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Abstract
This paper proposes an innovative code translation
method aimed at addressing the accuracy issues
encountered by large language models (LLMs) in
translating code of complex large-scale software
projects. The method utilizes the Language Server
Protocol to obtain the call graph of the entire code-
base, and optimizes the input prompt of the LLM
accordingly, significantly improving the correct-
ness of translation at the compilation stage. More-
over, this method introduces the bridged debug-
gers technique based on the Debug Adapter Pro-
tocol and dynamic test case generation, effectively
fixing runtime errors. Experiments on multiple
mainstream datasets demonstrate that, compared
to existing code translation methods and LLMs,
this method achieves a significant improvement in
translation accuracy.

1 Introduction
With the increasing diversity of software development envi-
ronments, code translation technology plays a crucial role in
supporting language upgrades, cross-platform development,
and modernization of legacy systems. Efficiently and accu-
rately migrating code from one language to another is essen-
tial for developers. Traditional rule-based translators, while
ensuring consistency and accuracy of code translation with a
high degree of precision and predictability, rely on exhaus-
tive rule settings and struggle to cover all special cases in
programming practices, especially in complex, dynamic pro-
gramming environments and highly modularized projects.

Meanwhile, machine learning-based approaches, particu-
larly large language models (LLMs) such as ChatGPT [Ope-
nAI, 2022], have shown strong potential in the field of code
translation. These methods can understand and convert com-
plex structures and semantics between multiple programming
languages, improving the flexibility and accuracy of transla-
tion. However, despite the significant effectiveness of LLM-
based methods in translating code with simple contexts, they
still face challenges in coherence and error handling when
dealing with multi-file and multi-module software projects.

∗Corresponding author

To address these issues, this paper proposes TransGraph,
an innovative code translation approach based on call graphs
[Graham et al., 1982] and bridged debuggers. By utilizing
the Language Server Protocol [Microsoft, 2016] to obtain the
call graph of the entire codebase, TransGraph can compre-
hensively describe the function call relationships in the pro-
gram, thereby optimizing the input prompts for LLMs and
significantly improving the correctness of translation at the
compilation stage. Furthermore, TransGraph introduces the
bridged debuggers technique based on the Debug Adapter
Protocol [Microsoft, 2021] and dynamic test case genera-
tion to effectively fix runtime errors. Experiments on multi-
ple mainstream datasets, including EvalPlus and Avatar show
that compared to the baseline method, TransGraph signifi-
cantly improves the translation success rate, with an average
increase of 15.7%.

To the best of our knowledge, we are the first to (1) lever-
age the call graph structure to explicitly handle contextual
information, reducing compilation errors in LLM-translated
code; (2) introduce bridged debuggers to synchronize context
in source and target code execution, effectively fixing run-
time errors; (3) propose a binary search algorithm combined
with dynamic testing to greatly improve the efficiency of bug
localization in complex code translation.

Our main contributions include:

• Proposing TransGraph, a code translation method based
on call graphs and bridged debuggers, effectively ad-
dressing the coherence and accuracy issues of LLM-
translated code in complex software projects.

• Designing a recursive algorithm based on binary search,
combined with dynamic execution comparison of source
and target code in bridged debuggers, significantly im-
proving the efficiency of runtime error localization and
fixing in translated code.

• Conducting extensive experiments on multiple com-
monly used datasets, confirming that the TransGraph
method significantly improves the success rate of code
translation compared to the existing baseline method,
with an average increase of 15.7%.

The rest of this paper is organized as follows. Section 2
reviews related work in the field of code translation. Section
3 elaborates on the TransGraph method in detail. Section 4
presents the experimental results of TransGraph on multiple
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datasets. Section 5 discusses the limitations. Section 6 sum-
marizes the main work of this paper and provides an outlook
on future research directions.

2 Related Work
In the field of code translation, rule-based translators have
been widely applied, such as the Python-to-Java converter
proposed by Melhase et al. [py2, 2024], which ensures ac-
curate conversion between codes through a fixed set of rules.
Although these tools provide highly precise and consistent
translations, such as Java2CSharp [Jav, 2023] and Sharpen
[Sha, 2023], they often lack the flexibility to handle complex
and dynamic code structures, frequently requiring manual in-
tervention to address semantic and structural differences dur-
ing the translation process.

