled target
data within a self-supervised framework [Liang et al., 2020;
Yang et al., 2021b; Yang et al., 2021a]. However, many cur-
rent SFDA methods are limited to closed-set scenarios, which
constrains their practical applicability. Although some stud-
ies have explored open-partial-set scenarios, they remain in-
sufficient [Liang et al., 2021].
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3 Methodology
3.1 Preliminary
Problem Definition. We address universal domain adapta-
tion (UniDA), which tackles both covariate and label dis-
tribution shifts between domains. Given a source domain
S = {(vs

i , z
s
i )}

Ms
i=1 with vs

i ∈ As ⊂ Rd and zsi ∈ Zs ⊂
RK , and an unlabeled target domain T = {(vt

i)}
Mt
i=1 with

vt
i ∈ At ⊂ Rd. Let Z = Zs ∩ Zt denote shared labels,

while Ẑs = Zs \ Z and Ẑt = Zt \ Z represent domain-
private labels. UniDA assumes no prior knowledge of Zt, Z ,
or Ẑt, aiming to identify shared-label samples while rejecting
private-label instances. In source-free setting, S is only avail-
able during pre-training. Given a source model psϕ = qsϕ ◦ rsϕ,
where rsϕ : Rd → Rm extracts features and qsϕ : Rm → RK

classifies them, adaptation involves learning a target encoder
rtϕ while maintaining qtϕ = qsϕ. Figure 1 shows ESBN.
Batch normalization. For convolutional neural networks
(CNNs), the batch normalization (BN) layer processes four-
dimensional tensors. Let Xn,k,h,w and Yn,k,h,w denote the
input and output tensors respectively, where n indexes sam-
ples within a batch, k represents feature channels, and (h,w)
indicates spatial coordinates. In the case of input images, k
typically corresponds to the RGB color channels. The nor-
malization is performed independently within each channel:

Yn,k,h,w = BN(Xn,k,h,w) = αk ·
Xn,k,h,w −mk√

vk + δ
+θk, (1)

where mk = 1
|M|

∑
n,h,w Xn,k,h,w represents the mean ac-

tivation in channel k, computed across all samples n in the
mini-batch and all spatial locations (h,w), where M denotes
the set of all activations used in the mean computation. The
variance vk is calculated analogously. A small constant δ is
added for numerical stability. During inference, running av-
erages of means and variances accumulated during training
are utilized. Following normalization, a channel-wise affine
transformation is applied using learnable parameters αk and
θk, which are optimized during the training process. The
transformation effectively standardizes the distribution of ac-
tivations within each channel while maintaining the network’s
representational capacity through the learnable parameters.
This standardization helps mitigate internal covariate shift
and enables more stable training of deep neural networks.
Batch-free Normalization. Batch-free normalization (BFN)
techniques are designed to eliminate the dependency on batch
statistics, ensuring consistent behavior during both training
and inference phases. Layer normalization (LN) [Lei Ba et
al., 2016] operates by computing statistics across all feature
channels and spatial dimensions for each individual sample
independently, which can be formulated as:

Yn,k,h,w = LN(Xn,k,h,w) = α · Xn,k,h,w − µn√
σ2
n + δ

+ θ, (2)

where µn = 1
CHW

∑
k,h,w Xn,k,h,w computes the mean

across channels (C) and spatial dimensions (H,W ) for each

sample n. The variance σ2
n is computed similarly. Unlike

BN, the learnable parameters α and θ are shared across all
channels. Group normalization (GN) [Wu and He, 2018] ex-
tends this concept by partitioning channels into G groups and
performing normalization within each group separately:

Yn,k,h,w = GN(Xn,k,h,w) = αg ·
Xn,k,h,w − µn,g√

σ2
n,g + δ

+ θg,

(3)

Yn,k,h,w = GN(Xn,k,h,w)

= αg ·
Xn,k,h,w − µn,g√

σ2
n,g + δ

+ θg, (4)

where Gg represents the set of channels in group g, and µn, g
and σ2

n,g are computed within each group independently. This
design offers a flexible trade-off between LN (G = 1) and in-
stance normalization (G = C), making it particularly effec-
tive for visual tasks where small batch training is prevalent.

