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Abstract

Over-smoothing is a persistent challenge in Graph
Neural Networks (GNNs), where node embed-
dings become indistinguishable as network depth
increases, fundamentally limiting their effective-
ness on tasks requiring fine-grained distinctions.
This issue arises from the reliance on diffusion-
based propagation mechanisms, which suppress
high-frequency information essential for preserv-
ing feature diversity. To mitigate this, we pro-
pose a wave-driven GNN framework that rede-
fines feature propagation through the wave equa-
tion. Unlike diffusion, the wave equation incorpo-
rates second-order dynamics, balancing smoothing
and oscillatory behavior to retain high-frequency
components while ensuring effective information
flow. To enhance the stability and convergence of
wave equation discretization on graphs, an energy-
based mechanism inspired by kinetic and potential
energy dynamics is introduced, balancing tempo-
ral evolution and structural alignment to stabilize
propagation. Extensive experiments on benchmark
datasets, including Cora, Citeseer, and PubMed,
as well as real-world graphs, demonstrate that the
proposed framework achieves state-of-the-art per-
formance, effectively mitigating over-smoothing
and enabling deeper, more expressive architec-
tures. The code is available at https://github.com/
rene0329/EWGNN/.

1 Introduction

GNNs have emerged as a transformative framework for learn-
ing from graph-structured data, with applications spanning
social networks, molecular property prediction, and recom-
mendation systems. At the core of GNNss lies their ability to
iteratively aggregate and propagate information across graph
edges, effectively capturing both local and global structural
relationships. While this propagation mechanism excels in
shallow networks, extending GNNs to deeper architectures
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github.com/rene0329/EWGNN

introduces significant challenges, particularly the pervasive
issue of over-smoothing.

Over-smoothing occurs when node features become in-
creasingly homogeneous as the number of layers grows, di-
minishing their discriminative ability. This phenomenon
arises from the propagation mechanisms commonly used in
GNNs, which are primarily based on the principles of dif-
fusion processes to spread information between connected
nodes. Mathematically, diffusion-based GNNs can be viewed
as discrete approximations of the diffusion equation:

Ou(x,t)
ot
where u(z,t) represents the graph signal defined at position
x and time ¢, and L is the graph Laplacian operator.

While diffusion effectively aggregates local information,
it introduces a spectral bias rooted in the properties of the
graph Laplacian. The graph Laplacian’s eigenvectors repre-
sent different frequency modes, where lower eigenvalues cor-
respond to smooth, global patterns, and higher eigenvalues
capture sharp, local variations. During propagation, the dif-
fusion process naturally emphasizes low-frequency compo-
nents, reducing the influence of high-frequency components,
which are associated with larger eigenvalues. This imbalance
causes node features to become more similar across layers,
leading to over-smoothing and weakening the model’s ability
to capture important distinctions. This is particularly prob-
lematic in tasks where preserving high-frequency information
is crucial for distinguishing between nodes.

Efforts to address over-smoothing have yielded notable ad-
vancements, including architectural innovations such as skip
connections and residual designs to retain node-level diver-
sity [Xu et al., 2018b; Chen et al., 2020], and propaga-
tion refinements that dynamically adjust information flow
[Gasteiger er al., 2018; Rong et al., 2020]. However, these
methods often fail to fully overcome the spectral bias inher-
ent in diffusion, which fundamentally limits their ability to
preserve high-frequency components in deeper architectures.
The monotonic smoothing behavior inherent in diffusion re-
mains a bottleneck for achieving expressive and robust fea-
ture representations [Li et al., 2018].

