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Abstract

Entropy Regularisation is a widely adopted tech-
nique that enhances policy optimisation perfor-
mance and stability. Maximum entropy reinforce-
ment learning (MaxEnt RL) regularises policy eval-
uation by augmenting the objective with an en-
tropy term, showing theoretical benefits in policy
optimisation. However, its practical application in
straightforward direct policy gradient settings re-
mains surprisingly underexplored. We hypothesise
that this is due to the difficulty of managing the
entropy reward in practice. This paper proposes
Entropy Advantage Policy Optimisation (EAPO),
a simple method that facilitates MaxEnt RL im-
plementation by separately estimating task and en-
tropy objectives. Our empirical evaluations demon-
strate that extending Proximal Policy Optimisa-
tion (PPO) and Trust Region Policy Optimisation
(TRPO) within the MaxEnt framework improves
optimisation performance, generalisation, and ex-
ploration in various environments. Moreover, our
method provides a stable and performant MaxEnt
RL algorithm for discrete action spaces.

1 Introduction

Entropy regularisation is pivotal to many practical deep re-
inforcement learning (RL) algorithms. Practical algorithms
such as Trust Region Policy Optimization (TRPO) [Schul-
man ef al., 2015a] penalise the policy improvement or greedy
step using Kullback-Leibler (KL) divergence (also called as
relative entropy) to regularise the deviations between consec-
utive policies. This method, often termed KL regularisation,
has been the foundational approach for contemporary deep
RL algorithms [Vieillard er al., 2020; Geist et al., 2019].
Another critical approach, Maximum Entropy RL (Max-
Ent RL) [Ziebart, 2010; Haarnoja et al., 2018; Levine, 2018;
Marino et al., 2021; Cetin and Celiktutan, 2022], augments
the conventional RL task objective with an entropy term to
directing policies toward areas of higher expected trajectory

!"Technical appendix and codes available at: https://github.com/
rnilva/eapo-ijcai25
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Figure 1: Visitation frequencies of policies trained on the modi-
fied MiniGrid-Empty—-8x8 task using naive MaxEnt (PPO with
the augmented entropy reward) and EAPO with discount factors
yu € (0.9,0.99) and TD(0) for entropy estimation. We compare
3 temperatures 7 € (0.002,0.003,0.004), using vy = 0.99. L
shows the mean length of trajectories, where agents minimise to-
ward the optimal value of 10. See the appendixfor details.

entropy. It is known to improve the exploration and robust-
ness of policies by promoting stochasticity [Eysenbach and
Levine, 2019; Eysenbach and Levine, 2021]. In practice, this
can be implemented by adding an entropy reward to the orig-
inal task reward.

Recent theoretical advancements have shown the effective-
ness of MaxEnt RL in accelerating the convergence of pol-
icy gradient (PG) methods [Mei et al., 2020; Agarwal et al.,
2021; Cen et al., 2022]. However, despite the enticing theo-
retical support, a significant gap exists between theory and
practice. While off-policy methods like Soft Actor-Critic
[Haarnoja et al., 2018] have demonstrated practical success
with MaxEnt RL, its application in simpler direct Softmax
policy gradient settings remains surprisingly underexplored.


https://github.com/rnilva/eapo-ijcai25
https://github.com/rnilva/eapo-ijcai25

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

We hypothesise that this research gap is potentially at-
tributed to the difficulty of handling the entropy reward in
practice. [Yu et al., 2022] empirically analysed the problem-
atic nature of the entropy reward using SAC. Authors pointed
out that in an episodic setting, the entropy return is largely
correlated to the episode’s length, thereby rendering the pol-
icy overly optimistic or pessimistic, and even in infinite-
horizon settings, the entropy reward can still obscure the task
reward. This raises a fundamental question: can MaxEnt RL
provide practical benefits in straightforward stochastic Soft-
max policy gradient settings?

Inspired by this observation, we proposed a simple but
practical approach to control the impact of the entropy re-
ward. In this paper, we introduce Entropy Advantage Pol-
icy Optimisation (EAPO), a method that estimates the task
and entropy objectives of the regularised (soft) objective sep-
arately. By employing a dedicated discount factor for the en-
tropy reward and utilising Generalised Advantage Estimation
(GAE) [Schulman et al., 2015b] on each objective separately,
EAPO controls the effective horizon of the entropy return
estimation and the entropy regularisation on policy evalua-
tion. EAPQO’s simplicity requires only minor modifications to
existing advantage actor-critic algorithms, providing a clear
demonstration of impact of MaxEnt RL framework in basic
settings. Our empirical evaluation not only extend the well-
established PPO [Schulman et al., 2017b] and TRPO [Schul-
man et al., 2015al, but also demonstrate superior stability
in discrete action spaces compared to TD-SAC [Zhou et al.,
2024], a discrete version of SAC with improved stability.

