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Tackling Long-Tailed Data Challenges in Spiking Neural Networks via
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Abstract

Spiking Neural Networks (SNNs), inspired by the
behavior of biological neurons, have gained sig-
nificant research interest for resource-constrained
edge devices and neuromorphic hardware due to
the usage of inter-unit communication binary spike
signals with low power consumption. However,
the absence of research on spiking neural net-
works on long-tailed data has severely limited
the deployment and application of this emerging
network in practical scenarios. To fill this gap,
this paper proposes a long-tailed learning frame-
work based on spiking neural networks, named LT-
SpikingFormer, to alleviate the distribution bias be-
tween head and tail classes. LT-SpikingFormer
adopts a widely trained Convolutional Neural Net-
work to construct a heterogeneous knowledge dis-
tillation paradigm, offering balanced and reliable
prior knowledge. Moreover, a multi-granularity hi-
erarchical feature distillation objective is proposed
for cross-layer local features and network global
predictions to facilitate refined information distil-
lation to optimize the network, specifically for the
performance of the tailed classes. Extensive exper-
imental results demonstrate that our method per-
forms well on several benchmark datasets.

1 Introduction
Spiking Neural Networks (SNNs) [Maass, 1997], modeled
after biological neurons, have garnered considerable research
attention because they use binary spike signals for commu-
nication between units. Unlike conventional Artificial Neu-
ral Networks (ANNs), which rely on continuous activation
functions, spiking neurons encode continuous input values
into spike trains using models like the Leaky Integrate-and-
Fire (LIF) neuron model and its variants, such as the PLIF.
This spike-based computation allows for information encod-
ing in both spatial and temporal domains, potentially improv-
ing computational efficiency and reducing energy consump-
tion. As a result, SNNs [Zhao et al., 2024; Shen et al., 2025b;
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Figure 1: The label distribution of long-tailed dataset and the top-1
accuracy of current mainstream methods in CIFAR10-LT. (a) The la-
bel distribution map shows that the head class feature space learned
from these samples is usually larger than the tail class feature space.
(b) The line chart provides an intuitive visualization of how dataset
imbalance influences model performance.

Shen et al., 2025a] are well-suited for real-time processing
tasks and neuromorphic hardware applications.

Two primary methodologies for constructing spiking neu-
ral networks with standard spiking behavior exist. The first
approach is ANN-to-SNN conversion [Diehl et al., 2015;
Sengupta et al., 2019], where spiking neurons replace ReLU
activation layers in ANNs. This conversion method, how-
ever, often necessitates a large number of time steps to
approximate the ReLU function accurately, leading to in-
creased latency. The second approach, direct training of
SNNs [Mostafa, 2017; Neftci et al., 2019], a widely utilized
method, involves unfolding the network across simulation
time steps and applying backpropagation through time. Due
to the non-differentiable nature of the spike-generation pro-
cess, this backpropagation typically relies on surrogate gradi-
ents. While numerous ANN models have been successfully
adapted to SNNs, their application to long-tailed data distri-
butions, which are common in real-world tasks, remains un-
derexplored.

Long-tailed distribution is prevalent in real-world applica-
tions. As shown in Fig. 1a, such datasets exhibit highly im-
balanced sample distributions, posing significant challenges.
While numerous approaches have been developed to address
this problem in ANNs, little exploration has been done into
the promising, efficient, and robust SNN architecture. This
absence of research has significantly hindered the deployment
and effectiveness of SNNs in practical scenarios. Moreover,
we found that methods that aim to solve the long-tailed prob-
lem faced by ANNs are challenging to adapt to the unique
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architecture of SNNs. To address this limitation, our paper
introduces an efficient knowledge distillation framework de-
signed to optimize SNN performance in long-tailed data set-
tings, providing a straightforward and effective approach for
high-performance model adaptation.