To address these limitations, we propose a novel propa-
gation framework for GNNs inspired by the wave equation,
a second-order partial differential equation (PDE) that intro-
duces oscillatory dynamics and inertia into the propagation
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process. Unlike diffusion, the wave equation introduces a bal-
ance between smoothing and oscillation. This balance has the
potential to preserve high-frequency components more effec-
tively, thereby maintaining meaningful distinctions between
node features:

0u(z,t) ou(z,t)

oz 1 ot
where v and c control the damping and propagation speed,
respectively.  Unlike diffusion, which suppresses high-
frequency components and leads to uniform embeddings,
the wave equation introduces second-order dynamics that

balance smoothing and oscillation. The second-order term

2
%tf’t) induces oscillatory behavior, countering the homoge-

nizing effect of diffusion and preserving high-frequency com-
ponents. However, uncontrolled oscillations may lead to in-
stability and hinder convergence, especially in deeper archi-
tectures. To mitigate such issues, the damping term 7%
plays a crucial role in moderating the dynamics and prevent-
ing excessive oscillations. Meanwhile, the propagation term
c?Lu(z,t) ensures the smooth and meaningful flow of in-
formation across the graph. Together, these dynamics allow
the wave equation to retain high-frequency information while
achieving stability, effectively preserving the discriminative
power of node features even in deeper networks. By lever-
aging this mechanism, the wave equation offers a principled
approach to mitigating over-smoothing in GNNs.

While the wave equation retains high-frequency compo-
nents, its second-order dynamics can lead to uncontrolled os-
cillations, disrupting network convergence and hindering ef-
fective feature representation. To address this, we propose a
regulation mechanism based on graph-based kinetic and po-
tential energy. Kinetic energy reflects the temporal evolu-
tion of node embeddings across layers, while potential energy
captures the structural alignment of features between con-
nected nodes. By balancing these energy terms, the propaga-
tion achieves stability, controlling excessive oscillations and
maintaining maintaining greater capacity for feature distinc-
tion. This stable and regulated propagation mitigates over-
smoothing, preserving high-frequency information and en-
suring discriminative power even in deeper architectures.

In summary, this paper presents a physics-inspired frame-
work to address over-smoothing in GNNs, with the following
contributions:

= 2 Lu(z,t) 2)

1. Wave-based Propagation Mechanism: A novel propaga-
tion mechanism is proposed, grounded in the wave equa-
tion. This approach leverages second-order dynamics
to preserve high-frequency information and effectively
mitigate over-smoothing.

2. Energy-Based Regulation: Kinetic and potential energy
terms are proposed within graph propagation, along with
an energy balance mechanism to guide the learning pro-
cess and ensure stability.

3. Unified Theoretical and Empirical Framework: A com-
prehensive theoretical foundation is established, linking
diffusion- and wave-based propagation. Extensive ex-
perimental validation across diverse graph tasks demon-
strates the efficacy of the proposed approach.

2  Understanding Over-smoothing

Over-smoothing in GNNs arises when node embeddings pro-
gressively lose their discriminative power as network depth
increases [Li et al., 2018; Xu et al., 2018b]. This phe-
nomenon undermines tasks such as node classification and
clustering, where unique node characteristics are essential.

To formalize our discussion, we adopt the following nota-
tion. Let G = (V, E, X) represent a graph, where V is the
set of nodes (|V|= n), E is the set of edges, and X € Rnxd
denotes the node feature matrix. We define the normalized
adjacency matrix with self-loops:

A=D"'"?A+1)D7'/?, (3)

where D is the degree matrix and [ the identity matrix.

2.1 How over-smoothing Manifests and Why It
Happens

Over-smoothing manifests through the suppression of high-
frequency components during the propagation process in
GNNs, which causes node embeddings to converge towards
uniform representations as depth increases. This behavior can
be analyzed through the eigen decomposition of the normal-

ized adjacency matrix A:
A=UAUT, A=diag(\;,Xo,..., ), NS 1, @)

where U represents the eigenvector matrix that defines the
spectral basis, and A is a diagonal matrix containing the
eigenvalues of A. Each eigenvalue \; reflects the contribu-
tion of the corresponding eigenvector to the graph’s structure.
During propagation, each step can be viewed as projecting the
node embeddings onto this eigenbasis and scaling them by the
eigenvalues. As a result, the repeated multiplication of em-
beddings by A amplifies the influence of the dominant eigen-
value \; = 1, which corresponds to low-frequency compo-
nents, while progressively suppressing smaller eigenvalues
associated with high-frequency components. This imbalance
drives the embeddings toward uniformity, erasing distinctions
needed for tasks like node classification.