3.2 Estimation Shift of Batch Normalization
Consider a training dataset D and its mini-batches {Di}Ni=1.
For a neural network with BN layer Gϕ,ω(D) =

Gpost
ϕ (BN(Gpre

ω (D))), let Z = Gpre
ω (D) and Ẑ = BN(Z).

While the population statistics of D are well-defined through
mini-batch statistics, those of activations Z = Gpre

ω (D) are
challenging to define due to parameter updates during train-
ing. Specifically, mini-batch activations Zi = Gpre

ωi (Di)

depend on both input Di and evolving model parameters
{ωi}Ni=1. Despite this complexity, we observe that Ẑi main-
tains standardized distribution across iterations. We de-
fine the expected population statistics: for a trained model
Gϕ̄,ω̄(·) on training data D, the expected population statistics
µ̄, σ̄2 of BN are defined as the mean and variance of activa-
tions Z = Gpre

ω̄ (D′) on test data D′ [Huang et al., 2022].
According to the expected population statistics of BN, we

define the Estimation Shift of BN as the discrepancy between
the estimated population statistics and the expected ones. Un-
derstanding the impact of the Estimation Shift on the perfor-
mance of the batch-normalized network is crucial. Therefore,
we aim to reduce the difference between the estimated and
expected statistics, thus improving the generalization perfor-
mance of the network model.

3.3 BFN in Domain Adaptation
To estimate the distribution of feature magnitudes ∥vi,n∥2
, ESBN uses a two-component Gaussian Mixture Model
(GMM) [Qu et al., 2024a]. The components with lower
and higher means, denoted as θs and θn respectively where
θs < θn, correspond to shared and novel classes. To achieve
accurate class separation, we construct class-specific refer-
ence vectors through top-M sampling. For each shared class,
we maintain two types of references: target references {rtk ∈
RD|k=1,...,K} and source references {rsk ∈ RD|k=1,...,K}.
The sampling size M is determined by M = Nt/K̂t, where
Nt represents target samples and K̂t denotes estimated tar-
get classes. The source references are derived from classifier
weights to handle potential source-novel scenarios.
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Source Domain

Target Domain

Feature Extractor

Target Prototypes
Source Anchors

Feature Decomposition GMM Modeling

Common Score 
Estimation

Target Private Data Separation
Others are target features.

Figure 1: Overall framework of ESBN. BN and BFN are mixed in different layers.

Before feeding the features into the GMM for class sepa-
ration, we apply BFN to the feature vectors vi to ensure their
mean and variance are standardized within each instance. Un-
like BN, BFN does not require batch-wise statistics, and in-
stead, it normalizes across the channels of each individual
sample. This method makes it particularly useful when han-
dling domain adaptation tasks, as it alleviates issues related
to batch size and domain-specific statistics. The BFN for a
feature vector vi ∈ RC (with C channels) can be expressed
as:

v̂i = γ · vi− µi

σi + ϵ
+ β, (5)

where µi =
1
C

∑
c = 1Cvi, c is the mean of the feature vec-

tor vi, σi =
√

1
C

∑
c = 1C(vi, c− µi)2 is the standard de-

viation, and γ and β are learnable scaling and shifting pa-
rameters. This normalization ensures that the feature vector
for each instance has zero mean and unit variance, making it
suitable for domain adaptation tasks where features from both
source and target domains are expected to have varying dis-
tributions. Based on these references, we define a confidence
metric αi,k that evaluates instance-to-class relationships:

s(p,q) = 1.0− cos(p,q),

αt
i,k = 1.0− exp(s(vt

i , r
t
k)− 1.0),

αs
i,k = exp(−s(vt

i , r
s
k)),

αi,k =
√
αt
i,k · αs

i,k,

(6)

in addition to the normalization of features, BFN ensures
that the feature distributions are stable within each instance,
which is particularly helpful in handling small batch sizes or
domain shift. The confidence scores αt

i,k and αs
i,k are clipped

to [0, 1] before computing their geometric mean. The asym-
metric formulation ensures that proximity to source refer-
ences carries more weight in shared class determination than
proximity to target references. The class assignment com-
bines distribution statistics with instance-specific confidence:

βi,k = θk + αi,k(θn − θk),

ŷt
i =

{
novel, ∥vt

i,n∥2 ≥ βi,k,

11
(
argmaxαi

)
, ∥vt

i,n∥2 < βi,k.