This work proposes a novel direct training framework
for SNNs that handles diverse, long-tailed datasets. The
proposed framework, LT-SpikingFormer, integrates a self-
attention mechanism to enable dynamic interactions among
spiking features. To bridge the impact of long-tailed dis-
tribution on the model, we construct a new CNN-SNN het-
erogeneous knowledge distillation paradigm to extract robust
knowledge from widely trained CNNs to alleviate overfit-
ting in most categories and enhance balanced feature learn-
ing across categories. Toward this heterogeneous knowledge
distillation optimization, we propose a multi-granularity hi-
erarchical feature distillation objective that leverages cross-
layer local features and network global predictions to facili-
tate refined information distillation to optimize the network,
specifically for the performance of the tailed classes. Exten-
sive experimental results [Cui et al., 2019; Liu et al., 2024;
Wang et al., 2024; Ma et al., 2024] demonstrate that our
method can achieve state-of-the-art results, as shown in
Fig. 1b.

Contributions. The highlights of the paper are three-
fold: 1) By analyzing and summarizing the existing work,
we propose the first spiking neural network for long-tailed
data and employ the heterogeneous distillation paradigm of
CNN-SNN to alleviate the imbalance of samples, filling the
research gap of long-tailed spiking learning; 2) For the pro-
posed heterogeneous distillation framework, we constructed
a joint optimization manner consisting of global and local
distillations, in which the local one with norm guided can
effectively alleviate the long-tailed distribution in different
latent space, while the global knowledge distillation based
on finally predictions can significantly improve the overall
recognition performance; 3) Extensive experimental results
demonstrate that our method achieves state-of-the-art perfor-
mance on several datasets. The ablation experiments are con-
ducted to verify the effectiveness of each module.

2 Related Work
Long-tailed Visual Recognition. Long-tailed distribution is
a significant challenge in machine learning and visual recog-
nition. In image classification, common object categories
dominate the dataset, while rare categories are underrepre-
sented, leading to model bias toward the ”head” categories
during training, which causes overfitting, while generaliza-
tion to the ”tail” categories with fewer samples is limited, de-
grading overall performance.

Traditional methods to mitigate the long-tailed problem in-
volve resampling and reweighting. Resampling methods aim
to balance sample sizes across categories by oversampling
tail categories [Li et al., 2022] or undersampling head cat-
egories [He and Garcia, 2009], though these can lead to over-
fitting or underfitting. Reweighting [Khan et al., 2017] ad-
justs the learning rates for categories based on sample sizes,
though such methods can improve performance on tail cate-

gories at the expense of head categories. Two-stage training
has been proposed to address this: the first stage focuses on
feature representation learning on the original long-tailed dis-
tribution, while the second applies resampling or reweighting
for fine-tuning, optimizing both feature learning and classifier
learning.

Transfer learning [Long et al., 2022] and knowledge distil-
lation [Zhao et al., 2023; Jin et al., 2023] also offer solutions.
Transfer learning facilitates knowledge transfer from major-
ity classes to minority classes, while knowledge distillation
uses soft labels from a large teacher model to transfer knowl-
edge to a smaller student model. Recent methods like the
mixture of experts (MoE) model, an ensemble approach, as-
signs experts to focus on different categories or dynamically
adjusts based on sample sizes.

Spiking Vision Transformers. Spikformer [Zhou et al.,
2022] is the first hybrid architecture to integrate spiking neu-
ral networks with Transformers. It introduces a spiking self-
attention mechanism that eliminates traditional multiplication
operations by activating the query, key, and value with spik-
ing neurons and replacing the softmax function with spik-
ing neurons. Furthermore, it substitutes the layer normaliza-
tion and GELU activation used in Transformers with batch
normalization and spiking neurons. The Spike-driven Trans-
former [Yao et al., 2024] proposes a linear-complex peak-
driven self-attention mechanism designed to improve spa-
tiotemporal information processing and significantly reduce
energy consumption. SpikingResformer [Shi et al., 2024]
is a spiking neural network architecture that combines the
strengths of ResNet and Vision Transformer, enhancing per-
formance while reducing parameter count and energy con-
sumption through the introduction of a double spiking self-
attention mechanism.