From a theoretical perspective, the propagation in GNNs
can be analyzed through spectral decomposition. Consider
the normalized adjacency matrix:

A=UANUT, A=diag(A;,do,..., ), |[N|< 1, (5)

where U is the eigenvector matrix and A is the diagonal ma-
trix of eigenvalues. To simplify the spectral analysis, we omit
the activation function o. The simplified propagation rule is:

HMHD — AHOWO, (6)
After k propagation steps, the embeddings H*) evolve as:
HOP = A O = yAFUTHD, ©)

this formulation reveals that each propagation step scales the
embeddings’ spectral components by the eigenvalues raised
to the k-th power.

Over successive steps, eigenvalues | \;|< 1 decay exponen-
tially, leaving only the dominant component corresponding to
)\1 =1:

lim HH = ,u HO, (8)

k—o0
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this convergence to uniformity underscores the spectral
bias in diffusion-based propagation, which emphasizes low-
frequency components at the cost of high-frequency informa-
tion critical for preserving node-level distinctions.

2.2 Motivations for Wave Equations

Over-smoothing limits the performance of deep GNNs by
suppressing high-frequency node features as network depth
increases. To address this, the wave equation offers a com-
pelling alternative by introducing second-order dynamics that
balance smoothing and oscillation.

In its continuous form (Eq. (2)), the wave equation incor-
porates second-order temporal derivatives to preserve high-
frequency components while ensuring effective feature prop-
agation. When discretized for graph-structured data and in-
terpreted in GNN layer propagation, the wave equation in-
troduces feedback from previous embeddings, helping retain
high-frequency information needed for feature diversity:

HWY = (2] — 4T = AL)HY — (I —4D)HY,  (9)

where vy controls damping, ¢ determines the wave propaga-
tion speed, and L is the graph Laplacian. This feedback
mechanism mitigates the progressive loss of high-frequency
components observed in diffusion-based approaches.

Despite its advantages, the second-order dynamics of the
wave equation introduce challenges. Unregulated oscillations
may arise in deeper architectures, where small deviations in
embeddings amplify over layers. Additionally, the balance
between smoothing and oscillation is sensitive to hyperpa-
rameters v and ¢, which affect stability and convergence.

To address the challenges of unregulated oscillations and
the balance between smoothing and feature preservation, we
draw inspiration from physical systems. In these systems, the
interplay between kinetic and potential energy governs sta-
bility and evolution. Similarly, in GNNSs, these concepts can
be employed to regulate propagation dynamics and mitigate
instabilities from second-order wave equations.

Specifically, kinetic energy quantifies the temporal evo-
lution of node embeddings across layers, capturing feature
changes over successive propagation steps. This helps pre-
vent uncontrolled oscillations by limiting abrupt changes in
embeddings. Potential energy, on the other hand, measures
the structural alignment of features between connected nodes,
promoting coherence within the graph. By balancing these
two energy terms, we can regulate oscillatory dynamics from
the wave equation while preserving high-frequency informa-
tion for fine-grained distinctions.

Thus, we propose a wave equation-based GNN approach
that incorporates an energy balance mechanism between ki-
netic and potential energy to stabilize the propagation process
while preserving the expressiveness of node features.

3 Wave-driven GNNs with Energy Dynamics

Our framework addresses the over-smoothing problem in
deep GNNs through an integrated approach, as illustrated in
Figure 1: (1) Wave-driven Propagation: Introducing second-
order dynamics from the wave equation to balance smoothing
and oscillations, preserving high-frequency components and

enhancing feature propagation. (2) Non-local Kernels: In-
corporating a non-local kernel to dynamically adjust node in-
fluence beyond local neighborhoods, capturing global struc-
tural information and mitigating over-smoothing. (3) Energy-
based Regulation: Balancing kinetic and potential energy
during propagation to stabilize oscillations and maintain fea-
ture diversity in deep architectures. This integrated frame-
work enables deeper GNNs to retain discriminative power
and effectively combat over-smoothing.

