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Abstract
Domain generalization (DG) aims to train mod-
els on multiple source domains to generalize ef-
fectively to unseen target domains, addressing per-
formance degradation caused by domain shifts.
Many existing methods rely on direct feature align-
ment, which disrupts natural sequence relation-
ships, causes misalignment and feature distortion,
and leads to overfitting, especially with signifi-
cant domain gaps. To tackle these issues, we pro-
pose a novel DG approach with two key mod-
ules: the Sample Difference Keeping (SDK) mod-
ule, which preserves natural sequence relationships
to enhance feature diversity and separability, and
the Sample Consistency Alignment (SCA) mod-
ule, which achieves indirect alignment by model-
ing inter-class and inter-domain relationships con-
sistencies. This approach mitigates overfitting and
misalignment, ensuring adaptability to significant
domain gaps. Extensive experiments demonstrate
that our framework consistently outperforms state-
of-the-art methods.

1 Introduction
In recent years, deep learning has achieved remarkable suc-
cess in fields like image recognition [Touvron et al., 2022],
natural language processing [Zhang et al., 2023a], and ob-
ject detection [Zou et al., 2023]. However, these advance-
ments typically rely on the assumption that training and test-
ing data share the same distribution (IID assumption), which
often does not hold in real-world applications. Factors such
as varying devices and environments can cause data distri-
bution shifts, leading to significant performance drops when
models are tested on new data—a challenge known as domain
shift. This issue severely limits the cross-domain generaliza-
tion of deep learning models, particularly in fields like medi-
cal imaging and autonomous driving, where data acquisition
is complex.

Domain Adaptation (DA) methods [He et al., 2023] ad-
dress domain shift by leveraging source domain data and a
small amount of target domain data. However, these methods

∗Corresponding author.

Figure 1: Illustrates the natural sequence relationships between sam-
ples across domains and class. It depicts how the similarity between
samples changes progressively: (1) the highest similarity occurs be-
tween same-class samples within the same domain (e.g., two images
of dogs from the ”Photo” domain); (2) slightly lower similarity ex-
ists between same-class samples from different domains (e.g., a dog
image from the ”Photo” domain and one from the ”Cartoon” do-
main); (3) further reduced similarity is observed between different-
class samples within the same domain (e.g., a dog image and an
elephant image from the ”Photo” domain); (4) the lowest similarity
occurs between different-class samples from different domains (e.g.,
a dog image from the ”Photo” domain and an elephant image from
the ”Cartoon” domain).

are limited when target domain data is unavailable. Domain
Generalization (DG) trains models on multiple source do-
mains to overcome this, enabling generalization to unseen tar-
get domains without relying on target domain data. Recently,
contrastive learning-based DG methods [Tong et al., 2023;
Hu et al., 2024; Chen et al., 2023b] have gained attention
for their ability to align features of same-class samples while
distinctly separating those of different classes, enabling fine-
grained feature representation.

However, traditional methods often focus narrowly on di-
rectly aligning same-class samples across source domains,
overlooking the natural sequence relationships between data
samples. This can lead to overfitting, as models may overem-
phasize local source-domain features while neglecting subtle
yet crucial global patterns essential for generalization. For
example, as shown in Figure 1, the similarity between a sam-
ple and another same-class sample within the same domain
(e.g., two images of dogs from the ”Photo” domain) should
naturally be higher than the similarity between a sample and
a same-class sample from a different domain (e.g., an image
of a dog from the ”Photo” domain and one from the ”Car-
toon” domain). Similarly, the similarity between a sample
and a same-class sample from a different domain should nat-
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urally be higher than that between a sample and a different-
class sample within the same domain (e.g., an image of a dog
and an image of an elephant from the ”Photo” domain). Fi-
nally, the similarity between a sample and a different-class
sample within the same domain should naturally be higher
than that between a sample and a different-class sample from
different domains (e.g., an image of a dog from the ”Photo”
domain and an image of an elephant from the ”Cartoon” do-
main). These sequential relationships provide critical cues for
generalization that humans intuitively recognize by observing
fine-grained micro-details. Ignoring these relationships often
results in models that fail to capture the rich semantic nuances
needed for robust cross-domain performance.

To address these challenges, we propose an innovative do-
main generalization framework that integrates the Sample
Difference Keeping (SDK) module and the Sample Consis-
tency Alignment (SCA) module. The main contributions of
our work are as follows:

1. We introduce the SDK module, which preserves the nat-
ural sequence relationships between samples across dif-
ferent domains and classes. This facilitates the learning
of diverse and discriminative features while reducing the
risk of overfitting to domain-specific patterns.

2. We propose the SCA module, which employs a novel
indirect alignment strategy based on structural relation-
ships. This strategy ensures inter-class consistency by
maintaining class separability across domains and inter-
domain consistency by capturing shared patterns while
preserving domain-specific characteristics. The SCA
module enhances the model’s generalization ability by
avoiding the misalignment and feature distortion issues
that are often present in direct alignment methods.