Regarding machine learning-based methods, significant
progress has been witnessed in recent years. Statistical ma-
chine learning compilers, such as the models proposed by
Nguyen et al. [Nguyen et al., 2013] and Karaivanov et al.
[Karaivanov et al., 2014], leverage large parallel corpora to
optimize code translation by identifying patterns and correla-
tions between programming languages. Additionally, Aggar-
wal et al. [Aggarwal et al., 2015] applied sentence alignment
techniques in the conversion between Python versions. In
exploring bidirectional compilers, Schultes [Schultes, 2021]
proposed an innovative compilation technique for translation
between Swift and Kotlin, while Ling et al.’s CRustS com-
piler [Ling et al., 2022] emphasizes reducing unsafe expres-
sions during code translation.

Transformers and other ML-based tools such as Code-
BERT [Feng et al., 2020] and CodeGPT [Lu et al., 2021] uti-
lize advanced encoder-decoder architectures, first introduced
in the pioneering work by Vaswani et al. [Vaswani et al.,
2017]. These tools have achieved remarkable results in the
field of code translation, generating semantically coherent
and accurate code. Wang et al.’s CodeT5 [Wang et al., 2021]
and Ahmad et al.’s PLBART model [Ahmad et al., 2021a]
further incorporate code semantics, demonstrating versatil-
ity across programming languages and natural languages.
Roziere et al. [Roziere et al., 2020] introduced TransCoder,
a neural transcompiler based on unsupervised machine trans-
lation, which can perform function-level translation between
C++, Java, and Python without the need for parallel corpora,
using only monolingual code. However, its limitation lies in
not considering the conventions and readability of the target
language. Mariano et al. [Mariano et al., 2022] designed
NGST2, an automated translation method from imperative to
functional code based on neuron-guided program synthesis,
leveraging the trace compatibility assumption between source
and target programs. Nevertheless, this method has only been
evaluated on specific APIs in Java and Python, and its gener-
alizability requires further validation.

In the latest research on leveraging LLMs for code trans-
lation, Roziere et al. [Roziere et al., 2021] introduced an
unsupervised code translation technique that combines self-
training and automated unit testing. This technique utilizes
unit tests to create synthetic parallel datasets for model en-
hancement, although these tests are not incorporated into the

training loss calculation. Wang et al.’s study [Wang et al.,
2022] combines reinforcement learning with compiler feed-
back, providing a different perspective from traditional super-
vised learning. Furthermore, the research by Haugeland et al.
[Haugeland et al., 2021] and Orlanski et al. [Orlanski et al.,
2023] explores the impact of LLMs on code translation, par-
ticularly in low-resource language environments, highlight-
ing the potential and challenges in this evolving field. Ramos
et al. [Ramos et al., 2024] proposed the BatFix method,
which combines program repair and synthesis to rectify target
code generated by language models, but it relies on test cases
and has limited support for complex projects. Nijkamp et al.
[Nijkamp et al., 2022] released the CodeGen model series,
achieving state-of-the-art performance in Python code gener-
ation on the HumanEval dataset, although it primarily focuses
on code generation rather than translation tasks. Li et al. [Li
et al., 2023] open-sourced the StarCoder model, achieving the
best performance among open-source code LLMs supporting
multiple languages. Yang et al. [Yang et al., 2024] proposed
the UniTrans framework, significantly improving the accu-
racy of code translation between Python, Java, and C++ us-
ing LLMs such as GPT-3.5 and LLaMA by introducing test
case-based correction and iterative repair strategies, but the
automatic generation of test cases requires further optimiza-
tion.

