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Abstract
Explainability and uncertainty quantification are
key to trustable artificial intelligence. However, the
reasoning behind uncertainty estimates is generally
left unexplained. Identifying the drivers of uncer-
tainty complements explanations of point predic-
tions in recognizing model limitations and enhanc-
ing transparent decision-making. So far, explana-
tions of uncertainties have been rarely studied. The
few exceptions rely on Bayesian neural networks or
technically intricate approaches, such as auxiliary
generative models, thereby hindering their broad
adoption. We propose a straightforward approach
to explain predictive aleatoric uncertainties. We es-
timate uncertainty in regression as predictive vari-
ance by adapting a neural network with a Gaussian
output distribution. Subsequently, we apply out-of-
the-box explainers to the model’s variance output.
This approach can explain uncertainty influences
more reliably than complex published approaches,
which we demonstrate in a synthetic setting with
a known data-generating process. We substantiate
our findings with a nuanced, quantitative bench-
mark including synthetic and real, tabular and im-
age datasets. For this, we adapt metrics from con-
ventional XAI research to uncertainty explanations.
Overall, the proposed method explains uncertainty
estimates with little modifications to the model ar-
chitecture and outperforms more intricate methods
in most settings.

1 Introduction
Uncertainty quantification and explainability are crucial for
adopting machine learning (ML) systems in safety-critical ap-
plications, ensuring trust, reliability, and fairness [Abdar et
al., 2021; Vilone and Longo, 2020; Lötsch et al., 2022]. Pre-
dictive uncertainty in ML refers to the degree of confidence
associated with a model’s predictions [Chua et al., 2023]. It
can be decomposed into an epistemic and aleatoric compo-
nent [Kendall and Gal, 2017]. Epistemic uncertainty stems
from data scarcity, such as underrepresented conditions, co-
variate shift, and model misspecification and can generally be
reduced with more data. Aleatoric uncertainty, arising from

the random error of the true relationship between inputs, and
targets. It reflects irreducible variability in the data. Uncer-
tainty estimation is critical in risk management. It allows
taking conservative action, relying on the model only when
it exhibits high confidence in its predictions [Kompa et al.,
2021].

Explainability encompasses methods that enhance the
transparency of ML models by highlighting how features in-
fluence model output or by rendering the internal computa-
tions of black-box models more interpretable. Explainability
methods enable understanding whether a model has learned
relevant patterns from the input data and can reveal interest-
ing, previously unknown associations [Samek et al., 2021;
Schwalbe and Finzel, 2023]. Uncertainty quantification and
explainability ensure accountable, informed, and responsible
decision-making and help mitigate biases and risks [Bhatt et
al., 2021; McGrath et al., 2023].

In most applications, explainability focuses on interpreting
point predictions [Vilone and Longo, 2020]. There is a sig-
nificant gap in understanding and explaining the drivers of
uncertainty estimates. When an ML algorithm is deployed
and yields a substantial uncertainty estimate for a specific in-
stance, the possible courses of action involve abstaining from
employing the model if alternatives are available or accept-
ing the increased risk. With explainable uncertainties, users
gain the capability to identify the factors contributing to el-
evated uncertainty levels. This understanding allows domain
experts to judge their relevance in a given scenario. Addition-
ally, it provides valuable insights into modifications required
to augment the model’s predictive certainty and performance.
In cases where abstaining from model usage is still neces-
sary, factors influencing the decision can be understood and
communicated. For example, if such an uncertainty factor
is a feature indicating a person’s age, it could point to an is-
sue where the model’s predictions are more uncertain for spe-
cific age groups, even if the age distribution is balanced in the
training data. This effect would be undetectable by naive ex-
planations. While detecting and explaining distribution shifts
and epistemic uncertainty is an equally interesting problem
[Brown and Talbert, 2022], we focus our work on aleatoric
uncertainty. Aleatoric uncertainty estimates and their expla-
nations are relevant for domains where the noise of the out-
come of interest is not constant across independent variables,
i.e., heteroscedastic settings. In these cases, aleatoric uncer-
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tainty explanations offer complementary information to ex-
planations of point predictions, as the relevant variables in-
fluencing mean and variance might differ significantly. Het-
eroscedastic settings emerge, for example, in the estimation
of biophysical variables [Lázaro-Gredilla et al., 2014], the es-
timation of cosmological redshifts [Almosallam et al., 2016],
and robotics and vehicle control [Bauza and Rodriguez, 2017;
Smith et al., 2018; Liu et al., 2021].