3. We conducted comprehensive evaluations on widely
used domain generalization benchmarks. The re-
sults demonstrate that our framework significantly out-
performs state-of-the-art methods, achieving superior
cross-domain generalization and robustness against un-
seen domains.

2 Related Work
Domain generalization (DG) tackles distribution shifts with-
out relying on target domain data, leveraging methods like
data augmentation [Su et al., 2023; Wang et al., 2024], rep-
resentation learning [Yu et al., 2024], and advanced strate-
gies such as meta-learning and ensemble learning [Chen et
al., 2023a] to enhance cross-domain generalization.

Recently, contrastive learning, a self-supervised approach,
has gained attention for its ability to learn robust represen-
tations by constructing positive and negative sample pairs.
Both unsupervised and supervised contrastive methods [He
et al., 2020; Khosla et al., 2020] have demonstrated strong
performance, attributed to their effective strategies for pair
construction and loss design.

In DG, contrastive learning has gained traction for its sim-
plicity and effectiveness:

• Direct Utilization and Integration: Studies [Motiian et
al., 2017; Kim et al., 2021; Zhang et al., 2023b] explore

integrating contrastive learning with additional strate-
gies to address DG challenges.

• Incorporating Global Information: Methods [Yao et al.,
2022; Dong et al., 2022; Li et al., 2023] introduce a
global perspective to enhance feature alignment.

• Leveraging Sample relationships: Refining alignment by
emphasizing hard positive samples [Hu et al., 2024] or
dataset repartitioning [Tong et al., 2023].

Despite these advancements, traditional DG methods of-
ten rely on direct alignment strategies, which oversimplify
complex relationships and neglect subtle features, leading to
misalignment and feature distortion under significant domain
gaps. Addressing these shortcomings requires methods that
account for nuanced relationships while maintaining general-
ization.

While ranking-based methods in metric learning, such as
deep metric learning [Cakir et al., 2019], Ranked List Loss
[Wang et al., 2019], and Self-Supervised Synthesis Ranking
(SSR) [Fu et al., 2021], effectively preserve relative ranking
information and local structures, they do not specifically ad-
dress domain shifts in DG tasks. Instead, these approaches
primarily focus on optimizing intra-domain ranking perfor-
mance and lack mechanisms for mitigating inter-domain mis-
alignment caused by distribution shifts.

To address these challenges in DG, we propose the Sample
Difference Keeping (SDK) and Sample Consistency Align-
ment (SCA) modules. SDK preserves natural sequence rela-
tionships to enhance feature diversity and separability across
domains, while SCA employs indirect alignment to refine
cross-domain consistency without the pitfalls of direct align-
ment, ensuring robustness and improved generalization in do-
main generalization tasks.

3 Proposed Method
3.1 Preliminary Introduction
In the classical domain generalization setting, we assume the
model has access to multiple source domains during train-
ing. These source domains form the training set D =
{D1, D2, . . . , DM}, where M is the number of source do-
mains. Let X ∈ Rd denote the input feature space and
Y ∈ RC denote the class label space. Each source domain
Dk contains a series of sample pairs {(xk

i , y
k
i )}Ni=1, where N

represents the number of samples in this domain, xk
i ∈ X is

the input feature, and yki ∈ Y is the class label. The goal is
to train a model Fϕ,θ, which consists of a feature extractor
fϕ:X → Z that extracts a universal representation Z from
input data X , and a predictor gθ:Z → RC that generates
predictions for C classes based on the features Z, such that
the model can accurately classify data from an unknown tar-
get domain Dt without relying on the target domain, which
shares the same set of class labels Y as the source domains
Dk.

Our proposed domain generalization method is designed
to address the limitations of direct alignment strategies in tra-
ditional approaches. These methods often disrupt the natu-
ral sequence relationships between samples, leading to over-
fitting, misalignment, and feature distortion, which result in
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Figure 2: Illustrates the overall architecture of our method. (a) The
input data is first processed by the feature extractor to produce uni-
versal features. These features are fed into both the classifier (for
computing LCE) and an embedding layer (to generate feature em-
beddings). Classifier weights are also passed through the embed-
ding layer to produce domain- and class-specific proxy embeddings.
(b) The SDK module operates on the embeddings to preserve nat-
ural sequence relationships across samples and proxies, addressing
overfitting by focusing on transferable patterns. The SCA module
ensures indirect alignment by maintaining inter-class relationships
consistency across domains and inter-domain relationships consis-
tency across classes, enhancing the model’s adaptability to unseen
domains.

reduced performance, especially when domain discrepancies
are significant. Figure 2 provides an overview of our pro-
posed method, with specific details described in the following
subsections.

3.2 Sample Diversity Keeping Module (SDK)
In domain generalization tasks, samples exhibit inherent se-
quence relationships based on their similarities, as shown in
Figure 1. Preserving these natural sequence relationships is
crucial for enhancing model generalization. However, tradi-
tional methods often neglect these relationships, leading to
overfitting.