3.1 Modeling with the Wave Equation

To address the challenge of over-smoothing in GNNs, we pro-
pose a propagation framework inspired by the wave equation,
as introduced in Eq. (2). This framework leverages second-
order dynamics to balance smoothing and oscillatory behav-
ior, overcoming the limitations of traditional diffusion-based
methods that inherently suppress high-frequency components
and lead to uniform embeddings. By preserving discrimina-
tive features across layers, the wave equation provides a prin-
cipled approach to retaining feature diversity, which is essen-
tial for tasks requiring fine-grained distinctions.

The advantages of wave-based propagation can be ana-
lyzed by comparing its behavior to diffusion-based propa-
gation in terms of eigenmode preservation. Specifically, the
evolution of eigenmode amplitudes shows how wave dynam-
ics maintain high-frequency components more effectively
than diffusion, as formalized in the following theorem:
Theorem 1 (Wave Equation Mitigates Over-smoothing via
High-Frequency Preservation). Let ¢;(x) be an eigenmode
of the Laplacian operator V* with eigenvalue \; > 0. The
mode amplitude a;(t) evolves as:

Diffusion: a;(t) = a;(0) exp(—DA;t),

as(t) = a:(0) exp (-?) cos (q/ﬂ) 7

where D > 0 is the diffusion coefficient, ¢ > 0 is the wave
speed, and v > 0 is the damping coefficient. Notably, for
large \;, diffusion dampens high-frequency modes to zero,
while the wave equation maintains oscillatory behavior.

Wave:

To enhance the flexibility of this propagation mechanism,
the graph Laplacian L is extended with a non-local propaga-
tion kernel G(z,y). The continuous form of the wave equa-
tion with this kernel is given by:

O%u(z,t Oou(z,t
tean el — e [ Gle) a0 -ute.0)dy,
(10)
where 2 denotes the domain of the graph. The kernel G(z, y)
generalizes the graph Laplacian to incorporate non-local in-
teractions, allowing propagation beyond immediate neigh-
bors.

For graphs, we discretize the wave equation by translating
the continuous time variable ¢ to discrete layer indices [ and
applying finite difference approximations to the time deriva-
tives. This transformation leads to the following update rule:

HD =1 - a)HD 1 (5 (H(w _ H<z—1>)

(11)
+ nL[H(”}),
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Figure 1: The Overall Architecture of EWGNN

where H") represents the node embeddings at layer I, o and
n are hyperparameters derived from the physical coefficients
v and ¢, and (3 is an additional hyperparameter controlling the
influence of the previous layer.

To establish the advantages of wave-based propagation in
the discrete setting, we present the following theorem:

Theorem 2 (Wave-Based Update Mitigates Over-Smooth-
ing). Let G = (V, E) be a connected undirected graph with

normalized adjacency operator A having eigenvalues 0 <
Ai < 1. The wave-based update preserves high-frequency
modes and mitigates over-smoothing provided that the update
parameters «, 3, and n satisfy:

(1—a+af+an(X —1))% < 4ap,

for all high-frequency modes \; < 1.

Next, we discretize the non-local kernel G(x,y). For
graphs, the kernel G(z, y) takes a discrete form:

LIH b)) =Y Gij(H,(t) — Hi(t)), (12)

Jj=1

where G; represents the adaptive influence of node j on node
1, enabling the propagation mechanism to dynamically adapt
to graph structures.