Explanations can be categorized as either local (instance-
based) or global (across the whole input space) [Schwalbe
and Finzel, 2023; Adadi and Berrada, 2018]. A local explana-
tion of the model’s uncertainty could foster more transparent
discussions about ML-assisted decisions and risks, increas-
ing trust. Global explanations serve to detect general drivers
of uncertainty and certainty. These can then be leveraged to
formulate hypotheses to improve the model or to detect un-
intended shortcuts in the uncertainty estimation process, such
as spurious correlations or biases.

There is little prior work on explaining uncertainties, and
existing literature mainly focuses on classification tasks and
generally relies on Bayesian neural networks (BNNs) or tech-
nical intricacies such as auxiliary generative models [An-
toran et al., 2021; Perez et al., 2022; Ley et al., 2022;
Wang et al., 2023]. BNNs assign probability distributions
to network weights to capture uncertainty [MacKay, 1992].
However, due to their computational complexity and involved
training process, BNNs have not been as widely adopted as
classical neural networks [Lakshminarayanan et al., 2017].

We propose a straightforward and scalable approach for
explaining uncertainties in a heteroscedastic regression set-
ting that can be readily integrated into ML pipelines (see Fig-
ure 1). We extend point prediction models to additionally
estimate parameters of the spread of a given probability dis-
tribution. Specifically, we predict parameters of a Gaussian
distribution as in a heteroscedastic regression model [Bishop,
1994]. The variance parameter of the Gaussian can be inter-
preted as a measure of the aleatoric uncertainty of the model.
We can then use any explainability method to explain the vari-
ance estimate provided by this distributional model. By high-
lighting input features contributing to the variance output, we
identify the inputs contributing to model uncertainty.

Currently, there is a gap in the comparative evaluation of
uncertainty explainers in the literature. Therefore, we intro-
duce a benchmark with synthetic data with a known data-
generating process to analyze a method’s ability to detect un-
certainty drivers. In addition, we introduce MNIST+U, an
image dataset including known uncertainty drivers based on
MNIST [Deng, 2012]. We compare our approach to Coun-
terfactual Latent Uncertainty Explanations (CLUE) [Antoran
et al., 2021] and InfoSHAP [Watson et al., 2023]. For this
purpose, we adapt unsupervised XAI metrics to evaluate the
uncertainty explainers.

In summary, our contribution is as follows: We propose a
straightforward explanation method for uncertainty and eval-
uate it against existing approaches. Further, we devise tabular
and image benchmarks, including established metrics from
the XAI field. Thereby, we provide a resource for informed
usage of uncertainty explanation methods.
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Figure 1: Overview of the variance feature attribution pipeline. (A)
A point prediction model with an output layer with weight matrix
Wold ∈ Rd×1 and a scalar bias. We equip this model with a Gaus-
sian distribution resulting in (B), a model with output weight matrix
Wnew ∈ Rd×2 and bias bnew ∈ R2. The two outputs are the
mean µ̂ and the variance σ̂2 of the predictive distribution. (C) From
there, we can explain the variance using any suitable explainabil-
ity method, resulting in attributions to the input features that can be
used to understand the drivers of the model’s aleatoric uncertainty.

1.1 Related Work
In some research communities, such as causal inference,
graphical models, and Gaussian processes, explicitly model-
ing uncertainty is a prominent area of interest. Furthermore,
uncertainty quantification and explainability are rich areas of
research within the deep learning field [Abdar et al., 2021;
Vilone and Longo, 2020]. Yet, few researchers have rec-
ognized the importance of explaining the sources of uncer-
tainty in deep learning predictions. Yang and Li [2023]
have developed an explainable uncertainty quantification ap-
proach for predicting molecular properties. They employ
message-passing neural networks and generate unique uncer-
tainty distributions for each atom of a molecule. This ap-
proach is inherently specialized for graph-based representa-
tions of molecules. CLUE [Antoran et al., 2021] and related
approaches [Perez et al., 2022; Ley et al., 2022] derive coun-
terfactual explanations by optimizing for an adversarial input
that is close to the original input but minimizes uncertainty.
The adversarial input is constrained to the data manifold with
a deep generative model of the input data to prevent out-of-
distribution explanations. This requires an optimization pro-
cess for each instance’s explanation and the training of an
auxiliary generative model, rendering CLUE and its exten-
sions computationally demanding and difficult to implement.
Additionally, Antoran et al. [2021] developed an evaluation
method for contrastive explanations of uncertainty. Wang et
al. [2023] have developed a gradient-based uncertainty at-
tribution method for image classification with BNNs. They
modify the backpropagation to attain complete, non-negative
pixel attribution. To detect and explain model deterioration,
Mougan and Nielsen [2023] use classical ML methods and
bootstrapping. They train a model and obtain uncertainty es-
timates on a test set transformed with an artificial distribution
shift. In a second step, they train another model to predict the
uncertainty estimates from the first step. Subsequently, Shap-
ley values are estimated for the second model to explain the
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uncertainty. Mehdiyev et al. [2023] employ quantile regres-
sion forests to obtain prediction intervals that quantify uncer-
tainty. They extract feature attributions for the uncertainty
by estimating Shapley values directly for these prediction in-
tervals as output. Watson et al. [2023] introduce variants
of the Shapley value algorithm to explain higher moments
of the predictive distribution by quantifying feature contri-
butions to conditional entropy. They use a split conformal
inference strategy. They first train a base model to predict
conditional probabilities. Subsequently, they fit an auxiliary
model to the base model’s log square residuals. They interpret
the estimated Shapley values of this residual model as uncer-
tainty explanations. Bley et al. [2025] propose a second-
order uncertainty attribution method that explains predictive
uncertainty by computing the covariance of first-order feature
attributions across model ensembles. While this approach of-
fers insights into individual and joint feature contributions
to uncertainty, it is limited to ensembles and cannot explain
aleatoric uncertainty.