To address this, we propose the Sample Diversity Keeping
(SDK) module, which explicitly constrains the relative dis-
tances between samples across domains and classes. This en-
sures the preservation of natural sequence relationships, en-
abling us to observe subtle details that aid in generalizing
to new scenarios, reducing overfitting, and improving perfor-
mance on unseen target domains.

To achieve this, we first project the sample features zi and
class weights wi into feature embeddings qi ∈ Rpro and

proxy sets Pi ⊆ Rpro, respectively. We use two different
multilayer perceptrons (MLPs) as projection heads: hz for
sample features and hw for class weights:

qi = hz(zi), Pi = hw(wi), (1)

where Pi = {p1i , p2i , ...pMi } represents the set of all M prox-
ies for class i across different source domains.

SDK maintains the natural sequence relationships between
samples by constraining the relative distances between sam-
ples from different classes and domains. Specifically, to re-
duce computational complexity, we introduce proxy embed-
dings, which replace sample embeddings. We formalize the
natural sequence relationships constraint as follows:

d(pji , p
j̄
ī
) > d(pji , p

j
ī
) > d(pji , p

j̄
i ) > d(qji , p

j
i ), (2)

where pji denotes the embedding of a proxy from class i and
domain j, pj̄i is the embedding of a proxy from class i but a
different domain, pj

ī
is the embedding of a proxy from do-

main j but a different class, pj̄
ī

represents a proxy from a
different class and a different domain, and qji denotes the em-
bedding of a sample from class i and domain j.

In practice, we replace the distance metric with cosine sim-
ilarity s(·, ·), leading to the following modified constraint:

s(pji , p
j̄
ī
) < s(pji , p

j
ī
) < s(pji , p

j̄
i ) < s(qji , p

j
i ), (3)

To enforce this constraint, we define the Sample Diversity
Keeping (SDK) loss function using a triplet loss approach.
For each triplet, we minimize the cosine similarity between
the anchor and positive samples while maximizing the simi-
larity between the anchor and negative samples, with a margin
term to separate them:

LSDK−O = LT

(
s
(
pji , q

j
i

)
, s

(
pji , p

j̄
i

)
,m1

)
+LT

(
s
(
pji , p

j̄
i

)
, s

(
pji , p

j
ī

)
,m2

)
+LT

(
s
(
pji , p

j
ī

)
, s

(
pji , p

j̄
ī

)
,m3

)
,

(4)

where LT denotes the triplet loss function,
LT(AP,AN,m) = max(AP − AN + m, 0) and AP
represents the cosine similarity between the anchor and
positive samples, AN represents the similarity between
the anchor and negative samples, and m is a margin
hyperparameter.

Because the number of triplets in metric learning can be
large, resulting in heavy computational costs, we introduce
an efficient max-min sample mining strategy [Schroff et al.,
2015] to speed up training. The modified SDK loss function,
using this strategy, is given by:

LSDK = LT

(
min

{
s
(
qji , p

j
i

)}
,max

{
s
(
pji , p

j̄
i

)}
,m1

)
+LT(min{s

(
pji , p

j̄
i

)
},max{s

(
pji , p

j
ī

)
},m2)

+LT

(
min

{
s
(
pji , p

j
ī

)}
,max

{
s
(
pji , p

j̄
ī

)}
,m3

)
,

(5)
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Figure 3: Illustrates the inter-class and inter-domain relationships
consistency used in the proposed Sample Consistency Alignment
(SCA) module. Subfigure (a) demonstrates inter-class relationships
consistency, where similarity relationships between classes (e.g.,
dogs and horses) are preserved within each domain, ensuring that
shared features can be effectively extracted. Subfigure (b) depicts
inter-domain relationships consistency, highlighting that domains
such as photos and cartoons exhibit higher feature similarity than
sketches, which contain minimal semantic information.

By selecting the smallest and largest similarity values for
each triplet, this max-min strategy significantly reduces the
number of triplets, accelerating training while maintaining
good generalization performance. Through the SDK module,
the model learns more generalizable feature representations,
which aids in generalizing to unseen target domains.

3.3 Sample Consistency Alignment Module (SCA)
Traditional domain generalization methods rely on direct
alignment strategies to find common features across domains.
However, these methods oversimplify relationships between
samples, neglect subtle features, and frequently lead to mis-
alignment and feature distortion, especially when domain dif-
ferences are significant. These shortcomings result in perfor-
mance degradation and underscore the need for an indirect
alignment approach that effectively captures both domain-
specific and shared features.

To address this, we analyze inter-class and inter-domain
feature relationships. For example, as shown in Figure 3,
within any domain, classes like dogs and horses are more sim-
ilar to each other than to unrelated classes like guitars. This
stable inter-class relationships facilitates extracting shared
features. From an inter-domain perspective, domains such
as cartoons and photos exhibit high feature similarity, while
sketches, which retain less semantic content, show lower sim-
ilarity. These inter-domain relationships remain consistent
across classes, with photos containing the richest semantic
information, followed by cartoons, and sketches exhibiting

the least.
Building on these insights, we propose the Sample Con-

sistency Alignment (SCA) module, which employs an in-
direct alignment strategy to leverage inter-class and inter-
domain relationships. SCA consists of two key components:
inter-class relationships consistency, which preserves similar-
ity relationships between classes across domains, and inter-
domain relationships consistency, which maintains similarity
relationships between domains across classes. This dual con-
sistency ensures robust cross-domain feature extraction and
enhances generalization to unseen target domains.