The kernel G;; formally defined as follows, using similar-
ity metrics inspired by attention mechanisms:

exp(sim(H;, H;))
Son_, exp(sim(H;, Hy))’
where sim(H;, H;) measures the similarity between node

embeddings H; and H;. This similarity is implemented as
a normalized dot product:

Gij = (13)

HTH.
sim(H;, H,) = ——1 223 14
o ) = Tl T &)

where || H;|l2= \/22:1 H?, denotes the Euclidean norm

of the embedding H;, and d is the embedding dimension.
This approach effectively captures the relative importance of

nodes, enabling the kernel to focus on more relevant relation-
ships within the graph.

By integrating the non-local kernel G;; into the wave equa-
tion, we enable the propagation mechanism to capture both
local and global relationships across the graph. This enhance-
ment allows the model to retain high-frequency information
while adapting to the graph’s structure, overcoming the lim-
itations of purely diffusive approaches that fail to propagate
information effectively over long distances. To incorporate
the non-local kernel G;; into the wave-driven propagation
mechanism, we discretize the wave equation and replace the
graph Laplacian with G;; shown as follows:

HD = (1 - )HD 1 a (5 (H(n _ H(H))

+ 7 (GH@ - H(l))) .

The terms in the update rule are explained as follows:

15)

1. (1 —a)H® represents the retention of the current state,
with « controlling how much of the previous layer’s in-
formation is carried over into the current layer.

2. B(HW —H(=Y)) introduces temporal feedback between
successive layers, with 3 adjusting the strength of the
feedback and determining how much influence the pre-
vious layer has on the current layer.

3. n(GHWY — HW) facilitates dynamic, non-local inter-
actions between nodes, using the kernel G to quantify
the influence of node 7 on node ¢, enabling information
to propagate across the entire graph.

By discretizing the wave equation with the non-local kernel
and applying it to graph-structured data, our approach enables
the construction of deeper architectures that preserve node-
level distinctions, making it more effective for tasks requiring
fine-grained feature discrimination.

3.2 Energy-based Regulation for Graph
Propagation

Wave-driven GNNs utilize second-order dynamics to miti-

gate over-smoothing by preserving high-frequency compo-

nents through oscillatory propagation. However, introducing
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oscillations can lead to challenges, such as unregulated fluctu-
ations and instability in deep architectures. To address these
issues, we propose an energy-based perspective inspired by
classical physics, where the propagation process is analyzed
and adapted through the interplay of kinetic energy and po-
tential energy. This analogy provides a principled framework
to understand and regulate energy dynamics in graph propa-
gation mechanisms:

Kinetic Energy : Quantifies the temporal evolution of node
embeddings, capturing how actively features change between
consecutive layers. It is defined as:

By = fIIH ~HO-Y2, (16)
where H® and H(~1) are the node embedding matrices at
layers [ and [ — 1, respectively. This metric is inspired by

studies of time-dependent feature evolution in graph dynami-
cal systems [Kipf et al., 2018; Bronstein et al., 2017].

Potential Energy Reflects the structural alignment of
node embeddings, penalizing large discrepancies between
connected nodes. It is defined as:

pm—f S oAy - HP?, (17

(i,J)€EE

where A represents the normalized adjacency matrix, and E/
is the set of edges. This formulation aligns with the graph
Laplacian’s role in encoding structural relationships [Coif-
man and Lafon, 2006].

An imbalance between kinetic and potential energy can
lead to undesirable behavior. Excessive kinetic energy may
amplify oscillations, destabilizing the propagation process,
while dominant potential energy may overly constrain feature
updates, resulting in over-smoothing. To achieve a balanced
propagation dynamic, we monitor the energy ratio:

Eiin

; (18)
Epot

T =

where 7 reflects the contributions of temporal dynamics (ki-
netic energy) and structural alignment (potential energy).