(7)

Here, vt
i,n for novel data, θk represents the expected mag-

nitude for class k obtained through the same top-M sam-
pling procedure, and βi,k defines an instance-specific deci-
sion boundary that accounts for both class-level distribution
and instance-level confidence. 11denotes the one-hot encod-
ing operator.

3.4 Optimization Objectives
The training process incorporates three complementary ob-
jectives to achieve effective domain adaptation: pseudo-label
learning, feature magnitude regularization, and distribution
alignment. Firstly, based on the predicted labels from the
adaptive thresholding mechanism, we employ a weighted
cross-entropy loss for model optimization. To account for
prediction reliability, we introduce a confidence weight using
a Student’s t-distribution that considers the distance between
feature magnitude |vt

i,n|2 and decision boundary βi, k:

wt
i ∝ 1−

(
1 +

(βi,k − |vt
i,n|2)2

η

)− η+1
, 2

, (8)

Lcls =

− 1

N

N∑
i=1

wt
i ·

K∑
k=1

ŷt
i,k log pk(x

t
i),

(9)

where wt
i represents the sample confidence, pk(xt

i) denotes
the predicted probability for class k, and η is set to 1e-4.
For samples classified as novel, we use a uniform distribu-
tion over shared classes instead of introducing an additional
category. Secondly, to enhance the discriminative power of
feature magnitudes for novel class detection, we introduce a
regularization term:

qi =
exp(|vt

i,n|2)
exp(|vti, n|2) + exp(|vti, s|2)

, (10)

Lmag =

− 1

N

N∑
i=1

wt
i ·
(
zti log(qi) + (1− zti) log(1− qi)

)
,

(11)

where zti is a binary indicator (1 for novel, 0 for shared
classes), vt

i,s for shared data. Finally, to ensure stable feature
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Methods U SF CF Ar2Cl Ar2Pr Ar2Re Cl2Ar Cl2Pr Cl2Re Pr2Ar Pr2Cl Pr2Re Re2Ar Re2Cl Re2Pr Avg
CMU [Fu et al., 2020] × × ✓ 56.0 56.9 59.2 67.0 64.3 67.8 54.7 51.1 66.4 68.2 57.9 69.7 61.6
DANCE [Saito et al., 2020] ✓ × ✓ 61.0 60.4 64.9 65.7 58.8 61.8 73.1 61.2 66.6 67.7 62.4 63.7 63.9
DCC [Li et al., 2021] ✓ × × 58.0 54.1 58.0 74.6 70.6 77.5 64.3 73.6 74.9 81.0 75.1 80.4 70.2
OVANet [Saito and Saenko, 2021] × × ✓ 62.8 75.6 78.6 70.7 68.8 75.0 71.3 58.6 80.5 76.1 64.1 78.9 71.8
Source-only - - - 47.3 71.6 81.9 51.5 57.2 69.4 56.0 40.3 76.6 61.4 44.2 73.5 60.9
SHOT [Liang et al., 2020] × ✓ ✓ 32.9 29.5 39.6 56.8 30.1 41.1 54.9 35.4 42.3 58.5 33.5 33.3 40.7
GLC [Qu et al., 2023] ✓ ✓ ✓ 55.1 78.1 89.2 63.1 80.5 89.1 77.6 53.8 88.9 80.6 54.4 85.9 74.7
LEAD [Qu et al., 2024a] ✓ ✓ ✓ 61.1 78.0 86.4 70.6 73.8 83.4 75.3 59.4 86.0 74.3 60.7 83.6 74.4
ESBN ✓ ✓ ✓ 64.7 78.4 89.0 71.7 74.0 80.0 76.5 62.0 87.5 76.5 65.1 82.4 75.7

Table 1: H-score (%) averaged on Office-Home for OPDA scenario. U denotes methods applicable for all potential label-shift scenarios.
SF represents source data-free. CF indicates model adaptation without time-consuming K-means clustering.(Best in red and second best in
blue.)

learning, we incorporate a distribution alignment loss Lalign

that encourages consistency between neighboring samples in
feature space. This helps maintain consistent predictions for
semantically similar instances across domains. The final op-
timization objective combines these components:

Ltotal = γ · Lcls+ Lmag + Lalign, (12)

where γ is a positive balancing coefficient. This combined
objective enables effective separation of shared and novel
classes while maintaining discriminative feature learning.