2 Methods
2.1 Deep Heteroscedastic Regression and

Extension of Pre-trained Models
We explain uncertainties in neural network regressors using
deep distributional networks. Specifically, we employ het-
eroscedastic regression with a Gaussian output to model vari-
ance in addition to the mean and, therefore, capture input de-
pendence of the output noise. Here, we consider a regression
setting with n independent training examples {(xi, yi)}ni=1

with input feature vector xi ∈ Rk and target yi ∈ R,
i = 1, . . . , n. Instead of providing a complete picture of the
conditional distribution of the target, deep regression mod-
els usually only estimate its conditional mean by optimiz-
ing the mean squared error (MSE) or comparable loss func-
tions. In contrast, we assume a heteroscedastic Gaussian as
the conditional distribution y | x ∼ N

(
µx, σ

2
x

)
and repre-

sent its mean µx and variance σ2
x using a neural network fθ :

Rk → R × R+ with weights θ and two output neurons pro-
ducing the mean and variance estimates fθ (x) = (µ̂x, σ̂

2
x),

respectively. As first described by Bishop [1994], we can
then optimize the Gaussian negative log-likelihood (GNLL):

L ∝
∑n

i=1

(
log(σ̂2

xi
) +

(yi−µ̂xi
)2

σ̂2
xi

)
and interpret the pre-

dicted variance as a measure of the aleatoric uncertainty of
the model. However, naively optimizing this criterion with
overparametrized models such as deep neural networks can
be unstable [Wong-Toi et al., 2023; Nix and Weigend, 1994;
Seitzer et al., 2022]. In practice, these convergence diffi-
culties can be mitigated by initially training the model using
solely the MSE

∑n
i=1 (yi − µ̂xi

)
2 and subsequently switch-

ing to the GNLL [Sluijterman et al., 2023].
The two-stage training process aligns with transfer learn-

ing: MSE-based initial training serves as pre-training, fol-
lowed by fine-tuning with the GNLL to capture predictive
uncertainty. Extending existing pre-trained models to capture
uncertainty is relevant when the model size and associated
training costs make full re-training unfeasible. Pre-trained
regression models can be extended by concatenating a col-

umn of randomly initialized weights to the weight matrix of
the output layer to attain a variance estimate (see Figure 1).

2.2 Post-hoc Explanation of Predictive Variance
Classic explainability methods explain the predicted class or
point prediction. In contrast, we want to explain the variance
output in a heteroscedastic regression model. In these models,
variance is an additional output to which we can apply any
existing, appropriate explainability method. In principle, an
uncertainty explanation can be achieved for any parametrized
output distribution for which an explicit formulation of the
uncertainty is available. In the case of a Gaussian output dis-
tribution, the application is most intuitive since its variance
parameter is a direct output of the neural network. Further-
more, unlike distributions such as the Poisson or exponential
distributions, the variance is uncoupled from the mean output.
For binary classification, where the model outputs the param-
eter of a Bernoulli distribution, an entropy formulation of un-
certainty can be utilized. Alternatively, explaining aleatoric
uncertainty for classification can be approached by operating
in the logit space.