To encourage an optimal energy balance, the framework
dynamically adjusts propagation parameters based on the en-
ergy ratio. Specifically, a target energy ratio 7iper = 1 1S
employed, representing equal contributions from kinetic and
potential energy. This setting is inspired by the equipartition
theorem[Landau and Lifshitz, 1980], which describes sys-
tems in equilibrium where kinetic and potential energies are
equal (as in a 1D harmonic oscillator). Adopting this princi-
ple helps balance feature dynamics and structural consistency
within EWGNN. The adjustment mechanism then follows:

A o (T - Ttarget)- (19)

The proposed energy framework enhances wave-driven
GNNs by dynamically adjusting the propagation process
through a balanced interplay of kinetic and potential energy.
This principled approach moderates oscillations, ensures sta-
ble information flow, and maintains the discriminative power
of node features across deep architectures.

3.3 Layer-Wise Adaptive Training Strategy

To tackle over-smoothing and instability in GNNs, we adopt
a dynamic training strategy that integrates feature transforma-
tion with energy-based adjustment. This approach eliminates
explicit regularization by interleaving propagation steps with
energy-aware regulations, ensuring both stability and expres-
siveness in the model.

Node Classification Objective. The primary objective re-
mains node classification, with the supervised loss function
defined as:

Las = >~ logp(y:H), 20)
\VTIdlIl| 1€Vl“m

where Vi is the set of labeled nodes, y; is the ground truth
label for node 7, H Z»(L) is the embedding of node ¢ at the final

layer L, and p(y;|H Z»(L)) represents the predicted probability
of the correct label. This objective ensures the learned em-
beddings remain task-specific and discriminative.

Energy-Aware Parameter Adjustment. The novel aspect
of our training strategy lies in its energy-aware design, which
alternates between feature transformation and energy dynam-
ics. Specifically, each propagation step H () is followed by an
energy-based adjustment layer to dynamically learn the prop-
agation parameter 3():

B = Singid(FC(T(l)))a o2y

where, FC(-) denotes a fully connected layer that transforms
the energy ratio () = km / Eéf)t, and the sigmoid activation

ensures that 3) is constrained within (0,1). This adaptive
adjustment ensures the model dynamically balances tempo-
ral and structural components during propagation, mitigating
unregulated oscillations while preserving feature diversity.

Training Workflow. The proposed strategy alternates be-
tween two modules: feature transformation and energy ad-
justment. In the Feature Transformation phase, each layer
propagates features using the wave-driven mechanism, ensur-
ing effective information flow and preserving high-frequency
components. Following this, in the Energy Adjustment phase,
the energy ratio r = Eyi,/ Eyot is computed, and B(l) is ad-
justed to stabilize propagation and optimize feature align-
ment. This interleaved structure eliminates explicit regular-
ization terms while ensuring stability and expressiveness.

4 Experiments

In this section, we empirically evaluate EWGNN through the
following questions.

* (Q1) Does EWGNN outperform state-of-the-art models
across various datasets?

* (Q2) Can EWGNN effectively mitigate over-smoothing
and scale to deeper architectures by preserving high-
frequency information?