4 Experiments
4.1 Experimental Setup
Datasets. Office-31 [Saenko et al., 2010] is a widely used
DA benchmark comprising three domains: Amazon (A), Dslr
(D), and Webcam (W), with 31 office object classes. Office-
Home [Venkateswara et al., 2017] includes four domains:
Artistic (Ar), Clip Art (Cl), Product (Pr), and Real-world
(Re), covering 65 object classes. VisDA-C [Peng et al.,
2017] is a large-scale DA dataset with 12 classes across syn-
thetic and real domains, focusing on synthetic-to-real trans-
fer. Class splits for each setting are summarized in Table 6.
Implementation Details. All experiments are implemented
on a single RTX-3090 GPU. Existing baselines maintain their
original settings, with the feature encoder fine-tuned from
the ImageNet pre-trained ResNet-50 backbone. The model is
trained using SGD with a momentum of 0.9 and weight decay
of 1×10−3. The learning rate is set to 1×10−3 for the Office-
31 and Office-Home datasets, and 1× 10−4 for the VisDA-C
datasets. The batch size is 64. Apart from the parameters
introduced for our improvements, all other settings remain
consistent with those in [Qu et al., 2024a]. The source codes
are available at https://github.com/leuluelueluelue/ESBN.
Evaluation. We adopt the same evaluation metrics as prior
works for a fair comparison. In PDA scenarios, we report the
classification accuracy as the primary evaluation metric. For
OSDA and OPDA scenarios, we utilize the H-score [Liang et
al., 2021] to evaluate performance. The H-score is defined as
the harmonic mean of accuracy over common data and accu-
racy over private data.

4.2 Comparative Results
Results for OPDA Scenario. Experiments were initially con-
ducted under the most challenging OPDA scenario to evaluate
the effectiveness of the proposed method. Table 1 shows the

results on the Office-Home dataset, while Table 2 summarizes
the outcomes on the Office-31 and VisDA datasets. These
results evidence that ESBN outperforms these existing meth-
ods in effectively segregating common and private data, high-
lighting its superior capability in handling DA tasks. Specif-
ically, on the Office-Home, Office-31, and VisDA datasets,
ESBN surpasses the state-of-the-art baseline by 1%, 0.9%,
and 1.6%, respectively. We attribute this improvement to the
effective implementation of the proposed method, which ef-
fectively mitigates the limitations associated with traditional
BN. In particular, we replace the BN layers in even/odd layers
within the residual blocks of ResNet with BFN.
Results for OSDA Scenario. In the OSDA scenario only the
target domain involves private data, necessitating a method
that can effectively differentiate between common and pri-
vate data. The H-score results presented in Table 3 and Ta-
ble 5 illustrate the performance of various methods under
this scenario on the Office-Home, Office-31, VisDA datasets.
Notably, ESBN demonstrates superior performance on the
Office-Home, Office-31, and VisDA datasets, achieving im-
provements of 1.2%, 1.1%, and 1.4% over the LEAD method,
respectively. It also maintains a leading position among all
baselines, similar to the observations in the OPDA scenarios.
Results for PDA Scenario. Finally, we validate the effec-
tiveness of ESBN in the PDA scenario. The results shown
in Table 4 and Table 5 indicate that ESBN achieves excel-
lent performance even when compared to methods specifi-
cally tailored for PDA. In particular, ESBN attains overall
accuracies of 72.7%, 95.5%, and 76.2% on the Office-Home,
Office-31 and VisDA datasets, respectively. It is noteworthy
that the accuracy on the Office-Home dataset is slightly lack-
ing, which may be attributed to gradient propagation issues
caused by modifications to the BN layer, leading to compro-
mises during optimization. We will seek better modification
and integration strategies in our future work.