As evident from the above, existing code translation meth-
ods still exhibit notable limitations. First, a significant portion
of the approaches rely on a large number of manually written,
comprehensively covering test cases to validate the translated
code, which is difficult to achieve in many software projects.
Second, some methods have poor support for complex soft-
ware code translation, particularly in large-scale applications
involving multi-layer dependencies and multi-component in-
teractions. In reality, software is often quite complex. Addi-
tionally, most of these techniques do not support incremen-
tal translation, meaning that encountering errors during the
translation process leads to the failure of the entire trans-
lation task, rather than interrupting only the erroneous part
while allowing other parts to be translated unaffected. This
greatly limits the scope of code translation in practical de-
velopment processes. In contrast, our proposed TransGraph
method significantly improves the understanding of complex
code structures by integrating call graphs and bridged debug-
gers, effectively reducing the reliance on external test cases.
Moreover, TransGraph performs code translation at the func-
tion level, localizing the impact of errors to the specific func-
tion without affecting the entire software, thereby enhancing
the robustness and flexibility of code translation.

3 Methodology
The architecture of the TransGraph approach is shown in Fig-
ure 1. The source code is analyzed through the Language
Server Protocol (LSP) to generate a call graph, which is then
provided to the TransGraph controller. The controller gen-
erates input prompts for the LLM based on the call graph to
guide the generation of target code. The generated source bi-
nary is inspected by the source debugger, while the generated
target code is inspected by the target debugger on the target
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Language Server Protocol

Input to

Compiles to

Debugged by

Debug Adapter Protocol

Generates prompt Returns results to Generates / Fixes

Partially compiles to

Debugged by

Debug Adapter Protocol

Source Code

Call Graph

TransGraph Controller

Source Binary

Source Debugger

LLMs Target Code

Target Binary

Target Debugger

Figure 1: The TransGraph approach.

binary. The two debuggers are connected to the controller via
the Debug Adapter Protocol (DAP), forming bridged debug-
gers. This setup allows for rapid correction of the target code
when deviations are detected at runtime.

3.1 Call Graph Based Translation
Due to the coherence issues inherent in LLMs, when using
LLMs to translate complex, multi-file code, inconsistencies
between the preceding and following code often arise. To ad-
dress this problem, we first obtain the call graph of the entire
codebase through the Language Server Protocol, which in-
cludes all involved classes, functions, global variables, and
their relationships. Specifically, the call graph is defined as
follows: a directed graph G = (V,E), where V represents
the functions and methods in the program, and E ⊆ V × V
represents the calling relationships, i.e., if function f calls
function g, there exists a directed edge (f, g).

To generate the call graph, we utilize the standard inter-
faces provided by LSP to obtain language-specific informa-
tion through static code analysis, such as code completion,
go to definition, find all references, etc. Most mainstream
programming languages have mature LSP implementations
maintained by official organizations or communities, such as
clangd for C/C++, jdt.ls for Java, Pyright for Python, and so
on.

After obtaining the call graph, we generate specific LLM
input prompts for each node (function). The prompt includes
the code of the function, other functions it calls, referenced
global variables (including class member variables), caller
code, and other contextual information. To prevent prompts

from becoming too long, we set a maximum length thresh-
old (e.g., 32k tokens), and when this threshold is exceeded,
low-priority contexts (such as comments) are truncated un-
til the length limit is met. Through these carefully designed
prompts, LLMs can better understand the structured view of
the code, effectively handle large and complex codebases,
significantly reduce compilation errors, and improve the cor-
rectness of code translation.

A key goal of code translation is successful compilation,
i.e., achieving zero compilation errors. For medium to large
software projects, achieving this goal through LLM-based
code translation is quite challenging. The main challenges
include:

Instability of LLM output. The results generated by
LLMs can be unstable, and it cannot be guaranteed that a
specific compilation error will be resolved after multiple at-
tempts. Moreover, while resolving one compilation error,
new compilation errors may be introduced in other locations.

Insufficient context understanding. LLMs often struggle
to fully understand the context of the code, especially when
the code involves cross-module calls. Even if the code within
each module is error-free when isolated, combining them may
lead to errors due to mismatched parameter counts or types.

Serial efficiency issues in handling compilation errors.
Most programming languages stop the compilation process
when encountering a compilation error. LLMs attempt to cor-
rect the code based on the error information and then recom-
pile, but until the current compilation error is resolved, the
location of the next error cannot be determined, hindering the
possibility of using techniques like multi-threading to handle
multiple compilation errors in parallel.