Knowledge Distillation. Knowledge distillation (KD) en-
hances the performance of a student model by guiding it to
”imitate” the more complex and higher-performing teacher
model. In KD, the soft labels produced by the teacher
model serve as the target to transfer knowledge from the
large teacher model to the smaller student model. There
are two primary approaches to knowledge distillation: logit-
based KD and feature-based KD. Logit-based KD meth-
ods [Cho and Hariharan, 2019; Chen et al., 2024] lever-
age the output of the teacher model as supervision to direct
the learning of the student model, focusing on mimicking
the teacher’s decision-making process. In contrast, feature-
based KD methods [Ahn et al., 2019; Tung and Mori, 2019;
Liang et al., 2024] aim to align teacher and student models at
the feature representation level by minimizing the distance or
discrepancy between their intermediate feature layers. More
recently, the Heterogeneous Bridge Distillation [Hao et al.,
2023] method has been introduced, which addresses the dis-
parity between heterogeneous features by projecting the in-
termediate features of the student model into a latent space
that aligns with the output of the teacher model.

3 Methodology
This section proposes a novel framework, LT-SpikingFormer,
which trains Spiking Neural Networks (SNNs) from scratch
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Figure 2: The framework of LT-SpikingFormer.

with a heterogeneous distillation learning paradigm, address-
ing the challenges of long-tailed data distributions. LT-
SpikingFormer adopts a compact ResNet-32 model with min-
imal augmentation as the teacher to explore the synergistic
potential of combining SNNs and CNNs and enhance the
recognition capabilities of minority classes through distinc-
tive spiking characteristics. Considering the massive differ-
ence between convolutional and spiking networks, we con-
struct a heterogeneous distillation optimization strategy from
local to global modules, which is particularly important for
fine-grained recognition of underrepresented categories in
long-tailed datasets. The framework is shown in Fig. 2.

3.1 Framework of LT-SpikingFormer
As the basic unit of the SNN, the spiking neuron receives the
generated current and accumulates the membrane potential to
compare with the threshold to determine whether to create a
spike. We describe the dynamics of the LIF (Leaky Integrate-
and-Fire) neuron by the following discrete-time model:

U [t] = V [t− 1] +
1

τ
(X[t]− (V [t− 1]− Vreset)), (1)

S[t] = H(U [t]− Vth), (2)
V [t] = U [t](1− S[t]) + VresetS[t], (3)

where U [t] and V [t] are the membrane potentials of neurons
before and after charging, X[t] is the input current at time
step t, and τ is the membrane time constant. Eq. (2) de-
scribes the firing process, where H(·) is the Heaviside step
function. When the membrane potential U [t] exceeds the fir-
ing threshold Vth, the spike neuron will trigger a spike S[t].
Eq. (3) describes the resetting process. The membrane poten-
tial V [t] after the trigger event is equal to U [t] if no spike is
generated, otherwise it is equal to the reset potential Vreset.

The Spike Neurons Layer comprises multiple LIF neurons,
a key component for information encoding and transmission
in SNN. In SNN, the input signal enters the SN layer for
processing, where each LIF neuron decides when to emit a
pulse based on the input current and its dynamic characteris-
tics (such as membrane time constant, threshold, etc.). These

pulses can then be further propagated and processed in the
SNN to complete complex computational tasks. For simplic-
ity and clarity in subsequent chapters, we use SN (·) to rep-
resent the spiking neuron layer, omitting the dynamic process
inside neurons.

Given 2D images I ∈ RN×H×W×3, a Spiking Feature
Pre-Extractor G(·) is used to extract local features X =
[x1, x2, · · · , xN ] ∈ RN×T×D, where T , N , H , W , D denote
time step, sample number, height, weight, and embedding di-
mension, respectively. We aim to learn a set of mappings
X → Y = [y1, y2, · · · , yN ] ∈ RN×C that enables accurate
sample classification, where C is the number of classes.

X = G(I) , X ∈ RN×T×D. (4)

It is crucial to adopt strategies that ensure the model’s ro-
bustness and generalization to address the challenges of long-
tailed data distributions. An approach is to incorporate a
balanced sampling technique alongside advanced image en-
hancement methods. Specifically, we utilize the imbalanced
data sampler strategy to ensure adequate representation of mi-
nority classes during training. This sampler assigns sample
weights based on the effective number of samples per class,
promoting balanced class exposure and mitigating the risks of
overfitting and under-sampling. In addition to conventional
data augmentation strategies, such as rotation, flipping, and
cropping, we also employ advanced methods like Mixup and
CutMix, which have been proven to be very effective in alle-
viating the data imbalance problem.