4.3 Experimental Analysis
Ablation Study. To study the impact of normalization layer
modifications in ESBN , we perform ablations on three
datasets in the OSDA scenario. Results are shown in Ta-
bles 7 and 8, with Table 7 highlighting the effect of differ-
ent normalization strategies. The results show that substi-
tuting BN layers with BFN in the even layers within even
residual locks (EE) yields the best performance. Specifically,
ESBN achieves 66.6%, 91.3%, and 73.6% on the Office-
Home, Office-31, and VisDA datasets, respectively. We at-
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Office-31 VisDA
Methods U SF CF A2D A2W D2A D2W W2A W2D Avg S2R
CMU [Fu et al., 2020] × × ✓ 68.1 67.3 71.4 79.3 72.2 80.4 73.1 32.9
DANCE [Saito et al., 2020] ✓ × ✓ 78.6 71.5 79.9 91.4 72.2 87.9 80.3 42.8
DCC [Li et al., 2021] ✓ × × 88.5 78.5 70.2 79.3 75.9 88.6 80.2 43.0
OVANet [Saito and Saenko, 2021] × × ✓ 85.8 79.4 80.1 95.4 84.0 94.3 86.5 53.1
Source-only - - - 70.9 63.2 39.6 77.3 52.2 86.4 64.9 25.7
SHOT [Liang et al., 2020] × ✓ ✓ 73.5 67.2 59.3 88.3 77.1 84.4 75.0 44.0
GLC [Qu et al., 2023] ✓ ✓ ✓ 81.5 84.5 89.8 90.4 88.4 92.3 87.8 73.1
LEAD [Qu et al., 2024a] ✓ ✓ ✓ 83.7 85.0 86.3 90.9 86.2 93.1 87.5 76.5
ESBN ✓ ✓ ✓ 85.3 83.9 86.9 94.0 87.3 94.6 88.7 78.1

Table 2: H-score (%) comparison in OPDA scenario on Office-31 and VisDA datasets.

Methods U SF CF Ar2Cl Ar2Pr Ar2Re Cl2Ar Cl2Pr Cl2Re Pr2Ar Pr2Cl Pr2Re Re2Ar Re2Cl Re2Pr Avg
CMU [Fu et al., 2020] × × ✓ 55.0 57.0 59.0 59.3 58.2 60.6 59.2 51.3 61.2 61.9 53.5 55.3 57.6
DANCE [Saito et al., 2020] ✓ × ✓ 6.5 9.0 9.9 20.4 10.4 9.2 28.4 12.8 12.6 14.2 7.9 13.2 12.9
DCC [Li et al., 2021] ✓ × × 56.1 67.5 66.7 49.6 66.5 64.0 55.8 53.0 70.5 61.6 57.2 71.9 61.7
OVANet [Saito and Saenko, 2021] × × ✓ 58.6 66.3 69.9 62.0 65.2 68.6 59.8 53.4 69.3 68.7 59.6 66.7 64.0
Source-only - - - 46.1 63.3 72.9 42.8 54.0 58.7 47.8 36.1 66.2 60.8 45.3 68.2 55.2
SHOT [Liang et al., 2020] [27] × ✓ ✓ 37.7 41.8 48.4 56.4 39.8 40.9 60.0 41.5 49.7 61.8 41.4 43.6 46.9
GLC [Qu et al., 2023] ✓ ✓ ✓ 63.9 74.2 77.9 59.8 70.2 73.9 61.1 63.0 75.8 65.7 63.6 77.6 68.9
LEAD [Qu et al., 2024a] ✓ ✓ ✓ 60.0 70.4 76.5 61.0 66.9 70.8 63.5 55.2 74.0 64.2 51.7 75.5 65.8
ESBN ✓ ✓ ✓ 59.7 79.0 72.6 57.6 75.0 69.6 65.6 50.2 77.8 62.8 57.4 77.1 67.0

Table 3: H-score (%) comparison in OSDA scenario on Office-Home.