To address the above challenges, we propose a call graph-
based code translation method, as shown in Algorithm 1. In
the directed graph of the call graph, we traverse from nodes
with smaller degrees to larger degrees and apply LLM tech-
niques to translate each node (function). The translated func-
tion code, along with the functions it calls, input/output vari-
ables, and global variables, are placed into a main function to
form a new codebase and attempt compilation. All variables
are declared and initialized to null values. Since each trans-
lated function forms an independent codebase, there are no
dependencies between them, making it easy to achieve par-
allel processing using multi-threading/multi-processing tech-
niques. We have verified the feasibility of this strategy in
practice, and compared to single-threaded processing, the
translation speed can be increased several fold (depending on
the available CPU cores).

This approach limits compilation errors to the scope of
functions. Since the context within a function is usually sim-
pler than the context of cross-module calls, the probability of
LLM translation errors is relatively lower. Furthermore, LLM
translations at the function level have no dependencies, allow-
ing for parallel processing. In implementation, we allocate an
independent process for each function’s translation. Through
this method, even if 100% successful compilation cannot be
achieved for the entire codebase, we can still achieve zero
compilation errors in a considerable portion of local code
functions. The remaining compilation errors can be repaired
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Algorithm 1 Code Translation
1: Input: Source code
2: Output: Translated target code
3: procedure TRANSGRAPH(sc)
4: cg ← LSPAnalyze(sc)
5: sb← Compile(sc)
6: sd← AttachDebugger(sb)
7: for f in GetFunctions(cg) do
8: p← GeneratePrompt(cg, f)
9: tc[f ]← LLMTranslate(p)

10: tb← CompileWithMain(tc[f ])
11: td← AttachDebugger(tb)
12: while ExistsVariableDiff(sd, td) do
13: ei← IdentifyErrors(sd, td)
14: p← GeneratePrompt(ei)
15: tc[f ]← LLMTranslate(p)
16: tb← CompileWithMain(tc[f ])
17: td← ReAttachDebugger(tb)
18: end while
19: end for
20: return tc
21: end procedure

using manual or other methods. This is valuable for translat-
ing medium to large software projects.

3.2 Run-time Error Correction via Bridged
Debuggers

Errors that occur during the runtime phase of code are often
more difficult to detect and fix than compilation errors. In
engineering practice, regression testing is commonly used to
detect runtime errors. However, many projects lack compre-
hensive test suites, making it difficult to cover all code paths,
especially some complex deep paths.

We propose a method that combines bridged debuggers and
dynamic test case generation to address runtime errors. This
method does not rely on existing test cases and only requires
that the source code and target code can be compiled, run,
and debugged. Almost all mainstream languages have corre-
sponding debuggers, and source code is usually debuggable.
In this step, we select target functions that compiled success-
fully in the previous step. It is worth mentioning that Trans-
Graph is based on dynamic execution rather than static anal-
ysis to correct runtime errors, enabling it to obtain the actual
types and values of variables at runtime without the need for
cumbersome static type inference in advance.

Runtime errors often arise when the execution results of
certain specific statements in the target code are inconsistent
with the source code, such as different variable values, lead-
ing to overall program deviations. Therefore, locating the
specific statements causing the deviations is key to fixing such
errors. An intuitive approach is to run the source code and tar-
get code simultaneously in debug mode, perform single-step
debugging, and monitor variable states in real-time. Once in-
consistent variable values are found at a certain line of code,
it can be determined that a runtime error exists at that loca-
tion. The following are three main challenges faced in this
process:

DP algorithm in C++

1 #include<iostream>
2 #include<vector>
3 int f_gold(int m, int n, int x) {
4 vector<vector<int>> tab(n+1, vector<int>(x+1, 0));
5 for (int j = 1; j <= min(m+1, x+1); ++j)
6 tab[1][j] = 1;
7 for (int i = 2; i <= n; ++i) {
8 for (int j = 1; j <= x; ++j) {
9 for (int k = 1; k <= min(m+1, j); ++k)

10 tab[i][j] += tab[i-1][j-k];
11 }
12 }
13 return tab[n][x];
14 }

Equivalent Python code

1 def f_gold(m, n, x): # 3
2 tab = [[0] * (x + 1) for i in range(n + 1)] # 4
3 for j in range(1, min(m+1, x+1)): # 5
4 tab[1][j] = 1 # 6
5 for i in range(2, n+1): # 7
6 for j in range(1, x+1): # 8
7 for k in range(1, min(m+1, j)): # 9
8 tab[i][j] += tab[i-1][j-k] # 10
9 return tab[-1][-1] # 13

Figure 2: Code translation from C++ to Python for the DP algorithm.