On the other hand, to fully explore the association relation-
ship in long-tailed data using Spike Neurons, we stack mul-
tiple Spiking Transformer (ST) blocks and represent them as
F(·). As illustrated in Fig. 3, each ST block is composed of
a Spike-based Self-Attention (SSA) block and a Spike MLP
(SMLP) block, and residual connections are applied to each
SSA block and SMLP block. The ST block can be formulated
as follows:

X̂i = SSA(Xi−1) +Xi−1, (5)

Xi = SMLP(X̂i) + X̂i, (6)
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Figure 3: The framework of Spiking Transformer blocks. The overview of Spiking Transformer blocks, which consists of a Self-Attention
Block and a Spike MLP Block.

where Xi is the output feature of i-th ST block. The SMLP
consists of two feed-forward layers (FFL), and FFL(·) =
BN(Conv(SN (·))).

For the Spike-based Self-Attention (SSA), we introduce a
fully spike-driven self-attention mechanism, which is defined
as follows:

Attn(Xi) = SN (E⊤(Xi, Xi;BN(Conv(Xi))) ∗ σ1), (7)

SSA(Xi) = SN (E(Attn(Xi), Xi;BN(Conv(Xi))) ∗ σ2),
(8)

where E is a linear dual-spike transformation function. σ1

and σ2 are the scaling factors. The key lies in the design of
the scaling factors σ1 and σ2, which are adjusted based on
the average firing rates of the input features and the attention
map.

Finally, we perform global average pooling (GAP) and full
connection classification (FC) on the features processed by
the stacked Spiking Transformer encoders to obtain the final
output prediction Y . SpikingFormer is defined as follows:

Y = FC(GAP(F(X))). (9)

3.2 Heterogeneous Knowledge Distillation
To harness the extensive knowledge embedded in resource-
rich CNNs, we introduce a novel heterogeneous teacher-
student knowledge distillation framework based on LT-
SpikingFormer. We select the classic ResNet-32 as the
teacher model and train it with weak data augmentation. This
selection is guided by the unique computational attributes of
LT-SpikingFormer, enabling more flexible and efficient adap-
tation and optimization of the knowledge distillation process.
The student model aims to achieve enhanced performance
while maintaining lower complexity and fewer parameters.

For the heterogeneous architecture distillation between
CNNs and SNNs, we emphasize extracting more profound
and more effective information from the teacher model to im-
prove the spiking neural network. We utilize two primary dis-
tillation strategies from global to local perspectives: Logits-
based Global Distillation and Norm-reduced Local Distilla-
tion.

Logits-based Global Distillation. In the knowledge dis-
tillation training framework, logits function as the essential
knowledge representation, encapsulating the prediction dis-
tribution of the teacher model. The Logits-based Global Dis-
tillation aims to align the prediction of the teacher and student

models. The output distribution of the teacher model across
different classes guides the student model’s predictions, al-
lowing the student to approximate the teacher’s performance
in the output space progressively. This approach is formal-
ized as:

Lglo =
1

N

N∑
n=1

DKL(y
t
n∥ysn), (10)

where DKL is the Kullback-Leibler divergence function, N
is the total number of samples, ysn and ytn represent the out-
puts of the student and teacher models on the n-th sample,
respectively. This approach enhances the student network’s
predictive accuracy, particularly for minority class samples,
as the teacher model provides a more refined and comprehen-
sive category distribution.

Norm-guided Local Distillation. To leverage the deep
feature information from the teacher model more effectively,
we aim to guide the student model in learning the feature
representations of the teacher model across different network
layers via multi-granularity distillation. However, due to the
heterogeneous nature of the teacher and student models, their
feature representations exhibit differences. Specifically, the
teacher network produces dense, continuous-valued features,
while the student network generates sparse, pulsed features.
Direct alignment of these disparate features using convolu-
tional operations could introduce superfluous information,
leading the student model to learn irrelevant or secondary
features and failing to capture the essential features of the
teacher model. This misalignment may negatively impact the
efficiency and generalization performance of the model.