To improve efficiency, SCA incorporates a proxy mecha-
nism, where proxies represent samples from different classes
and domains, reducing computational costs. This mechanism
enables efficient consistency alignment, effectively capturing
cross-domain shared features and strengthening the model
To improve efficiency, we incorporate a proxy mechanism in
SCA, where proxies represent samples from different classes
and domains, reducing computational costs. This mechanism
enables efficient consistency alignment, effectively capturing
cross-domain shared features and strengthening the model’s
generalization performance.
Inter-class relationships consistency. Inter-class relation-
ships consistency aims to ensure that the similarity relation-
ships between classes remain consistent in the feature space
across different domains, thereby facilitating the extraction of
common features. To achieve this, we calculate the similar-
ity matrix for the classes in each domain and minimize the
Frobenius norm of the differences between these matrices.

Specifically, for domain Di (where i = 1, 2, ...,M ) and
class c (where c = 1, 2, ..., C), we define the proxy embed-
ding for class c in domain Di as pic. We then calculate the
inter-class similarity matrix Sdom

i ∈ RC×C for domain Di,
where each element Sl

c1,c2 represents the cosine similarity be-
tween the proxy embeddings of class c1 and class c2 in do-
main l :

Sl
c1,c2 = s(plc1 , p

l
c2), (6)

To ensure that the similarity matrices across the M domains
are as similar as possible, we minimize the Frobenius mean
difference between them, resulting in the inter-class relation-
ships consistency loss LSCA−C:

LSCA−C =
1

M(M − 1)

M∑
i=1

M∑
j=i+1

∥ Sdom
i − Sdom

j ∥2F , (7)

where ∥ Sdom
i − Sdom

j ∥F represents the Frobenius norm
between matrices Sdom

i and Sdom
j :

∥ Sdom
i − Sdom

j ∥F=

√√√√ C∑
c1=1

C∑
c2=1

(
Si
c1,c2 − Sj

c1,c2

)2

, (8)

Inter-domain relationships consistency. Similarly, the
goal is to ensure that the similarity relationships between do-
mains remain consistent across different classes. This helps
the model capture cross-domain common features and im-
proves its adaptability to domain shifts. Analogous to inter-
class relationships consistency, we define an inter-domain
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Algorithm PACS VLCS Office-Home TerraIncognita Average

CORAL [Sun and Saenko, 2016] 86.2 78.8 68.7 47.7 70.35
DANN [Ganin et al., 2016] 83.7 78.6 65.9 46.7 68.73
CDANN [Li et al., 2018b] 82.6 77.5 65.7 45.8 67.90
MMD [Yu et al., 2024] 84.7 77.5 66.4 42.2 67.70
MLDG [Li et al., 2018a] 84.9 77.2 66.8 47.8 69.18
IRM [Ahuja et al., 2020] 83.5 78.6 64.3 47.6 68.50
RSC [Huang et al., 2020] 85.2 77.1 65.5 46.6 68.60
SupCon [Khosla et al., 2020] 88.1 79.3 70.6 50.7 72.18
MTL [Blanchard et al., 2021] 84.6 77.2 66.4 45.6 68.45
ERM [Vapnik, 1999] 85.5 77.3 67.6 47.8 69.55
Mixstyle [Zhou et al., 2021] 85.2 77.9 60.4 44.0 66.88
SagNet [Nam et al., 2021] 86.3 77.8 68.1 48.6 70.20
SWAD [Cha et al., 2021] 88.1 79.1 70.6 50.0 71.95
HTCL [Tong et al., 2023] 88.6 77.6 71.3 50.9 72.10
PCL [Yao et al., 2022] 88.7 78.0 71.6 52.1 72.60
IAIE-Pair[Hu et al., 2024] 88.8 79.6 70.9 52.2 72.88
IAIE-Proxy[Hu et al., 2024] 89.2 78.5 71.8 52.6 73.03
Ours 89.3 80.4 72.3 53.9 73.98

Table 1: Comparison of ACC (%) with the SOTA methods on four
benchmarks.

similarity matrix Scls
c ∈ RM×M for each class c, where each

element Sl1,l2
o represents the similarity between domains l1

and l2 for class o:

Sl1,l2
o = sim(pl1o , p

l2
o ), (9)

We ensure inter-domain relationships consistency by min-
imizing the differences between domain similarity matrices
for different classes, resulting in the inter-domain relation-
ships consistency loss LSCA−D:

LSCA−D =
1

C(C − 1)

C∑
i=1

C∑
j=i+1

∥ Scls
i − Scls

j ∥2F , (10)

Finally, the overall Sample Consistency Alignment Loss
consists of the inter-class relationships consistency loss and
the inter-domain relationships consistency loss, weighted by
a hyperparameter α:

LSCA = αLSCA−C + LSCA−D, (11)

By incorporating the proxy mechanism, SCA reduces com-
putational costs while achieving efficient consistency align-
ment. This dual consistency Alignment helps the model cap-
ture cross-domain common features, thereby improving its
generalization to unseen target domains.