Figure 1 illustrates the challenge of learning the MaxEnt
policy for an episodic task using a naive implementation that
simply augments the task reward with an entropy reward. In
this task, the agent is required to reach the goal state while
performing the minimum number of actions. The naive Max-
Ent agent fails to learn the optimal stochastic policy, resulting
in two failure modes: acting almost deterministically when
the temperature 7 is low or wandering around indefinitely
when 7 is high. In contrast, EAPO successfully achieves
the near-optimal stochastic policy by utilising TD(0) learning
[Sutton and Barto, 2018] (i.e., set GAE X to 0) for the entropy
objective. Additionally, the example demonstrates that low-
ering the discount factor for the entropy estimation -3 helps
prevent the inflation of the entropy reward [Yu et al., 2022]
and reduces sensitivity to the temperature.

In this work, we primarily focus on empirical examinations
of the Softmax MaxEnt Policy Gradient method [Levine,
2018; Mei et al., 2020] across diverse environments: 4 dis-
cretised [Tang and Agrawal, 2020] MuJoCo continuous con-
trol tasks, 16 Procgen episodic environments [Cobbe er al.,
20201, and the MiniGrid DoorKey environment [Chevalier-
Boisvert et al., 2023]. Our results demonstrate the efficacy of
MaxEnt RL policies in improving optimisation performance,
generalization, and potential exploration benefits.

2 Background

2.1 Preliminaries

This work considers a finite undiscounted Markov De-
cision Process (MDP) (S, A,r,p,T), where S is the

set of states s and A is the set of actions a, and p is
the initial state distribution. 7 is the transition function
T:8 x A— A(S), where A(S) is the probability simplex
over S, and r is the reward function r : S x A — R.
We introduce discount factors vy and 73 as variance
reduction parameters as in [Schulman et al., 2015b]. We
define the value function of state s under the policy 7 as
Vﬂ(s) = Eso=s,ai~m(-|se).si41~T (s1,a0) [Z;}io 7€/T(St’at)]'
Also, the action-value of performing action a
at state s under the policy 7 is Q7(s,a) =
ESO:S’a0:a7at>O~7T('|3t):5t+lNT(St7at) [Z:io 7€/T(St, at)]'
And define the advantage function A™ as A™(s,a) =
Qﬂ(&a) - Eﬂ(\s) [Qﬂ(& )] - QW(S,CL) - Vﬂ(s) We also
define the cumulative discounted entropy return of state s
under policy 7 as

Vii(s) = E o [Z —h logﬂ(at|st)1 Y

gt+11Nt7—(St7att) L=0
In deterministic MDPs, the cumulative discounted entropy re-
turn V7 (s) represents the Shannon entropy of the possible
future trajectories’ distribution [Levine, 2018; Tiapkin et al.,
2023], and we refer to it as trajectory entropy throughout this
work for brevity.

The objective of Maximum Entropy Reinforcement Learn-
ing (MaxEnt RL), or often Regularised MDPs [Geist et al.,
2019; Neu et al., 2017] is to maximise the expectation of the
sum of the value and the trajectory entropy with respect to the
initial state distribution:

o0
J(m) = SO@p ny{,r(st,at) — A rlogm(as:)| (2)
AT, =0
5?+1NT ¢
= Ep (VT (s0) + 7V3(s0)] 3)
so~

where the temperature parameter 7 > 0 is a hyperparameter
to be controlled to balance the significance between these two
objectives, and we introduce the distinct discount factors. We
ensure the objective J () is finite for all policies by assuming
either an episodic MDP or an MDP with an absorbing state
that yields zero reward.

2.2 Soft Advantage Function

Analogous to the definition of the action-value function Q™
as the expected cumulative rewards after selecting an action
a [Sutton and Barto, 2018], we define Q7 as the expected
future trajectory entropy after selecting an action:
Q3 (st,ar) = E [y Vii(se41)] - 4)
stp1~T (5¢,a4)

The definition arises naturally from the consideration that un-
certainty exists due to the stochastic policy at the current
state, which has settled by the time an action is performed.
Consequently, the ()7, is simply the expected discounted fu-
ture trajectory entropy.