We employ model-agnostic and model-specific post-hoc
explainability methods to explain uncertainty. Model-specific
methods are limited in the type of models that they can ex-
plain but may offer advantages such as lower computational
complexity. In contrast, model-agnostic methods can be ap-
plied to any model [Adadi and Berrada, 2018]. For our ex-
periments, we combine the approach described in Section 2.1
with multiple explainability methods and refer to this con-
junction as Variance Feature Attribution (VFA) flavors. As
the first explainability method, we use KernelSHAP [Lund-
berg and Lee, 2017], a model-agnostic, local explainability
method. KernelSHAP approximates Shapley values using a
weighted linear surrogate model with an appropriate weight-
ing kernel (VFA-SHAP). Additionally, for image tasks, we
leverage DeepSHAP [Lundberg and Lee, 2017], a variant of
SHAP tailored for deep learning models, which combines
SHAP values with the DeepLIFT algorithm [Shrikumar et al.,
2017] to efficiently attribute model predictions to input fea-
tures. We also employ Integrated Gradients (IG) [Sundarara-
jan et al., 2017], which is a local, model-specific method and
assigns feature importance by integrating predictions over a
straight path from a baseline to the input (VFA-IG). Fur-
ther, we use Layer-Wise Relevance Propagation (LRP) [Bach
et al., 2015], a local, model-specific explainability method
developed for neural networks where the importance is dis-
tributed backward to the input layer by layer weighted by a
neuron’s contribution (VFA-LRP). We compare the VFA fla-
vors to CLUE, for which we have to train a variational autoen-
coder on the train data and apply the optimization as detailed
by Antoran et al. [2021]. CLUE attributions are the absolute
differences between counterfactual and input feature vectors.
CLUE is local and model-specific. Further, we reimplement
InfoSHAP for regression, which estimates the uncertainty us-
ing an auxiliary model trained on the log-square residuals of
a base model. The uncertainty attribution is attained by es-
timating the Shapley values of the auxiliary model [Watson
et al., 2023]. As InfoSHAP builds on SHAP, it is a model-
agnostic, local explainability method. Global explanations
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are obtained by averaging local method results over a dataset.

2.3 Uncertainty Explanation Evaluation Metrics
There is little prior work on evaluating the quality and proper-
ties of uncertainty explanations. Generally, high-quality ex-
planations have to be robust, faithful, and highlight relevant
input features. We extend established metrics for general XAI
to the explanation of model uncertainty.

In a situation where ground truth noise drivers are known,
we can examine if explanation methods correctly rediscover
them. Arras et al. [2022] introduce metrics for this setting for
classical XAI: Relevance Rank Accuracy (RRA) describes the
proportion of known relevant features that are rediscovered
by the explanation method for a given sample xi.

Relevance Mass Accuracy (RMA) describes the amount of
relevance that is assigned to the ground truth features, nor-
malized by the total amount of relevance. For uncertainty ex-
planations, we judge if a method discovers features that corre-
late with the standard deviation of the target’s heteroscedas-
tic noise. To scrutinize global explanations, we apply these
accuracy metrics to global feature attributions, giving rise to
global relevance rank accuracy (GRA) and global relevance
mass accuracy (GMA). Global accuracy measures how effec-
tively a model detects general drivers of uncertainty across
the entire dataset. In contrast, local accuracy indicates the
model’s ability to identify uncertainty sources for individual
instances and is, therefore, a stricter criterion.

Alvarez-Melis and Jaakkola [2018] argue that Robustness
is a key property of explanations, demanding that proximal
inputs lead to similar explanations. They propose to eval-
uate robustness with local Lipschitz continuity: L̂(xi) =

maxxj∈Nϵ(xi)
∥f(xi)−f(xj)∥2

∥xi−xj∥2
, where f is the explanation

method. For a dataset with only continuous features, the per-
turbation space Nϵ(xi) is a ball with radius ϵ around sam-
ple xi. However, continuous perturbations lack meaning for
categorical features. Instead, the perturbation space is de-
fined as the set of data points close to xi: Nϵ(xi) = {xj ∈
X | ∥xi − xj∥ ≤ ϵ,xi ̸= xj}, where X is the set of test
inputs. Low Lipschitz estimates indicate small changes in
the explanation upon perturbation and, therefore, high robust-
ness. This notion of robustness can be extended to uncertainty
explanations by applying it to the variance head predictions
or an auxiliary uncertainty model.