Methods U SF CF Ar2Cl Ar2Pr Ar2Re Cl2Ar Cl2Pr Cl2Re Pr2Ar Pr2Cl Pr2Re Re2Ar Re2Cl Re2Pr Avg
CMU [Fu et al., 2020] × × ✓ 50.9 74.2 78.4 62.2 64.1 72.5 63.5 47.9 78.3 72.4 54.7 78.9 66.5
DANCE [Saito et al., 2020] ✓ × ✓ 53.6 73.2 84.9 70.8 67.3 82.6 70.0 50.9 84.8 77.0 55.9 81.8 71.1
DCC [Li et al., 2021] ✓ × × 54.2 47.5 57.5 83.8 71.6 86.2 63.7 65.0 75.2 85.5 78.2 82.6 70.9
OVANet [Saito and Saenko, 2021] × × ✓ 34.1 54.6 72.1 42.4 47.3 55.9 38.2 26.2 61.7 56.7 35.8 68.9 49.5
Source-only - - - 45.9 69.2 81.1 55.7 61.2 64.8 60.7 41.1 75.8 70.5 49.9 78.4 62.9
SHOT [Liang et al., 2020] × ✓ ✓ 64.7 85.1 90.1 75.1 73.9 84.2 76.4 64.1 90.3 80.7 63.3 85.5 77.8
GLC [Qu et al., 2023] ✓ ✓ ✓ 55.9 79.0 87.5 72.5 71.8 82.7 74.9 41.7 82.4 77.3 60.4 84.3 72.5
LEAD [Qu et al., 2024a] ✓ ✓ ✓ 56.7 82.0 86.5 70.0 75.2 80.7 73.5 47.2 82.2 78.0 57.5 80.0 72.4
ESBN ✓ ✓ ✓ 56.0 76.6 86.5 71.8 71.4 84.3 73.2 45.6 83.6 80.6 52.0 84.6 72.2

Table 4: Accuracy comparison (%) in PDA scenario on Office-Home.

Office-31 VisDA Office-31 VisDA
Methods U SF CF A2D A2W D2A D2W W2A W2D Avg S2R A2D A2W D2A D2W W2A W2D Avg S2R
CMU [Fu et al., 2020] × × ✓ 52.6 55.7 76.5 75.9 65.8 64.7 65.2 54.2 84.1 84.2 69.2 97.2 66.8 98.8 83.4 65.5
DANCE [Saito et al., 2020] ✓ × ✓ 84.9 78.8 79.1 78.8 68.3 78.8 78.1 67.5 77.1 71.2 83.7 94.6 92.6 96.8 86.0 73.7
DCC [Li et al., 2021] ✓ × × 58.3 54.8 67.2 89.4 85.3 80.9 72.7 59.6 87.3 81.3 95.4 100.0 95.5 100.0 93.3 72.4
OVANet [Saito and Saenko, 2021] × × ✓ 90.5 88.3 86.7 98.2 88.3 98.4 91.7 66.1 69.4 61.7 61.4 90.2 66.4 98.7 74.6 34.3
Source-only - - - 78.2 72.1 44.2 82.2 52.1 88.8 69.6 29.1 90.4 79.3 79.3 95.9 84.3 98.1 87.8 42.8
SHOT [Liang et al., 2020] × ✓ ✓ 80.2 71.6 64.3 93.1 64.0 91.8 77.5 28.1 89.8 84.4 92.2 96.6 92.2 99.4 92.4 74.2
GLC [Qu et al., 2023] ✓ ✓ ✓ 82.6 74.6 92.6 96.0 91.8 96.1 89.0 72.5 89.8 89.8 92.8 96.6 96.1 99.4 94.1 76.0
LEAD [Qu et al., 2024a] ✓ ✓ ✓ 84.9 85.1 90.1 94.5 90.3 96.1 90.2 72.2 89.8 93.9 93.8 98.3 95.9 99.4 95.2 75.2
ESBN ✓ ✓ ✓ 89.5 91.3 89.0 95.6 88.7 96.6 91.8 73.6 88.5 94.6 95.5 98.6 96.0 100.0 95.5 76.2