The overall objective function is defined as:

LTotal = LCE + LSDK + LSCA. (12)

4 Experimental Study
4.1 Datasets
To thoroughly evaluate the proposed method, we selected
four challenging domain generalization datasets:

• PACS [Li et al., 2017]: Contains 9,991 images, divided
into 7 categories and 4 domains (Photos, Art Paintings,
Cartoons, Sketches), each with its unique image style.

• Office-Home [Venkateswara et al., 2017]: Contains ap-
proximately 15,500 images, divided into 65 categories
and 4 domains (Art, Clipart, Product, Real World), and
serves as a popular benchmark for evaluating domain
generalization performance.

• VLCS [Fang et al., 2013]: Contains 10,729 images,
divided into 5 categories and 4 domains (VOC2007,
LabelMe, Caltech101, SUN09), used for testing the
model’s generalization ability across different data
sources.

• TerraIncognita [Beery et al., 2018]: Contains 24,788
wildlife images, divided into 10 categories and 4 do-
mains (L100, L38, L43, L46), posing a challenging task
for domain generalization.

These datasets cover a wide range of image styles and do-
mains, providing rich experimental scenarios for validating
our approach.

4.2 Implementation Details
Our method builds upon SWAD [Cha et al., 2021] and PCL
[Yao et al., 2022]. We use the PyTorch framework with a
pre-trained ResNet-50 [He et al., 2016] on ImageNet [Rus-
sakovsky et al., 2015] as the backbone network. To ensure
consistency with PCL, we employ the same projection lay-
ers. The Adam optimizer is applied with a learning rate of
5e−5. Following the standard training and evaluation proce-
dure of SWAD, we use a batch size of 32 for each domain.
A leave-one-domain strategy is adopted, where one domain
serves as the target domain, and the remaining domains are
used as source domains for training.

For model validation and selection, 20% of the samples
from each source domain are set aside as the validation set.
To ensure result stability, we run experiments with three dif-
ferent random seeds and report the average accuracy and stan-
dard error. For the number of iterations, the Office-Home
dataset is trained for 3,000 iterations, while the other datasets
are trained for 5,000 iterations. The hyperparameters are set
as follows: m1 = 0.1, m2 = 0.4, m3 = 0.1, and α = 0.01.

Algorithm Art Cartoon Photo Sketch Average

CORAL [Sun and Saenko, 2016] 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.3 ± 1.3 86.2
DANN [Ganin et al., 2016] 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.7
CDANN [Li et al., 2018b] 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6
MMD [Yu et al., 2024] 86.1 ± 1.4 79.4 ± 0.9 96.6 ± 0.2 76.5 ± 0.5 84.7
MLDG [Li et al., 2018a] 85.5 ± 1.4 80.1 ± 0.7 97.4 ± 0.3 76.6 ± 1.1 84.9
IRM [Ahuja et al., 2020] 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5
RSC [Huang et al., 2020] 85.4 ± 0.8 79.7 ± 1.8 97.6 ± 0.3 78.2 ± 1.2 85.2
SupCon [Khosla et al., 2020] 89.4 ± 0.5 83.5 ± 0.9 97.4 ± 0.2 82.3 ± 0.4 88.1
MTL [Blanchard et al., 2021] 87.5 ± 0.8 77.1 ± 0.5 96.4 ± 0.8 77.3 ± 1.8 84.6
ERM [Vapnik, 1999] 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
Mixstyle [Zhou et al., 2021] 86.8 ± 0.5 79.0 ± 1.4 96.6 ± 0.1 78.5 ± 2.3 85.2
SagNet [Nam et al., 2021] 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80.0 ± 0.4 86.3
SWAD [Cha et al., 2021] 89.3 ± 0.2 83.4 ± 0.6 97.3 ± 0.3 82.5 ± 0.5 88.1
PCL [Yao et al., 2022] 90.2 ± 0.2 83.9 ± 0.6 98.1 ± 0.1 82.6 ± 1.2 88.7
IAIE-Pair[Hu et al., 2024] 90.1 ± 0.4 83.9 ± 1.0 97.2 ± 0.3 83.8 ± 0.1 88.8
IAIE-Proxy[Hu et al., 2024] 90.6 ± 0.3 84.0 ± 1.0 97.8 ± 0.1 84.1 ± 0.4 89.2
Ours 90.9 ± 0.2 84.6 ± 0.1 97.1 ± 0.3 84.8 ± 0.6 89.3

Table 2: Comparison of ACC (%) with the SOTA methods on PACS.