* (Q3) Can EWGNN effectively balance energy dynamics
in wave propagation?
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Type Model Non-linearity Diffusion-based Kernel Cora Citeseer Pubmed
MLP v - - 56.1 1.6 56.7 £ 1.7 69.8 + 1.5
Basic models LP - - - 68.2 42.8 65.8
ManiReg v - - 60.4 + 0.8 67.2+ 1.6 71.3+1.4
GCN v v - 81.5+ 1.3 71.94+1.9 77.8+29
GAT v - - 83.0+0.7 725+0.7 79.0+0.3
SGC - - v 81.0+ 0.0 71.9+0.1 78.9+0.3
Classical and GIN - - - 77.6+1.1 66.1 +0.9 7T7.0+1.2
Enhanced GNNs GCNII - v - 85.5+0.5 73.4+06 802+04
PairNorm - - - 783+1.3 65.8+ 1.4 75.5+0.4
DropEdge - - - 83.5 2.7 79.5
JK-Net - - - 81.8+ 0.5 70.7+0.7 788+ 0.7
GRAND-1 - v - 83.6 £ 1.0 73.44+0.5 788+ 1.7
GRAND v v - 83.3+1.3 7T41+17 781+1.9
GRAND++ v v - 82.2+1.3 741+15 78.1+1.9
Diffusion and APPNP v v - 83.3+0.5 71.7+0.6 80.1 + 0.6
Frequency-Aware Models S?GC - - v 83.2+0.0 73.6+0.1 80.1+0.2
DAGNN v v - 84.3+ 0.6 73.1+0.6 80.6 + 0.5
FAGCN v v - 83.8+ 0.4 72.0+ 0.4 79.5+0.4
MGC v v - 85.6 £ 0.3 73.5+0.2 80.5+ 0.3
DGI - - - 82.5+0.7 71.6+0.7 784+0.7
Transformer-Based and NodeFormer - - - 82.4+ 0.5 72.1+1.2 79.2+ 0.6
Contrastive Learning Models  Difformer - - - 85.3+0.8 7454+0.2 80.7408
CSF v v v 81.1+0.1 68.5+ 0.3 76.8+ 0.3
Proposed Model EWGNN - - v 86.1+£0.6 75.3+0.5 81.5+0.5

Table 1: Node classification accuracy (%) on Cora, Citeseer, and PubMed datasets, averaged over five random initializations.

Datasets. To evaluate the effectiveness of the proposed
wave-driven propagation mechanism, we employ several
widely used citation network datasets, including 4 citation
graphs: Cora, Citeseer, PubMed [Sen et al., 2008], and
ogbn-proteins [Hu er al., 2020], alongside real-world
datasets such as Pokec [Takac and Zabovsky, 2012]. For
each dataset, we adopt the standard public split [Yang et al.,
20161, allocating 20 labeled nodes per class for training, 500
nodes for validation, and 1,000 nodes for testing.

Baselines. We compare our proposed model against a com-
prehensive set of baseline methods, including MLP, LP,
ManiReg, GCN [Kipf and Welling, 2017], GAT [Veli¢kovié
et al., 2018], SGC [Wu et al., 2019], GCNII [Chen et al.,
20201, GIN [Xu et al., 2018al, JK-Net [Xu et al., 2018bl,
PairNorm [Zhao and Akoglu, 2020], DropEdge [Rong et
al., 2020], GRAND [Chamberlain et al., 2021], GRAND++
[Thorpe et al., 20221, APPNP [Gasteiger et al., 2018], S>’GC
[Zhu and Koniusz, 2021], DAGNN [Liu et al., 2020], FAGCN
[Bo et al., 2021], MGC [Shen et al., 2024], DGI [Velickovié
et al., 2019], NodeFormer [Wu et al., 2022], DIFFORMER
[Wu et al., 2023], and CSF [Huang et al., 2024].

4.1 RQ1: EWGNN Outperforms SOTA on
Benchmarks

Table 1 presents the performance of EWGNN, which consis-
tently outperforms other models on the Cora, Citeseer,
and PubMed datasets. These results suggest that EWGNN
is effective in addressing the limitations of diffusion-based
methods, potentially mitigating over-smoothing and preserv-
ing feature diversity in citation network graphs.

Furthermore, as shown in Table 2, EWGNN also
outperforms other competitive models on the larger
ogbn-proteins and Pokec datasets. The results demon-
strate that EWGNN is able to achieve state-of-the-art perfor-
mance across a diverse range of graph datasets, highlighting
EWGNN’s scalability and adaptability to handle more com-
plex real-world graph structures.

4.2 RQ2: EWGNN Enables Deeper Architectures

We also investigate the performance of EWGNN under dif-
ferent settings of o, comparing it to other models. As shown
in Figure 2a, EWGNN with o = 0.5 results in larger feature
updates, leading to significant improvements in performance
and achieving SOTA performance, while training to a reason-
able depth. EWGNN with o = 0.1 retains more features,
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Figure 2: Overview of experimental results on Cora.

enabling the model to scale to deeper architectures. This
version of EWGNN outperforms the SOTA model FAGCN
across most layer depths, demonstrating that our model ef-
fectively balances depth and expressive power.