To address this challenge, we propose a Norm-reduced
Local Distillation module. The core idea is to project het-
erogeneous features from the student and teacher networks
into a shared latent space using norm constraints to facili-
tate the alignment of heterogeneous features. We first extract
the mean feature of each category from the teacher network,
which can eliminate the impact of long-tailed data on feature
distribution. For any sample xn, the mean feature p(xn) of
its category can be expressed as:

p(xn) =
1

|C(xn)|

|C(xn)|∑
i=1

T (xi), xi ∈ X&C(xi) = C(xn),

(11)
where T (·) denotes the final output of the teacher network.
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C(xn) indicates the category to which xn belongs. Based on
the above mean features, we use norm reduction to achieve
mapping alignment of heterogeneous features. The imple-
mentation is defined as follows:

Lt =
1

N

N∑
n=1

∣∣∣(Θ(p(xn)) + ∆Θ
)
− ∥Θ(T (xn))∥

∣∣∣ , (12)

Ll
s =

1

N

N∑
n=1

∣∣∣(Θ(p(xn)) + ∆Θ
)
− ∥Φ(F l(xn))∥

∣∣∣ , (13)

where F l(·) represents the feature output of the l-th latent
layer of the student network, and ∆Θ is the adjustment term
for enhancement. Since the teacher network is pre-trained, its
feature distribution is known and relatively stable, allowing
us to set a benchmark value Θ(p(xn)). The norm constraint
minimizes the difference between each sample’s mapped fea-
ture and the benchmark value, ensuring that the teacher’s fea-
ture remains stable after being mapped to the latent space by
the functions Θ and Φ.

For student loss Ll
s, the primary objective of the norm con-

straint is to make the intermediate layer output of the stu-
dent network closely approximate the mapped features of the
teacher network. This is achieved by minimizing the differ-
ence between the norm of the student features after mapping
and the teacher benchmark value. By jointly optimizing these
loss functions, the student network is trained to project its
features into the same latent space as the teacher network,
thereby aligning heterogeneous feature representations. Of
course, we can capture different latent features to achieve
a heterogeneous alignment. The combined local distillation
loss Lloc is expressed as:

Lloc = Lt +
1

L

L∑
l=1

Ll
s, (14)

where L indicates the number of selected latent layer features.
While local distillation shares some similarities with feature-
based knowledge distillation, the norm-guided distillation in
our LT-SpikingFormer is unique. Traditional feature-based
distillation mainly aims to minimize the distance between in-
termediate feature layers. In contrast, our norm-guided lo-
cal distillation uses norm constraints to project heterogeneous
features into a shared latent space. This is new considering
the differences between SNNs and CNNs. As equations show,
it lessens the impact of long-tailed data on feature distribution
and aligns student and teacher network features well.

Finally, the backbone network is trained using cross-
entropy loss, which is defined as follows:

Lce = − 1

N

N∑
i=1

C∑
j=1

ȳij log(yij), (15)

where N and C represent the number of samples and the
number of classes, respectively. ȳij is the actual label for the
i-th sample belonging to the j-th class. yij is the prediction
made by the student model that the i-th sample belongs to the
j-th class.

Overall, the above three loss functions during the represen-
tation learning stage are assembled as a whole optimization
objective:

L = Lce + λgloLglo + λlocLloc, (16)

where λglo and λloc are the adjustable loss weight coeffi-
cients. This unified loss function integrates the contributions
from both distillation strategies, promoting the effective train-
ing of the LT-SpikingFormer in the context of long-tailed data
challenges.