4.3 Comparison with State-of-the-Art Methods
We conducted a comprehensive comparison between the
proposed method and state-of-the-art domain generalization
methods on four standard datasets. The experimental re-
sults, presented in Tables 1 to 5, demonstrate that our method
achieves superior performance across all datasets. Compared
to earlier domain generalization approaches (such as ERM
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Method Caltech101 LabelMe SUN09 VOC2007 Average

CORAL [Sun and Saenko, 2016] 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8
DANN [Ganin et al., 2016] 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6
CDANN [Li et al., 2018b] 97.7 ± 0.1 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5
MMD [Yu et al., 2024] 97.7 ± 0.1 64.0 ± 1.1 72.8 ± 0.2 75.3 ± 3.3 77.5
MLDG [Li et al., 2018a] 97.4 ± 0.2 65.2 ± 0.7 71.0 ± 1.4 75.3 ± 1.0 77.2
IRM [Ahuja et al., 2020] 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.6
RSC [Huang et al., 2020] 97.9 ± 0.1 62.5 ± 0.7 72.3 ± 1.2 75.6 ± 0.8 77.1
SupCon [Khosla et al., 2020] 98.7 ± 0.1 63.7 ± 0.2 75.6 ± 0.5 79.0 ± 0.2 79.3
MTL [Blanchard et al., 2021] 97.8 ± 0.4 64.3 ± 0.3 71.5 ± 0.7 75.3 ± 1.7 77.2
ERM [Vapnik, 1999] 98.0 ± 0.3 64.7 ± 1.2 71.4 ± 1.2 75.2 ± 1.6 77.3
Mixstyle [Zhou et al., 2021] 98.6 ± 0.3 64.5 ± 1.1 72.6 ± 0.5 75.7 ± 1.7 77.9
SagNet [Nam et al., 2021] 97.9 ± 0.4 64.5 ± 0.5 71.4 ± 1.3 77.5 ± 0.5 77.8
SWAD [Cha et al., 2021] 98.8 ± 0.1 63.3 ± 0.3 75.3 ± 0.5 79.2 ± 0.6 79.1
PCL [Yao et al., 2022] 99.0 ± 0.1 63.4 ± 0.6 73.8 ± 0.3 75.6 ± 1.8 78.0
IAIE-Pair[Hu et al., 2024] 98.9 ± 0.1 64.0 ± 0.2 76.1 ± 0.1 79.5 ± 0.3 79.6
IAIE-Proxy[Hu et al., 2024] 98.9 ± 0.1 63.0 ± 0.7 72.8 ± 1.4 79.2 ± 0.4 78.5
Ours 98.0 ± 0.3 69.6 ± 0.6 74.5 ± 0.8 79.4 ± 1.3 80.4

Table 3: Comparison of ACC (%) with the SOTA methods on VLCS.

Method Art Clipart Product Real World Average

CORAL [Sun and Saenko, 2016] 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7
DANN [Ganin et al., 2016] 59.9 ± 1.3 53.0 ± 0.3 73.6 ± 0.7 76.9 ± 0.5 65.9
CDANN [Li et al., 2018b] 61.5 ± 1.4 50.4 ± 2.4 74.4 ± 0.9 76.6 ± 0.8 65.7
MMD [Yu et al., 2024] 60.4 ± 0.2 53.3 ± 0.3 74.3 ± 0.1 77.4 ± 0.6 66.4
MLDG [Li et al., 2018a] 61.5 ± 0.9 53.2 ± 0.6 75.0 ± 1.2 77.5 ± 0.4 66.8
IRM [Ahuja et al., 2020] 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3
RSC [Huang et al., 2020] 60.7 ± 1.4 51.4 ± 0.3 74.8 ± 1.1 75.1 ± 1.3 65.5
SupCon [Khosla et al., 2020] 66.0 ± 0.2 57.0 ± 0.3 78.8 ± 0.3 80.6 ± 0.2 70.6
MTL [Blanchard et al., 2021] 61.5 ± 0.7 52.4 ± 0.6 74.9 ± 0.4 76.8 ± 0.4 66.4
ERM [Vapnik, 1999] 63.1 ± 0.3 51.9 ± 0.4 77.2 ± 0.5 78.1 ± 0.2 67.6
Mixstyle [Zhou et al., 2021] 51.1 ± 0.3 53.2 ± 0.4 68.2 ± 0.7 69.2 ± 0.6 60.4
SagNet [Nam et al., 2021] 63.4 ± 0.2 54.8 ± 0.4 75.8 ± 0.4 78.3 ± 0.3 68.1
SWAD [Cha et al., 2021] 66.1 ± 0.4 57.7 ± 0.4 78.4 ± 0.1 80.2 ± 0.2 70.6
PCL [Yao et al., 2022] 67.3 ± 0.2 59.9 ± 0.1 78.7 ± 0.2 80.7 ± 0.1 71.6
IAIE-Pair[Hu et al., 2024] 65.8 ± 0.4 57.9 ± 0.2 79.1 ± 0.3 80.8 ± 0.1 70.9
IAIE-Proxy[Hu et al., 2024] 67.5 ± 0.2 58.5 ± 0.1 79.7 ± 0.3 81.3 ± 0.2 71.8
Ours 70.2 ± 0.1 59.5 ± 0.2 78.5 ± 0.1 81.2 ± 0.2 72.3

Table 4: Comparison of ACC (%) with the SOTA methods on Office-
Home.