From the recursive relation of trajectory entropy from (1)
and the defintion (4), the following relation is derived:

Vii(ise) = E  [—logm(a¢|st) + Q% (se,ar)].  (5)

ag~m(-|se
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We now define the entropy advantage function A7, analogous
to the conventional advantage function:

Aqy(sta0) = Qf(se,a0) — E_[QF(sr,a)]
= Q%(s1,a) = Vii(s) + E [~logm(alsi)].  (6)

We let V™ (s) := V7 (s) + 7V (s) as the soft value func-
tion, and let Q7 (s,a) = Q™ (s) + 7Q%,(s, a) as the soft Q-
function. Finally, we define the soft advantage function:

A" (¢, a) = A" (s¢,a¢) + TAY (5t at) (7
= Q" (st,ar) = V7 (st)
QR (5000 ~ V() + E_[-log(als.))

= Q”(st,at) — f/ﬂ(st) + 7'(1[337T [— log w(a\st)] . (8

2.3 Soft Policy Gradient Theorem

[Shi et al., 2019] showed that it is possible to optimise the soft
objective using direct policy gradient from samples. Thus,
we can use the soft advantage function to find the policy that
maximises the MaxEnt RL objective.

Theorem 1 (Soft Policy Gradient). Ler J(w) the MaxEnt RL
objective defined in 2. And my(a|s) be a parameterised policy.
Then,

A% (51, a1) =y A(se, ar) + v T AT (51, ar),
VoJ(mg) = E [fi:(st,at)Vg 1og7r9(at\st)} )

S0~pP,
ai~T,
Stp1~T

We provide the proof in the appendix. While the exact
soft policy gradient theorem requires the corresponding ex-
ponential discount term for each advantage estimate, we use
the approximate policy gradient in this work by replacing
AT (s4,a¢) with A™(s¢,a;). It is worth noting that when the
exact gradient is known, [Mei et al., 2020] proved that the
soft policy gradient has the global convergence property and
may converge faster than the policy gradient without entropy
regularisation despite the objective being biased. However, in
our practical setup, this is not guaranteed.

3 Related Works

3.1 MaxEnt RL in Discrete Action Spaces

Off-policy methods like Soft Q-Learning and SAC [Haarnoja
et al., 2017; Schulman et al., 2017a] learn soft Q-functions
for discrete action spaces but often suffer from instability
due to the coupled challenges of temperature adjustment,
off-policy soft Q-function estimation, and policy updates
[Christodoulou, 2019; Zhou et al., 2024; Xu et al., 2021].
In contrast, EAPO utilises direct policy gradient and approx-
imates the soft value function V7 (s) using GAE from on-
policy samples, making it less prone to the estimation error at
the cost of sample efficiency. This work also demonstrates
the better policy optimisation stability and performance of
EAPO over SD-SAC [Zhou et al., 2024] across procgen en-
vironments.

3.2 Soft Policy Gradient Method

A more directly related work is [Shi et al., 2019], which ex-
plored a soft policy gradient method emphasising its inherent
simplicity and proved the soft policy gradient theorem. Their
method also involves estimating Q™ from off-policy samples
and introduces additional techniques for mitigating the esti-
mation issues. On the other hand, EAPO uses the soft advan-
tage function A™ for policy gradient estimator with additional
hyperparameters to reduce variance and seamlessly integrates
with existing techniques, such as value function normalisa-
tion, due to its structural equivalence between its method for
estimating the entropy advantage function and the conven-
tional advantage function.

3.3 Reward Inflation Problem

[Yu er al., 2022] showed that the entropy reward of MaxEnt
RL can cause reward inflation from indefinite exploration in
episodic settings as it is given at every time step before ter-
mination. We show that having a lower discount factor for
entropy objective can mitigate the problem and establish pos-
itive implications for the use of entropy rewards in policy op-
timisation.