4 Experiments
4.1 Experimental Setup
In this section, we conduct comprehensive experiments to
evaluate the proposed LT-SpikingFormer framework and val-
idate its efficacy in the context of long-tailed learning tasks.
Initially, a series of analytical experiments were undertaken to
substantiate our hypotheses and provide an in-depth examina-
tion of the framework’s constituent components. Specifically,
these analyses encompassed: 1) an overall performance eval-
uation of the model, 2) a comparative analysis of two distinct
distillation strategies, 3) a sensitivity analysis of hyperparam-
eters, and 4) an assessment of the impact of data augmenta-
tion strategies. Subsequently, we performed a thorough com-
parison of our proposed method with prevailing supervised
learning approaches on benchmark long-tailed datasets, in-
cluding CIFAR10/100-LT and ImageNet-LT.

Model. We propose the LT-SpikingFormer framework,
which utilizes SpikingFormer, a spiking neural network based
on the self-attention mechanism, as the backbone for the stu-
dent model. For small-scale datasets like CIFAR10-LT and
CIFAR100-LT, we use ResNet-32 as the teacher model, and
for larger datasets like ImageNet-LT, we employ ResNet-50.
During the training of the student model, we apply cross-
entropy (CE) loss for the independent classifier and weighted
Kullback-Leibler (KL) divergence for the distillation classi-
fier to optimize the knowledge distillation process.

To further improve the student model, we propose a
novel feature mapping strategy that uses norm constraints.
This strategy maps the output of the teacher model and the
intermediate-level information from the student model into a
shared latent space. The student model, based on the Spike-
Transformer framework, is divided into three equal parts, and
the output of each segment is used as the exit point for feature
mapping. Each exit point is made up of spike blocks, which
are essential for transferring information from the teacher to
the student.

Datasets. For the datasets, we assess our method using
two small-scale datasets, CIFAR10-LT and CIFAR100-LT,
and one large-scale dataset, ImageNet-LT. Long-tailed ver-
sions of CIFAR-10 and CIFAR-100 were generated using the
approach described in [Cao et al., 2019], where the imbalance
factor β is the ratio of the sample size of the most frequent
class to the least frequent class. In our experiments, β was set
to 100, 50, and 10, respectively. The original validation sets
of CIFAR10 and CIFAR100 were used directly for testing.
For ImageNet, we generated the long-tailed variant by sam-
pling according to a Pareto distribution with a power value αp
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Method Architecture CIFAR10-LT CIFAR100-LT
β = 100 β = 50 β = 10 β = 100 β = 50 β = 10

Single-Stage Training

CB-Focal [Cui et al., 2019] ResNet-32 74.57 79.27 87.49 39.60 45.32 57.99
LDAM-DRW [Cao et al., 2019] ResNet-32 77.03 79.32 88.16 42.04 45.11 58.71
LDAM-DAP [Jamal et al., 2020] ResNet-32 80.0 82.3 87.4 44.08 49.16 58.00
LA [Menon et al., 2020] ResNet-32 77.7 - - 43.9 - -
IBLLoss [Park et al., 2021] ResNet-32 77.97 82.38 87.90 44.96 48.92 59.54
MiSLAS [Rangwani et al., 2022] ResNet-32 82.1 85.7 90.0 47.0 52.3 63.2
VS+SAM [Wei et al., 2023] ResNet-32 82.4 - - 46.6 - -
LCReg [Liu et al., 2024] ResNet-32 83.1 86.5 91.2 47.6 53.1 64.2
ProCo [Du et al., 2024] ResNet-32 85.9 88.2 91.91 52.8 57.1 65.5

Multi-Stage Training

MDCS [Zhao et al., 2023] ResNet-32 85.8 89.4 - 46.0 50.5 62.3
BKD [Zhang et al., 2023] ResNet-32 81.72 83.81 89.21 45.00 49.64 61.33
NCL++ [Tan et al., 2024] ResNet-32 86.1 88.0 - 54.8 58.2 -

SpikingFormer Backbone
SpikingFormer SpikingFormer 72.04 77.51 85.69 39.08 41.77 46.00
SpikingFormer+Focal [Lin, 2017] SpikingFormer 74.11 81.18 90.01 41.74 47.96 49.03
SpikingFormer+DRW SpikingFormer 76.74 82.52 88.24 43.68 48.73 52.09

LT-SpikingFormer (ours) SpikingFormer 86.71 89.10 93.97 55.94 60.66 67.53

Table 1: Results on CIFAR10-LT and CIFAR100-LT datasets with β=10, β=50 and β=100.