Table 5: H-score (%) in OSDA scenario and Accuracy comparison (%) in PDA scenario on Office-31 and VisDA. On the left are the results
of the experiments in the OSDA scenario and on the right are the results of the experiments in the PDA scenario.
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Figure 2: (a-b) shows the sensitivity to η on Office-home and Office-31. (c-d) present robustness analysis when varying the unknown private
categories. HOS stands for H-score.
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Figure 3: The confusion matrices for LEAD and ESBN in the OSDA and OPDA scenarios Cl→Ar on the Office-Home dataset. (a-b) shows
on the OSDA scenario. (c-d) shows on the OPDA scenario.

Dataset Class Splits(C/C̄s/C̄t)
OPDA OSDA PDA

Office-Home 10/5/50 25/0/40 25/40/0
Office-31 10/10/11 10/0/11 10/21/0
VisDA 6/3/3 6/0/6 6/6/0

Table 6: Details of class splits for each setting. C: the com-
mon (shared) classes across domains, C̄s: the source-private (novel)
classes, and C̄t: the target-private (novel) classes.

Layer Strategy Office-Home Office-31 VisDA
w/o GN 65.8 90.2 72.2

AO 59.3 85.2 64.2
AE 63.4 78.5 59.5
OO 65.0 89.2 62.9
EE 66.6 91.3 73.6

Table 7: Ablation study on the impact of BFN layers on the model
in OSDA scenarios. EE\OO refers to the modification of BN lay-
ers in even\odd layers within even\odd ResidualBlocks of ResNet,
respectively. AE\AO refers to the modification of BN layers in
even\odd layers within all ResidualBlocks of ResNet, respectively.
By default, these BN layers are substituted with GN.

tribute this improvement to BFN, which enhances the stabil-
ity of training and enables the model to better adapt to the
data distributions across different domains. In contrast, the
other strategies do not lead to significant performance im-
provements, particularly in the context of more complex DA
tasks. Table 8 further corroborates that GN is the most effec-
tive BFN strategy for improving DA performance.
Parameter sensitivity. Figure 2 (a-b) shows how varying η
affects model performance. On both Office-Home and Office-
31 datasets, η = 32 consistently achieves the highest H-score,
indicating improved model adaptability.
Robustness. We primarily conduct the robustness analysis of
ESBN from the perspective of varying unknown classes. As
the number of ”unknown” classes increases, it becomes in-
creasingly challenging to accurately distinguish between ”un-
known” and ”known” objects. However, as shown in Figure
2 (c-d), our model exhibits excellent stability.
Visualization analysis. Based on the analysis of the confu-
sion matrices in Figure 3, it is evident that ESBN significantly

BFN Strategy Office-Home Office-31 VisDA
BN 65.8 90.2 72.2
IN 63.4 90.9 71.4
LN 65.1 89.4 67.6
GN 66.6 91.3 73.6

Table 8: Ablation study on the impact of BFN strategy on the model
in OSDA scenarios.

outperforms the LEAD in both OSDA and OPDA scenarios.
ESBN achieves a higher proportion of correct classifications,
reflecting its high accuracy in distinguishing between known
and unknown categories. Moreover, the relatively low oc-
currence of misclassifications demonstrates the model’s rela-
tively strong category discrimination capability. Additionally,
ESBN exhibits excellent stability, maintaining consistent per-
formance across both OSDA and OPDA scenarios.

5 Conclusion
This paper presents an investigation into the strategic use of
BFN for domain adaptation. We address a key gap in ex-
isting research by exploring how the placement and depth
of normalization layers affect cross-domain generalization.
Through extensive experiments, we show that selectively re-
placing BN with BFN at specific network positions signif-
icantly enhances generalization performance while preserv-
ing feature discriminability. Our findings highlight the crit-
ical role of normalization layer placement, with BFN pro-
viding more robust feature representations by computing
instance-specific statistics, particularly in the presence of do-
main shifts. ESBN outperforms traditional domain adapta-
tion techniques across multiple benchmarks, demonstrating
its practical applicability in real-world settings. This work
offers promising directions for improving domain adaptation
in complex and real-world environments.
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