3.4 Entropy Cost vs. MaxEnt RL

A more common approach to applying entropy regularisa-
tion to PG methods is to add an entropy cost term to the
sample-based policy gradient estimator to maximise the pol-
icy entropy at each sampled state, retaining the stochasticity
of the policy during optimisation process [Mnih et al., 2016;
Schulman er al., 2017b]. While this entropy bonus term
remains a heuristic approach despite its practical success
[Ahmed et al., 2019], MaxEnt RL provides a theoretically
grounded framework that directs a policy toward regions of
higher expected trajectory entropy, albeit at the cost of bias
imposed on the objective [Levine, 2018; Schulman et al.,
2017al. This work demonstrates the performance improve-
ments of the MaxEnt approach of EAPO over PPO’s entropy
bonus term.

4 Proposed Method

4.1 Overview

In this section, we develop our Entropy Advantage Policy Op-
timisation (EAPO) method. At its core, EAPO independently
estimates both the value advantage function and the entropy
advantage function and combines them to derive the soft ad-
vantage function. EAPO adopts a separate prediction head
to the conventional value critic to approximate the trajectory
entropy of a state, which is then used for entropy advantage
estimation. We extend the PPO [Schulman et al., 2017b] and
TRPO [Schulman er al., 2015a] by substituting the advantage
estimate with the soft advantage estimate and omitting the
entropy bonus term.

4.2 Entropy Advantage Estimation

The entropy advantage A7, is estimated from the sampled log
probabilities of the behaviour policy. We utilise the Gener-
alised Advantage Estimation (GAE) [Schulman et al., 2015b]
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for a variance-reduced estimation of the entropy advantage:

147‘LGA]’:‘4(>\’H.7'7”*{)(Si57 at) — Z(AH’YH)Z(SZ-ily (10)
1=0
where 6]t == —log m(at|st) +v1 V7 (s141) — Vi (st), and v

and Ay are the discount factor and GAE lambda for entropy
advantage estimation, respectively. Note that the equation is
the same as the GAE for the conventional advantage, except
the reward term is replaced by the negative log probability.
This simplicity is also consistent with the remark that the only
modification required for the MaxEnt policy gradient is to add
the negative log probability term to the reward at each time
step [Levine, 2018].

4.3 Entropy Critic

An entropy critic network, parameterised by w, approxi-
mates the trajectory entropy V7 (-;w). To train the network,

we construct the TD(Ay) bootstrapped target V(s:;w)
from sampled trajectories. We estimate the entropy ad-
vantages using the entropy critic, and the target is de-
rived as V;{(st; w) = AMGAEQH M) (5, ay; w) + Vi (8¢5 w).
Then the entropy critic is trained by minimising the mean
squared error using the semi-gradient method: L™ (w) =
R . 2

[, [é (Vﬂ(st;w) - Vﬁ(st;w’)) }, where w’ indicates it is
treated as a constant. Note that this process is exactly the
same procedure of training the standard critic, except we use
negative log probabilities instead of rewards.

Throughout the conducted experiments, we implemented
the entropy critic network to share its parameters with the re-
turn value critic V¢V, with only the final linear layers for out-
putting its prediction distinct. This form of parameter sharing
allows minimal computational overhead to implement EAPO.

Further, we employ the PopArt normalisation [van Hasselt
et al., 2016] to address the scale difference of entropy and
return estimates. It is important to note that the negative log
probability — log m(a¢|s;) is collected for every timestep. In
contrast, the reward can be sparse, leading to significant mag-
nitude variations based on the dynamics of the environment
[Hessel er al., 2019]. This discrepancy can pose challenges,
especially when using a shared architecture. Thus, utilising
the value normalisation technique like PopArt is pivotal for
the practical implementation of EAPO.

4.4 Entropy Advantage Policy Optimisation
Subsequently, we integrate the entropy advantage with the

standard advantage estimate A7,, also computed using GAE
and return value critic parameterised by ¢, analogously to
the entropy advantage estimation process we describe above.
Then the soft advantage function A" is

Aﬂ' (3t7 at) _ 121V,GAE()\V,w‘/)(st7 at)
_,_TA“rLGAE(AH-,“m)(st’at)7 (11)
where AV:GAEQV.v) s the value advantage estimation using
GAE. Finally, we substitute the estimated conventional ad-

vantage function in the policy objective of PPO and TRPO
with A™. The PPO objective function becomes:

L(0, ¢, w)
= K, |min(r! A7 (s;, aq), clip(rf, 1 — €, 1+ €) A7 (s, at))]
+ (LY (¢) + co L (w)), (12)

where r? is the probability ratio between the behaviour pol-
icy g, (at|s¢) and the current policy 7y (a¢|st), and ¢1, o
and € are hyperparameters to be adjusted. The value critic
loss LV is also defined by the mean square error, LY (¢) =

N o 2 N
E, [% (V(St; o) — V’T(st)) } where V™ is the return value

estimate.
Similarly, the optimisation problem of TPRO becomes:

rglaé(fEt [rfflf(&a)}, s.t. By [KL(mg,,||me)] <6, (13)
€
where 0 is a hyperparameter.