= 6. The classes were categorized into Head, Medium, and
Tail groups, and classification results were computed sepa-
rately for each group.

For data augmentation, CIFAR10/100-LT datasets used
weak augmentation techniques such as cropping, horizontal
flipping, and rotation. Strong augmentation included these
basic methods along with CIFAR10Policy and mixup [Zhang,
2017]. For ImageNet-LT, weak augmentation consisted
of cropping, horizontal flipping, rotation, and ColorJitter.
Strong augmentation for ImageNet-LT included mixup and
cutmix [Yun et al., 2019] to ensure a fair comparison.

Baselines. In our experiments, we established multiple
baselines to assess the performance of LT-SpikingFormer.
The primary baseline was the SpikingFormer network itself,
which served as the backbone of the student model across all
experiments. This allowed for a consistent comparison of im-
provements introduced by LT-SpikingFormer. Additionally,
we integrate the backbone model with state-of-the-art meth-
ods designed for long-tailed data distributions and compare
their performance with that of our proposed method.

Optimization. For optimization, different optimizers were
used for the student and teacher models. The student model
employed AdamW with a weight decay of 0.01, a batch
size of 128, and a cosine annealing learning rate starting at
0.0005 for 600 epochs on the CIFAR10/100-LT dataset. For
ImageNet-1K, the learning rate was 0.001, and training lasted
320 epochs. The teacher model, based on CNN, was opti-
mized using Sharpness-Aware Minimization (SAM) to im-
prove generalization.

4.2 Result
We evaluate the proposed LT-SpikingFormer method against
both single-stage and multi-stage training approaches using
the CIFAR10-LT, CIFAR100-LT, and ImageNet-LT datasets.

Method Architecture ImageNet-LT

Head Medium Tail All

Single-Stage Training

CB-Focal [Cui et al., 2019] ResNet-50 39.6 32.7 16.8 33.2
cRT [Kang et al., 2020] ResNet-50 62.5 47.4 29.5 50.3
LDAM-DRW [Cao et al., 2019] ResNet-50 61.1 48.2 28.3 49.9
LA [Menon et al., 2020] ResNet-50 61.1 47.5 27.6 50.1
MiSLAS [Zhong et al., 2021] ResNet-50 62.9 50.7 34.3 52.7
LDAM+DRW+SAM [Rangwani et al., 2022] ResNet-50 62.0 52.1 34.8 53.1
RBL [Peifeng et al., 2023] ResNet-50 64.8 49.6 34.2 53.3
LCReg [Liu et al., 2024] ResNet-50 - - - 55.3
ProCo [Du et al., 2024] ResNet-50 68.2 55.1 38.1 57.8

Multi-Stage Training

DiVE [He et al., 2021] ResNeXt-50 64.06 50.41 31.46 53.10
BKD [Zhang et al., 2023] ResNet-152 54.6 37.2 20.4 41.6
NCL++ [Tan et al., 2024] ResNet-50 - - - 58.0

SpikingFormer Backbone

SpikingFormer Spikingformer 61.31 51.08 30.36 51.14
SpikingFormer+Focal[Lin, 2017] SpikingFormer 60.92 52.20 35.84 52.38
SpikingFormer+DRW SpikingFormer 62.39 54.00 41.81 54.72

LT-SpikingFormer(ours) SpikingFormer 65.40 59.68 43.59 58.66

Table 2: The overall Top-1 accuracy, as well as the Top-1 accuracy
for the Head, Medium and Tail, on the ImageNet-LT dataset.

All the methods examined are specifically designed to handle
long-tailed data distributions.

Training results on small-scale. The table 1 present the
training outcomes for CIFAR10-LT and CIFAR100-LT with
imbalance factors of 10, 50, and 100, respectively. The pro-
posed LT-SpikingFormer method achieves substantial perfor-
mance improvements over competing approaches. Specif-
ically, the LT-SpikingFormer model outperforms the back-
bone model by 14.67% on CIFAR10-LT and 16.86% on
CIFAR100-LT. When compared to the distillation method
BKD, our results show a 5%-10% improvement on both
datasets. Notably, the common multi-stage training strategy
in long-tailed learning typically involves the use of expert
models. Our method demonstrates approximately 1% higher
performance than MDCS, which is based on a self-distillation
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Figure 4: Confusion matrices for our method applied to the CIFAR10-LT dataset with imbalance factors of 10, 50 and 100.