The target code may not be able to run due to compi-
lation errors. To address this issue, we select compilable
functions from the call graph, starting from nodes with an
in-degree of zero, and extract the function and all its related
code (including other functions it calls and global variables
used) to form an independent program. Subsequently, we ex-
ecute its main function in debug mode. All input variables
of the function (including global variables) are initialized to
zero values.

How to ensure consistent variable contexts between the
target code and source code. We employ a context syn-
chronization technique based on bridged debuggers. Since
the target code only contains the execution environment of
the target function, the initial values of all input and out-
put variables may differ from the actual values in the source
code. To address this issue, during the single-step debugging
process of bridged debuggers, we synchronize the values of
input variables (including parameters and global variables)
from the source code debugger to the variables with the same
names in the target code debugger, ensuring that the variable
names, scopes, types, and values are completely consistent
between the two before function execution.

Running the entire code using single-step debugging has
low efficiency. In compute-intensive functions, the time
overhead of single-step debugging is particularly evident. To
improve performance, we adopt an algorithm similar to bi-
nary search, as shown in Algorithm 2. The core idea is to
reduce the number of single-step executions by setting break-
points at the ”midpoint” of the source code and the corre-
sponding location in the target code. The ”midpoint” here
refers to the median value of all possible breakpoint locations
in the source code. If the target code has comments that cor-
respond one-to-one with the line numbers of the source code,
the ”midpoint” can be determined accordingly; otherwise, the
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Algorithm 2 Recursive Binary Search Debugging
1: Input: sDebugger, tDebugger, s, e, ctx
2: Output: Discrepancy location
3: procedure RBSD(sDebugger, tDebugger, s, e, ctx)
4: m← (s+ e)/2
5: RestoreContext(ctx)
6: ExecuteTo(m)
7: if ExistsDiscrepancy(sDebugger, tDebugger) then
8: if s == e then
9: return m

10: end if
11: return RBSD(sDebugger, tDebugger, s,m, ctx)
12: else
13: SaveContext(m)
14: return RBSD(sDebugger, tDebugger,m+1, e, ctx)
15: end if
16: end procedure

middle line of the target code can be heuristically selected as
the ”midpoint.” When a breakpoint is hit, the values of key
variables on both sides are compared. If the values on both
sides are equal at this point, the problem may occur in the lat-
ter half; if the values are unequal, the problem may occur in
the former half. By recursively applying the ”binary search”
strategy, the problem can eventually be localized to a more
precise code interval. Compared to simple single-step exe-
cution, the time complexity of this method is reduced from
O(n) to O(logn), where n is the number of lines of code.
Additionally, as shown in Figure 2, by constructing specific
LLM prompts during code translation and generating com-
ments with line number mappings and variable name map-
pings, we solve the problem of line number correspondence
between the source code and target code. Through these com-
ments, we can achieve the mapping of code breakpoints and
variable values.

It should be noted that we only assume that the LLM
maintains a roughly similar function body structure between
the source code and target code, allowing it to rename local
variables, adjust their order, or inline/extract within a small
scope during translation, without imposing strict require-
ments. LLMs usually handle these compiler optimization-
level equivalent transformations well. If line numbers no
longer match due to excessive optimization, our method will
gracefully fall back to simple single-step execution.