4.5 Combining KL and Entropy Regularisation

EAPO, by extending TRPO, combines KL regulasization on
policy updates and entropy regularisation on policy evalua-
tion. Recent works [Vieillard et al., 2020; Geist et al., 2019;
Shani er al., 2020] suggest such combination could lead
to improved convergence in regularised MDPs. Exploring
the practical implications of this combined regularisation re-
mains an interesting direction for future work.

S Experiments

In this section, we evaluate the policy optimisation perfor-
mance of EAPO against the corresponding baseline on-policy
algorithms, PPO and TRPO. Specifically, we assess the op-
timisation efficiency for episodic tasks and the generalisa-
tion capability of EAPO on 16 Procgen [Cobbe et al., 2020]
benchmark tasks. Moreover, we investigate EAPO’s efficacy
on continuing control tasks using 4 discretised popular Mu-
JoCo [Todorov et al., 2012] tasks, and we analyse the im-
pact of hyperparameters 7, v, and Ay. Finally, we include
MiniGrid-DoorKey—8x8 task [Chevalier-Boisvert et al.,
2023] to examine if EAPO can help solve the hard exploration
task.

We implemented EAPO using Stable-baselines3 [Raffin et
al., 2019] and conducted experiments on environments pro-
vided by the Envpool [Weng et al., 2022] library. All em-
pirical results are averaged over 10 random seeds, with 95%
confidence intervals indicated.

For the hyperparameter selection, we conducted a brief
search for baseline algorithm hyperparameters that perform
reasonably well, tuning only the EAPO-specific hyperparam-
eters such as 7y to ensure fair comparisons. Implementation
details and hyperparameters are reported in the appendix.

5.1 Procgen Benchmark Environments

We evaluate PPO-based EAPO on the 16 Procgen benchmark
environments [Cobbe er al., 2020], which feature discrete
actions and image-based observations. These environments
include tasks with varied correlations between the episode
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Figure 2: Left: Procgen test results of EAPO with v = 0.8, Ay = 0.95, and 7 € (0.02,0.005) against PPO with entropy coefficients
¢ € (0.001,0.01). Right: The mean normalised score for both test and training.

length and the return, making them suitable for testing Max-
Ent RL algorithms. Following [Cobbe et al., 2020], we train
on 200 procedurally generated levels and test on 100 unseen
levels using easy difficulty setting. The same set of hyperpa-
rameters is used across all environments. We also compare
against SD-SAC [Zhou et al., 2024], a discrete version of
SAC [Haarnoja et al., 2018] that adopts a clipping mecha-
nism for Q-function update and introduces entropy penalty to
mitigate policy entropy collapsing. For hyperparameter tun-
ing, we selected three representative environments: BigFish
(long survival), Climber (indefinite exploration) and Dodge-
ball (survival followed by quick goal-reaching). These tasks
represent different episode length-return correlations.

Figure 2 and Table 1 summarise the generalisation test re-
sults of EAPO, baseline PPO agents with varying 7 and en-
tropy bonus coefficients, and SD-SAC. The mean normalised
score is computed as in [Cobbe et al., 2020]. EAPO with
1 = 0.8 and Ay = 0.95 significantly surpasses the baseline
PPO, achieving a 29% higher mean normalised score (0.54
+ 0.06 vs 0.42 £ 0.07) and consistently outperforming across
most environments, with particularly large improvements in
Plunder (+116%), BigFish (+55%), and Dodgeball (+60%).
These results demonstrate EAPO’s effectiveness in both test
(generalisation) and training (optimisation) phases. Notably,
SD-SAC significantly underperforms in these environments,
highlighting the difficulty of stabilising discrete SAC. SD-
SAC particularly struggles with the reward inflation prob-
lem, as showen by the its pattern of performance: it achieves
reasonable results only in environments with positive length-
return correlation (StarPilot, Fruitbot and BigFish) where ex-
tended episodes naturally lead to higher returns, while failing
in environments allowing indefinite actions without reward
(e.g., Plunder, Leaper). We provide the used hyperparame-
ters and the full learning curves of SD-SAC in the appendix.