Figure 5: Experiments on the influence of loss weight λglo and λloc

distribution on model performance.

w/MixUp Lce Lglo Lloc Accuracy(%)

✗ ✓ ✗ ✗ 72.04
✓ ✓ ✗ ✗ 76.54
✓ ✓ ✓ ✗ 80.99
✓ ✓ ✗ ✓ 83.62
✓ ✓ ✓ ✓ 86.71

Table 3: An ablation study was conducted on the CIFAR10-LT
dataset with an imbalance factor (β) of 100. The term w/MixUp
refers to the use of weak-strong augmentation. The cross-entropy
loss (Lce) serves as a fundamental component of the network and is
therefore not used for ablation comparison experiments. Lglo rep-
resents the Logits-based Global loss, and Lloc corresponds to the
Norm-reduced Local loss.

expert model, on CIFAR10-LT, with similar improvements
observed on CIFAR100-LT.

Training results on large-scale. In table 2, we present
the overall Top-1 accuracy for ImageNet-LT, along with the
Top-1 accuracy for head, medium and tail categories. The LT-
SpikingFormer outperforms other competing methods on this
dataset. To ensure a fair comparison, we re-implemented cer-
tain multi-stage networks under a consistent training environ-
ment. On the ImageNet-LT dataset, our LT-SpikingFormer
model demonstrates a 7.52% improvement over the back-
bone model. Compared to existing methods such as DiVE
and BKD, our LT-SpikingFormer achieves state-of-the-art
(SOTA) performance under identical conditions.

4.3 Ablation Study and Further Analysis

Ablation studies on all components. As detailed in table 2,
we evaluate the proposed components, including the Logits-
based Global loss (Lglo), Norm-reduced Local loss (Lloc),
and weak-strong augmentation (w/mixup). When both Lglo

and Lloc are marked as ✗ and Lce is ✓, it indicates that only
the backbone model, SpikingFormer, is used for training. The
✗ in w/MixUp signifies that the data augmentation applied is
limited to weak augmentation. As shown in table 3, imple-
menting the LT-SpikingFormer with a combination of strong
and weak augmentations increases performance from 72.04%
to 76.54%, demonstrating the efficacy of mixup in handling
long-tailed distributions. When the teacher model is intro-
duced and the Lglo and Lloc losses are applied during train-
ing, the overall model performance improves by 4.45% and
7.08%, respectively. Lastly, applying the full distillation loss
results in a further significant performance boost, raising ac-
curacy to 86.71%.

Overview of the Imbalanced Classification Perfor-
mance. Fig. 4 presents three confusion matrices for our
method applied to the CIFAR-LT dataset, with imbalance fac-
tors of 100, 50, and 10, respectively. As depicted in the figure,
our method performs effectively, particularly when the imbal-
ance factor is large. As the imbalance factor increases, the
method maintains high classification accuracy, with promi-
nent values along the diagonal indicating robust prediction
accuracy across all classes. Even at an imbalance factor
of 100, the misclassification rate remains low, and the off-
diagonal values are minimal. These results demonstrate that
our method achieves excellent performance even in the pres-
ence of highly imbalanced datasets, highlighting its strong
robustness and applicability.

Influence of loss weight λglo and λloc. λglo and λloc rep-
resent the weights of the two loss functions, and are used to
control their relative contributions to the total loss. To deter-
mine suitable values for λglo and λloc, we performed a se-
ries of experiments on the CIFAR10-LT dataset (β=100). As
illustrated in Fig. 5, the optimal performance was achieved
when λglo = 0.5 and λloc = 0.05. This result indicates that
our model has effectively balanced the use of external guid-
ance for knowledge transfer, the refinement of internal feature
representations, and its ability to learn directly from the data,
thereby achieving the best overall performance.
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