Once a specific error is located, the source code, target
code, error line number, error variables, and other contextual
information of the current function can be organized into a
new prompt for subsequent target code repair. Figure 2 shows
an example of code translation and debugging from C++ to
Python. For the case where the execution result of line 8 in
Python is inconsistent with line 10 in C++, we generate the
following repair prompt:
In the translation from C++ to Python, the

result of line 8 in Python (corresponding
to line 10 in C++):

↪→
↪→
tab[i][j] += tab[i-1][j-k]
is inconsistent with the C++ code.
The relevant variables have the following

values: i = 3, j = 5, k = 2, m = 4, n =
6, x = 8

↪→
↪→

Please correct this line of Python code.

After replacing the existing target function code and re-
compiling, we repeat the previous debugging iteration pro-
cess until all runtime errors are eliminated. Throughout the
entire debugging process, snapshots of variables at all break-
points are recorded and used to quickly restore the execution
context during binary search, avoiding repeated execution.

4 Evaluation
4.1 Experiment Setup
The experiments in this study covered three programming
languages: C/C++, Java, and Python. The compilation en-
vironments included gcc, OpenJDK, and CPython, and the
debugging tools included gdb, jdb, and pdb. TransGraph in-
tegrates with VSCode using the Language Server Protocol to
extract call graphs for these programming languages. In addi-
tion, it controls debuggers for various languages through the
Debug Adapter Protocol. The LLMs used in this paper in-
clude OpenAI’s GPT-3.5 (ChatGPT) [OpenAI, 2022], GPT-4
[Achiam et al., 2023], Llama 2 70B [Touvron et al., 2023],
StarCoder [Li et al., 2023], and Claude 3 Sonnet [Anthropic,
2024]. The datasets used in this paper include: CodeNet [Puri
et al., 2021], Avatar [Ahmad et al., 2021b], EvalPlus [Liu et
al., 2024], Apache Commons CLI [apa, 2023] (Java), Click
[pyt, 2023] (Python), and HumanEval-X [Zheng et al., 2023].

4.2 Influence of Different LLMs and Languages
We evaluated the code translation effectiveness of four main-
stream LLMs on the CodeNet dataset using the TransGraph
method, covering GPT-3.5, GPT-4, StarCoder, and Claude 3
Sonnet, with testing scenarios including C to Java, Java to
Python, and Python to C language conversions. Thirty experi-
ments were conducted for each translation, and the results are
shown in Figure 3. In this paper, we define successful transla-
tion as: 1) the translated code can be successfully compiled,
2) the translated code does not produce exceptions or crashes
at runtime, and 3) the translated code is functionally equiva-
lent to the original code, i.e., it produces the same output for
the same input. The LLM prompts used in this experiment
are as follows:

Translate the following code from
{source_language} to {target_language}.
The translated code should be correct,
efficient, and idiomatic.

↪→
↪→
↪→
{source_code}

Our TransGraph method conducted experimental compar-
isons using these four LLM models. GPT-4, as an industry-
leading LLM, significantly outperformed GPT-3.5, reflecting
GPT-4’s powerful semantic understanding and code genera-
tion capabilities. Moreover, LLMs specifically designed for
code-related tasks, such as StarCoder, did not significantly
outperform general-purpose LLMs like GPT in the field of
code translation. Additionally, the translation success rates
in various language conversion scenarios also showed signif-
icant differences. For example, the translation success rate
from Java to Python was relatively high, which may be be-
cause Python, as a dynamic language, lacks a strict compila-
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Dataset
TransCoder

NGST2
BatFix

CodeGen

StarCoder
GPT-4

Llama 2

UniTrans TransGraph (Ours)

GPT-3.5 GPT-4

CodeNet 29.8 32.4 49.9 19.5 36.7 61.4 12.8 65.7 71.4 76.2
Avatar 37.2 39.9 55.3 6.2 12.9 63.3 3.1 67.6 68.9 72.5
EvalPlus 25.1 28.4 27.8 14.6 18.0 73.7 1.9 77.8 75.3 79.1
Commons CLI 9.7 13.5 15.3 3.7 5.2 15.4 3.0 19.1 12.5 17.8
Click 5.5 8.1 13.9 2.1 3.6 11.2 1.4 14.9 18.8 22.4
HumanEval-X 23.4 26.9 28.4 9.5 11.8 35.2 3.3 38.6 45.4 52.6