Moreover, we investigated the impact of the GAE A3 for
the entropy advantage estimation, finding it does not signifi-
cantly affect performance. This suggests adjusting v and 7

is usually sufficient in episodic tasks given a small Ay .

Figure 2 (Right) shows the improved generalisation of
high-entropy policies. Higher temperature 7 favours high-
entropy trajectories (see Figure 3), performing similarly or
worse during the training but better in testing. This aligns
with [Eysenbach and Levine, 2021], showing MaxEnt poli-
cies’ robustness to distributional shifts.

Figure 4 demonstrates that the lower discount factor -y
mitigates the reward inflation problem [Yu er al., 2022]. A
small 4, significantly improves the performance in envi-
ronments where agents can traverse without meaningful re-
ward gain (Dodgeball and Climber) while maintaining perfor-
mance in environments inherently requiring longer episodes
(Bigfish, Bossfight).

5.2 Discretised Continuous Control Tasks

We measure the performance of EAPO extending PPO
(EAPO-PPO) and TRPO (EAPO-TRPO) on continuing con-
trol tasks in 4 MuJoCo environments, comparing them
against their corresponding baselines. For the PPO base-
lines, we searched for the best entropy coefficient within the
set ¢ € (0.0001,0.001,0.01). Additionally, we tested the
PPO and TRPO agent with the reward augmented by the en-
tropy reward —7 log 7(a¢|s;) to evaluate the impact of sepa-
rating the MaxEnt objective. Note that the entropy reward-
augmented baseline is effectively regarded as EAPO with
Y = 7v and Ay = A, but without the entropy critic. We
discretise the continuous action space using the method pro-
posed by [Tang and Agrawal, 2020]. Results using the orig-
inal continuous action space are provided in the appendix.
We measured the mean episodic return of the stochastic pol-
icy periodically over 100 episodes during the training. We
compare EAPO to the PPO agent with the best-performing
entropy coefficient, and with the entropy reward augmented
PPO.

The training curves are presented in Figure 5. The result
shows that by adjusting 4, and Ay, we can configure EAPO
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Env EAPO 77:0.8 A#:0.95 EAPO 72;:0.9 A#:0.0 PPO SD-SAC

’ 7:0.02 7:0.005 7:0.02 7:0.005 c:0.01 c:0.001 :0.02
CoinRun  8.344+0.24 8314022 7.594+0.51 8.33+0.36 8.13+0.22 7.384+2.48 4.08+0.88
StarPilot  54.33+3.41 52.124+1.95 53.28+2.57 54.24+3.13 49.4+£3.72 50.57£24 32.35+£5.34
CaveFlyer 7.03+0.32 6.48+0.57 7.17£0.3  6.62+0.56 6.324+0.7 6.3£0.63  3.19+0.97
Dodgeball 13.64+0.68 11.59+0.86 13.23+0.63 12.34+0.85 8.51+0.98 7.2£1.14  0.90£0.33
Fruitbot ~ 27.28+0.74 26.5+0.9  27.19£1.14 26.57£1.32 2591+1.26 25.34+1.18 24.00£1.17
Chaser 10.5+£0.46 11.12+0.3 10.52+0.38 11.05+0.38 11.12+0.45 10.64+£0.4 1.32+0.56
Miner 10.13+0.38 8.9+0.84  10.13+0.5 9.08+£0.78 8.6+0.76  8.06+0.94 1.33£0.32
Jumper 57046  5.76+0.27 5.84+0.54 545+048 5.21+045 5.17+£0.44 5.00+0.72
Leaper 8.244+0.52 7.75£0.33 7.51+£1.17 7.884+0.67 6.54+09  6.61£1.06 2.56%1.11
Maze 6.5+0.48 5.7+0.27 5.75£0.52 5.56+£0.47 5.38+0.56 545+£031 4.78+0.89
BigFish  19.89+2.14 17.884+1.46 19.83+2.4 18.73£2.87 12.84+1.54 12.564+2.86 15.80£5.28
Heist 3.75+£0.66 2.97+0.67 4.22+0.58 3.06+0.49 2.11+0.54 1.68+0.5 3.36+1.00
Climber  7.43+0.87 8.0£0.5 6.29+0.74 7.22+0.52 6.78+0.68 6.22+0.48 2.60+0.68
Plunder 9.0£0.71  7.66%+1.15 9.55+0.9 8.35+1.38 4.16+0.55 3.94+1.23 1.35£0.45
Ninja 6.49+0.47 6.07+£0.46 6.43+0.41 6.21£0.37 6.09+£0.63 5.87+0.58 2.72+0.91
BossFight 7.494+0.77 9.58+0.66 7.82+0.71 9.38+0.59 7.61+0.76 5.15£3.32 5.40£1.23
Norm. 0.544+0.06 0.51£0.05 0.52+0.07 0.51+0.06 0.42£0.07 0.38+0.11 0.1140.10