Method L100 L38 L43 L46 Average

CORAL [Sun and Saenko, 2016] 51.6 ± 2.4 42.2 ± 1.0 57.0 ± 1.0 39.8 ± 2.9 47.7
DANN [Ganin et al., 2016] 51.1 ± 3.5 40.6 ± 0.6 57.4 ± 0.5 37.7 ± 1.8 46.7
CDANN [Li et al., 2018b] 47.0 ± 1.9 41.3 ± 4.8 54.9 ± 1.7 79.8 ± 2.3 45.8
MMD [Yu et al., 2024] 41.9 ± 3.0 34.8 ± 1.0 57.0 ± 1.9 35.2 ± 1.8 42.2
MLDG [Li et al., 2018a] 54.2 ± 3.0 44.3 ± 1.1 55.6 ± 0.3 36.9 ± 2.2 47.8
IRM [Ahuja et al., 2020] 54.6 ± 1.3 39.8 ± 1.9 56.2 ± 1.8 39.6 ± 0.8 47.6
RSC [Huang et al., 2020] 50.2 ± 2.2 39.2 ± 1.4 56.3 ± 1.4 40.8 ± 0.6 46.6
SupCon [Khosla et al., 2020] 61.4 ± 1.0 46.0 ± 2.2 57.9 ± 0.7 37.5 ± 0.9 50.7
MTL [Blanchard et al., 2021] 49.3 ± 1.2 39.6 ± 6.3 55.6 ± 1.1 37.8 ± 0.8 45.6
ERM [Vapnik, 1999] 54.3 ± 0.4 42.5 ± 0.7 55.6 ± 0.3 38.8 ± 2.5 47.8
Mixstyle [Zhou et al., 2021] 54.3 ± 1.1 34.1 ± 1.1 55.9 ± 1.1 31.7 ± 2.1 44.0
SagNet [Nam et al., 2021] 53.0 ± 2.9 43.0 ± 2.5 57.9 ± 0.6 40.4 ± 1.3 48.6
SWAD [Cha et al., 2021] 55.4 ± 0.0 44.9 ± 1.1 59.7 ± 0.4 39.9 ± 0.2 50.0
PCL [Yao et al., 2022] 58.7 ± 0.7 46.3 ± 1.5 60.0 ± 0.7 43.6 ± 0.6 52.1
IAIE-Pair[Hu et al., 2024] 61.3 ± 1.0 50.0 ± 1.8 57.6 ± 0.6 40.3 ± 1.1 52.2
IAIE-Proxy[Hu et al., 2024] 59.5 ± 1.4 50.9 ± 1.0 58.5 ± 0.3 41.6 ± 0.6 52.6
Ours 61.9 ± 1.3 53.0 ± 1.7 57.3 ± 1.4 43.3 ± 2.2 53.9

Table 5: Comparison of ACC (%) with the SOTA methods on Ter-
raIncognita.

Model PACS
SCA SDK Art Cartoon Photo Sketch Avg
× × 87.5 ± 1.1 84.2 ± 0.4 97.0 ± 0.8 81.0 ± 0.8 87.4
× ✓ 90.8 ± 0.7 82.6 ± 1.0 96.9 ± 0.3 84.5 ± 1.1 88.7
✓ × 89.6 ± 0.5 83.2 ± 0.6 97.2 ± 0.2 82.4 ± 0.1 88.1
✓ ✓ 90.9 ± 0.2 84.6 ± 0.1 97.1 ± 0.3 84.8 ± 0.6 89.3

Table 6: Ablation experiments on PACS based on ResNet-50 Ima-
geNet pre-training.

[Vapnik, 1999], IRM [Ahuja et al., 2020], and adversar-
ial learning-based methods like DANN [Ganin et al., 2016]

Figure 4: Hyperparameter analysis on PACS datasets.

and CDANN [Li et al., 2018b]), our method improves cross-
domain feature learning and generalization capability by uti-
lizing indirect alignment and maintaining sample diversity.

When compared to other advanced methods based on con-
trastive learning, such as SelfReg [Kim et al., 2021], PCL
[Yao et al., 2022], HTCL [Tong et al., 2023], and IAIE [Hu
et al., 2024], our approach effectively avoids overfitting and
misalignment issues that arise from direct alignment. This
is achieved through the preservation of natural sequence re-
lationships and the indirect alignment strategy. Notably, on
particularly challenging domains (e.g., the ”L38” domain in
the TerraIncognita dataset and the ”LabelMe” domain in the
VLCS dataset), where the target domain exhibits significant
differences from the source domains, other methods perform
poorly. In contrast, our method significantly improves the
model’s performance in these scenarios, demonstrating its su-
periority and robustness in handling complex domain gener-
alization tasks.