Table 1: Successful translation (in %) of various code translation approaches

Dataset Vanilla w/o BD w/o Referenced Vars w/o Called Funcs w/o Caller Code TransGraph

Avatar 55.3 66.5 62.1 64.3 67.2 68.9
EvalPlus 58.8 73.7 68.4 71.2 74.1 75.3
HumanEval-X 28.4 42.9 37.3 40.8 43.6 45.4
Average 47.5 61.0 56.0 58.8 61.6 63.2

Table 2: Ablation study results. The number is the successful translation Rate (%) on each dataset

tion stage, thereby reducing the occurrence of compilation er-
rors. In contrast, the success rate of conversion from Python
to C/C++ was relatively low, mainly because Python’s dy-
namic features reduce the accuracy of call graph generation,
and due to the lack of type information, the process of trans-
lating to C/C++ requires correctly inferring variable types,
which greatly increases the complexity of code translation
and significantly increases the likelihood of translation errors.
We defined the successful translation metric: successfully
translated code needs to pass compilation, runtime checks,
and functional correctness tests, ensuring that the translated
code has the same functionality as the original code.

4.3 Translation Error Analysis
We conducted code translation tests on three datasets, Co-
deNet, EvalPlus, and HumanEval-X, for some traditional
code translation methods (TransCoder [Roziere et al., 2020],
NGST2 [Mariano et al., 2022]) and LLM-based methods
(e.g., BatFix [Ramos et al., 2024], CodeGen [Nijkamp et
al., 2022], StarCoder [Li et al., 2023], GPT-4 [Achiam et
al., 2023], Llama 2 [Touvron et al., 2023], UniTrans [Yang
et al., 2024]), and categorized the error causes. The results
are shown in Figure 4. In this experiment, except for Llama 2
which itself is an LLM, other methods used GPT-4 if an LLM
was needed to exclude the influence of LLM performance dif-
ferences. Specifically, we further divided compilation errors
into: syntax errors, type errors, symbol resolution errors, etc.;
runtime errors were divided into: null pointer exceptions, ar-
ray out of bounds, division by zero errors, etc.; functional er-
rors were divided into: inconsistent output, inconsistent con-
trol flow, resource leaks, etc. It can be seen from the figure
that compilation errors are the main type of translation errors,
usually accounting for more than 40%. Compared with other
methods, TransGraph has a lower proportion of compilation
errors.

4.4 Performance Analysis
We evaluated the performance of various code translation
methods on different datasets, and the results are shown in

Table 1. TransCoder and NGST2, as some traditional code
translation methods, already have a quite good performance,
but there is still a certain gap compared with LLM-based
methods. In contrast, LLM-based methods such as BatFix,
CodeGen, StarCoder, GPT-4, Llama 2, UniTrans, and Trans-
Graph showed higher success rates. We evaluated the per-
formance differences of TransGraph when using two differ-
ent LLMs, GPT-3.5 and GPT-4. The results showed that
the translation success rate of TransGraph was further im-
proved when using GPT-4, which is partly attributed to the
more powerful processing capabilities of the GPT-4 model it-
self. Nevertheless, TransGraph still outperformed other base-
line methods on most datasets even when using GPT-3.5.
This confirms the effectiveness of our proposed optimization
strategies based on call graphs and bridged debuggers.

4.5 Ablation Study
To verify the effectiveness of each key design in TransGraph,
we conducted ablation experiments. Specifically, on the com-
plete TransGraph system based on GPT-3.5, we respectively
removed the bridged debugger function and call graph in-
formation (including referenced variable information, called
function information, and caller code information), resulting
in four variants: w/o BD, w/o Referenced Vars, w/o Called
Funcs, and w/o Caller Code. In addition, we also imple-
mented an original code translation system based solely on
GPT-3.5 (Vanilla) as a baseline. Table 2 shows the success-
ful translation rates of each system on three datasets. It can
be seen that introducing referenced variable information im-
proves translation accuracy by an average of 7.3%, introduc-
ing called function information improves translation accuracy
by an average of 4.4%, while the improvement from intro-
ducing caller code information is relatively small. This in-
dicates that the information within functions, especially the
referenced variables, is more critical for code understanding
and correct translation. Further adding bridged debuggers im-
proves the accuracy by another 2.2%, and the complete Trans-
Graph system achieves an average accuracy of 15.7% higher
than the original GPT-3.5, confirming the effectiveness of our
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Figure 3: Translation effectiveness of different LLMs and programming languages for CodeNet dataset.
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Figure 4: Outcome of code translations averaged over CodeNet,
EvalPlus and HumanEval-X datasets.