Table 1: Mean episodic return and 95% CI from 10 seeds at the final timestep of tests on 100 unseen levels on 16 Procgen environments
(EAPO and PPO). For SD-SAC, we report the maximum mean episodic return and 95% CI from 5 seeds, since the value at the final timestep
is not representative due to its instability.
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Figure 3: Top: Mean episodic trajectory entropy of EAPO (v, = 0.8, Ay, = 0.95) and PPO with entropy cofficients ¢ € (0.01,0.001), in
a subset of Procgen environments during the test. Bottom: Mean episodic return during the test and the training. The high-entropy policy
outperforms the low one during the test while achieving matching performance during the training in Dodgeball and Leaper, and exhibits a
smaller generalisation gap in Dodgeball, Chaser and Leaper.
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Figure 4: Comparison of Mean episodic returns and mean episodic lengths of EAPO using different discount factors vy € (0.9,0.99) for
entropy return on 4 Procgen environments during the test. Results are averaged over 5 random seeds.
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Figure 5: Performance results on 4 MuJoCo tasks. Top: EAPO-PPO. Bottom: EAPO-TRPO.
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Figure 6: The return and trajectory entropy results of EAPO with 7 = 1 x 1075, v

to outperform or match the conventional entropy regularisa-
tion method throughout all environments. We found that the
best-performing values of vy and Ay vary depending on the
characteristics of the environment, similar to their value coun-
terparts v and )\, respectively. Although EAPO demonstrates
more stable performance compared to the entropy bonus, this
relatively modest performance gain suggests that EAPO may
be less efficient for continuing tasks. Figure 5 also demon-
strates that the adjustability adopted by EAPO improves the
naive implementation of the MaxEnt policy that augments the
entropy reward. We also provide ablation experiments on vy
and Ay, using PPO-based EAPO in the appendix.

5.3 MiniGrid-DoorKey-8x8 Environment

Finally, we evaluate the exploration performance of PPO-
based EAPO on the MiniGrid-DoorKey-8x8 environment
[Chevalier-Boisvert et al., 2023]. Figure 6 shows that EAPO
achieves consistent success, solving this hard exploration task
within 5M frames across all 10 seeds, while the baseline PPO
succeeds in only 3 seeds. However, EAPO did not improve
the stability since both EAPO and PPO were highly sensi-
tive to their common hyperparameters (such as vy and Ay).
Moreover, EAPO’s improvement in success rate appears to
contradict to the theory that entropy regularisation may not
effectively mitigate epistemic uncertainty [Mei ef al., 2020].

Timesteps

= 0.8 and Ay = 0 and PPO.

One possible explanation is that EAPO’s trajectory entropy
estimation, based on log probabilities from on-policy sam-
ples, tends to underestimate the entropy of previously visited
trajectories. This underestimation induces an implicit bias to-
ward exploring new trajectories.

6 Conclusion

We have introduced EAPO, a model-free on-policy actor-
critic algorithm based on the maximum entropy reinforce-
ment learning framework. Our approach facilitates a practical
MaxEnt RL algorithm by taking advantage of existing mech-
anisms for standard value learning in actor-critic algorithms
to the entropy objective. Through empirical evaluations,
EAPO has been shown to replace the entropy cost method
and that a more principled entropy maximisation method en-
hances policy optimisation. Moreover, by providing a sta-
ble MaxEnt method for discrete action spaces, EAPO en-
ables deeper investigation of the MaxEnt RL in emerging ap-
plications such as GFlowNets [Mohammadpour et al., 2024;
Tiapkin et al., 2024] and RLHF [Christiano et al., 2017]. We
anticipate that the method’s simplicity will encourage broader
adoption of MaxEnt RL and inference-based methods [Cetin
and Celiktutan, 2022; Marino et al., 2021; Ward et al., 2019]
in promising areas like competitive RL and robust RL.
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