Furthermore, we further confirm the ability of EWGNN
to preserve high-frequency information, as shown in Fig-
ure 2b. We define high-frequency information based on the
eigenvalue decomposition of the feature matrix, where the
top 50% eigenvalues represent the most significant compo-
nents. When comparing EWGNN with diffusion-based mod-
els such as GCN, we observe that EWGNN consistently pre-
serves a higher magnitude of high-frequency information, and
this retention improves as the number of layers increases.
The magnitude of high-frequency components in EWGNN
is higher than in GCN across all layers, demonstrating the
model’s ability to retain important features even as the depth
increases.

4.3 RQ3: EWGNN Learns Appropriate Energy
Dynamics

We next explore how EWGNN manages energy dynamics in
wave propagation, as shown in Figure 2c. By visualizing the
energy ratio across layers, we observe that EWGNN main-
tains a stable energy distribution, gradually converging to 1 as
the number of layers increases. This stable energy ratio is key
to mitigating oscillations and smoothing, enabling the model
to preserve high-frequency components even as the depth in-

Models Proteins Pokec
MLP 724+0.1 60.24+0.1
SGC 49.2+1.1 53.1+0.9
GCN 74.2+0.5 623+1.1
GAT 75.1+14 65.6+0.5

NodeFormer 77.54+1.2 68.3+0.5
DIFFORMER 79.54+0.4 69.2+0.8
EWGNN 80.0+0.5 71.04+0.9

Table 2: Testing ROC-AUC for ogbn-proteins and Accuracy for
Pokec on large-scale node classification datasets.

Dataset Fixed(5 =0.1) Fixed(5 =1.0) Adaptive
Cora 84.2+0.8 33.1+2.2 86.1 + 0.6
Citeseer 72.7£0.6 23.6 £1.6 75.3 £ 0.5
PubMed 80.5 £ 0.8 53.0 £ 3.7 81.5+0.5
Proteins 7894+ 0.6 79.24+0.4 80.0+ 0.5
Pokec 69.0 £ 2.8 70.6 0.8 71.0+0.9

Table 3: Ablation study on the performance with adaptive and fixed
[ across different datasets.

creases. In contrast, diffusion-based models, such as GCN,
show less stability in their energy ratios, demonstrating that
EWGNN more effectively controls energy dynamics and en-
sures consistent propagation across deeper layers.

To further investigate the role of energy dynamics in our
model, we perform an ablation study by testing two fixed val-
ues of # (0.1 and 1.0) alongside the adaptively learned £,
which is adjusted based on energy dynamics. As shown in
Table 3, the results demonstrate that the model with the adap-
tively learned S consistently outperforms those with fixed
values. This confirms that learning S from energy dynam-
ics is crucial for balancing oscillations and smoothing, en-
suring stability and high performance across different depths.
Notably, for smaller datasets like Cora and Citeseer, a
smaller value of 5 (0.1) performs better, likely due to the
model not requiring as much feedback strength. For larger
datasets like PubMed and Pokec, a larger 8 (1.0) shows
comparable performance, as a stronger feedback mechanism
helps mitigate over-smoothing and supports deeper propaga-
tion.

5 Discussions

The proposed wave-driven GNN framework introduces an
innovative approach to feature propagation by leveraging
second-order dynamics to counteract over-smoothing and
preserve high-frequency components, crucial for expressive
node representations. By incorporating an energy-based reg-
ulation mechanism, the model ensures stability and effective
convergence, particularly in deeper architectures, offering a
principled alternative to traditional diffusion-based methods.

Empirical results on benchmark datasets and real-world
graphs validate the framework’s ability to mitigate over-
smoothing and maintain feature diversity. Future work could
explore efficient implementations, such as localized propaga-
tion or sparse tensor operations.
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