proposed method.
Analyzing the roles of the two key mechanisms in Trans-

Graph, the impact of referenced variables is the largest, fol-
lowed by called functions, while the role of caller code is
relatively small. This indicates that the information within
functions is more critical for code understanding and correct
translation. The bridged debugger mainly reduces runtime
errors, especially those exceptional situations not covered by
test cases. Traditional code translation methods have diffi-
culty handling such boundary cases, while the bridged de-
bugger greatly improves the efficiency of fixing runtime bugs
by synchronizing execution contexts between the source code
and target code and quickly locating difference points using
binary search.

5 Discussion
Despite the encouraging results achieved by TransGraph on
code translation tasks, it still has some limitations. First,
TransGraph has currently only been experimentally evalu-
ated between mainstream languages such as C++, Java, and
Python, and its support for some emerging or niche program-
ming languages remains to be further verified. This limitation
may be due to the significant differences in characteristics
between different programming languages, and many niche
languages lack mature LSP protocol implementations, which

brings difficulties to call graph extraction.
Secondly, TransGraph relies on the LSP protocol to extract

call graph information during the translation process, but for
some dynamic languages (such as JavaScript), their dynamic
features may lead to inaccurate call graphs extracted by static
analysis, which in turn affects translation performance. To
address this problem, one possible solution is to combine dy-
namic analysis techniques to capture actual function calls oc-
curring at runtime and dynamically update the call graph. Al-
though this method may introduce some runtime overhead, it
is expected to improve translation accuracy.

Moreover, despite the introduction of function-granularity
incremental code translation, the time overhead of transla-
tion for ultra-large-scale (e.g., millions of lines) engineering
projects cannot be ignored. The current TransGraph imple-
mentation is primarily based on a single-machine multi-core
CPU, but in scenarios with sufficient computing power, us-
ing GPUs or even multi-machine distributed environments
can significantly improve the scale and efficiency of parallel
translation. This requires introducing customized scheduling
strategies in the compilation and debugging stages to balance
the load and reduce communication overhead.

6 Conclusion
In this paper, we propose TransGraph, a code translation
method that combines call graphs and bridged debuggers. To
overcome the accuracy limitations of LLMs in code trans-
lation, TransGraph systematically handles dependencies be-
tween variables and functions by constructing call graphs,
significantly reducing compilation errors in the target code.
In addition, this method effectively detects and fixes runtime
errors by leveraging bridged debuggers. The experimental re-
sults show that TransGraph performs excellently in reducing
compilation and runtime errors, especially when dealing with
complex multi-file code projects. Tests conducted on mul-
tiple datasets, including EvalPlus and Avatar, indicate that
compared to the existing baseline method, TransGraph sig-
nificantly improves translation accuracy, with an average in-
crease of 15.7%. Future work directions include expanding
language coverage, improving call graph extraction for dy-
namic languages, and exploring more efficient incremental
translation methods.
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Ethical Impact
As a code translation technique, the ethical impact of Trans-
Graph is relatively limited. Unlike natural language process-
ing tasks, code translation mainly targets the developer com-
munity, and the translated content usually does not involve
sensitive topics. Despite this, we still need to be vigilant
about the potential misuse of this technology for unautho-
rized code copying or piracy. To mitigate such risks, we
suggest adding appropriate license information to the code
generated by TransGraph to remind users to comply with rel-
evant intellectual property laws and regulations. In the long
run, code translation is expected to improve the interoperabil-
ity between programming languages, making it more conve-
nient for developers with different language backgrounds to
communicate and collaborate, and lowering the threshold for
learning new languages, thus promoting the inclusive devel-
opment of the software industry.
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