4.4 Ablation Studies
To better understand the contributions of the Sample Dif-
ference Keeping (SDK) and Sample Consistency Alignment
(SCA) modules, we conducted ablation experiments to eval-
uate their effects on model performance (Figure 4).

Component Ablation. Using the PACS dataset, we first ex-
amined the individual and combined impacts of the SDK and
SCA modules. Starting with the baseline containing only
the classification loss, we sequentially added SDK and SCA
modules. The results, shown in Table 6, reveal the following:
Adding the SCA module alone significantly improved perfor-
mance, confirming its role in enhancing cross-domain feature
alignment through class-wise and domain-wise consistency.
However, it also introduced a risk of overfitting. Adding the
SDK module alone led to moderate improvement by mitigat-
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Figure 5: Grad-CAM visualization results on the PACS dataset. The
first row shows the original input images. The second row shows
the Grad-CAM visualization results of the baseline method (ERM),
where the focus is mainly on non-discriminative regions, such as the
elephant’s body and face. The third row shows the Grad-CAM visu-
alization results of our method (OURS), which accurately highlights
key discriminative features, such as the elephant’s trunk and the core
areas in other images.

ing reliance on domain-specific features and emphasizing rel-
ative differences between samples, though it slightly compro-
mised cross-domain alignment. Combining SDK and SCA
achieved the best performance, demonstrating a synergistic
effect: SDK reduces overfitting risk from SCA by preserv-
ing natural sequence relationships, while SCA strengthens
cross-domain alignment. Together, these modules enhance
both generalization and stability.
Parameter Sensitivity Analysis. We further analyzed the
impact of key hyperparameters, including the triplet loss mar-
gins (m1, m2, m3) and the consistency loss weight α.

Sensitivity to α: Fixing margin parameters, we observed
that model performance peaked when α = 0.01, indicating
that an appropriate balance between class-wise and domain-
wise consistency losses is crucial.

Sensitivity to margin parameters: Fixing other hyperpa-
rameters, the model showed low sensitivity to m1, m2, and
m3. Notably, m3 exhibited minimal sensitivity, and no alter-
native weight settings outperformed the default value of 1.
Weight Analysis of SDK and SCA Losses. We further in-
vestigated how different weightings of the SDK and SCA loss
terms affect performance. Although the optimal balance be-
tween them varied slightly from one dataset to another, the
overall impact on accuracy remained small. To maintain con-
sistency and simplicity across all experiments, we therefore
fixed both weights at 1.

4.5 Visualization Analysis
To intuitively demonstrate the effectiveness of our proposed
method, we performed both Grad-CAM[Selvaraju et al.,
2017] and feature space visualizations on the PACS dataset.

Firstly, Grad-CAM visualization (Figure 5) highlights the
key regions the model relies on for classification. For the
cartoon domain, the baseline method (ERM) focuses on less
discriminative regions, such as the elephant’s body and face.
In contrast, our method (OURS) effectively captures the key
discriminative feature of the elephant’s trunk, which plays a
critical role in accurate classification. This observation indi-
cates that our approach avoids overfitting to domain-specific
features and instead learns semantically meaningful features
that generalize well across domains.

Figure 6: Visualization on the PACS dataset, with different colors
representing different classes, the baseline method on the left and
our method on the right.

Secondly, We used t-SNE [Van der Maaten and Hinton,
2008] to reduce the dimensionality of the extracted features,
as shown in Figure 6. The results show that the features
extracted by the ERM method are overly compact within
each class, with minimal separation between different classes.
This could lead to a decline in generalization ability. In con-
trast, our method resulted in more dispersed features with
greater inter-class separation than the baseline ERM method.
This is because our proposed SDK module preserves the nat-
ural sequence relationships of samples within each class, pre-
venting excessive compression of intra-class features. Addi-
tionally, the SCA module effectively extracts cross-domain
common features, further enhancing inter-class separability
and resulting in clearer classification boundaries. This vali-
dates that, while ensuring intra-class consistency, our method
effectively enhances inter-class diversity, thereby improving
the model’s cross-domain generalization ability.

5 Conclusion

In this paper, we propose a novel domain generalization
framework to address the shortcomings of traditional con-
trastive learning methods, which often oversimplify sample
relationships, leading to misalignment, feature distortion, and
overfitting. The framework introduces two key modules:
the Sample Difference Keeping (SDK) module, which pre-
serves natural sequence relationships, and the Sample Con-
sistency Alignment (SCA) module, which achieves indirect
alignment through inter-class and inter-domain relationships
consistency. These innovations significantly enhance feature
representation quality and generalization performance. Ex-
tensive experiments on multiple benchmark datasets demon-
strate the framework’s effectiveness and robustness, consis-
tently outperforming state-of-the-art methods in addressing
domain discrepancies.

Despite its notable achievements, the framework has yet
to fully explore hierarchical relationships between samples
and lacks dynamic sample weighting strategies to better adapt
to complex domain shifts. Future research will focus on
integrating hierarchical sample relationships and dynamic
weighting mechanisms to improve adaptability.
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