Further, we analyze Faithfulness of the explanations. If an
explanation is faithful, changing input features that are con-
sidered relevant should lead to a significant reduction in pre-
diction performance. Commonly, this is measured as the in-
crease of the loss upon perturbation of relevant features [Ar-
ras et al., 2022]. However, the GNLL loss we use during
training is a function of the mean and variance, and its mag-
nitude is not interpretable. We aim to evaluate the perturba-
tion’s impact on the quality of the uncertainty estimate. Natu-
rally, we demand that a higher uncertainty estimate should re-
late to a higher expected squared error of the mean prediction.
Therefore, we measure the correlation between the squared
residuals and the uncertainty estimates. Let y ∈ Rn be the
vector of ground truth target values from the test set, and let
µ̂(X) ∈ Rn and σ̂2(X) ∈ Rn denote the predicted means

and variances, respectively, for test inputs X ∈ Rn×d, where
n is the number of test samples and d is the number of fea-
tures. Let A ∈ Rn×d be the feature attribution matrix, where
Aij is attribution of feature j for sample i, as produced by an
uncertainty explainer applied to σ̂2(X). We first calculate the
Spearman correlation ρs = corrs

(
(y − µ̂(X))2, σ̂2(X)

)
.

We then determine the k globally most important uncertainty
features. Precisely, we compute the index set of the most
important features Ik = top-kj

(
1
n

∑n
i=1 |Aij |

)
, i.e., the in-

dices of the k features with the highest average absolute at-
tribution values. Subsequently, we define a perturbed input
matrix X′ ∈ Rn×d by adding Gaussian noise to the k = 3
most important features for uncertainty prediction

X′
ij =

{
Xij + δij , if j ∈ Ik
Xij , otherwise

, δij ∼ N (0, 1).

Based on this, we calculate the correlation of the orig-
inal residuals with the perturbed uncertainties ρ′s =
corrs

(
(y − µ̂(X))2, σ̂2(X ′)

)
and expect the variance to be

less expressive after the perturbation, i.e., the change ρ′s − ρs
is negative, if the uncertainty explanation is faithful.

2.4 Benchmark on Tabular Data
Synthetic Data Generation
Evaluating explainability methods on real-world data is chal-
lenging due to the subjective nature of interpreting expla-
nations based on expert prior knowledge. To address this,
we employ synthetic data with a known data-generating
process. Thereby, we can introduce controlled sources of
heteroscedasticity, which we aim to detect. Specifically,
we sample a synthetic ground truth using a linear sys-
tem µ = V β with a design matrix V ∈ Rn×p with
Vij ∼ N (0, 1), and ground truth coefficients β ∈ Rp

with βi
iid∼ Uniform([−1, 1]). We introduce heteroscedas-

tic noise sources with an absolute-value transformed polyno-
mial model for the heteroscedastic noise standard deviation:
σ =| ϕ(U)γ + δ |, whereby U ∈ Rn×p′

is a design matrix
with Uij

iid∼ N (0, 1),

ϕ(u1, u2, . . . , up′) → (1, u1, . . . , up′ , u2
1, u1u2, . . . , u

2
p′)

is a second degree polynomial feature map, and δ ∼
N

(
0, σ2

δI
)

is the uncertainty model error. The ground truth

noise coefficients γ ∈ R(
p′+2

2 ) have entries sampled from
γi ∼ Uniform([−1,−0.5] ∪ [0.5, 1]) to avoid negligible ef-
fects. We can then sample the target y ∈ Rn with

y ∼ N
(
µ, α · diag(σ2) + σ2

ϵI
)
,

where α ∈ R+ determines the overall strength of the het-
eroscedastic uncertainty and σ2

ϵ ∈ Rn regulates the ho-
moscedastic noise.

For our experiments, we set α = 2.0, σ2
ϵ = 0.02, and

σ2
δ = 0.05 to get non-negligible, feature-dependent noise.

We choose p = 70 and p′ = 5 so that the uncertainty sources
have to be detected among a larger set of features that do
not influence the uncertainty. We sample n = 41, 500 data
points and concatenate both design matrices to attain the input

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

X(n×75) =
[
U(n×5),V(n×70)

]
which we split into 32,000

train, 8,000 validation, and 1,500 test instances.
In reality, we expect noise features to overlap with fea-

tures influencing the mean. We separate these in the synthetic
data to allow for unambiguous assessments in the evaluation.
However, our implementation accommodates the analysis of
mixed scenarios, where a subset of features simultaneously
influences the mean and variance.

Tabular Real World Datasets
In addition, we incorporate three standard regression bench-
mark datasets into our evaluation: UCI Wine Quality [Cortez
et al., 2009], Ailerons [Torgo, 1999], and LSAT academic
performance [Wightman, 1998]. These datasets were selected
to vary in size and complexity. The Wine Quality dataset,
where we use red wines only, includes 11 features for 1,599
samples. Ailerons has 40 features and 13,750 samples, while
LSAT, the largest dataset, has 21,790 samples with two con-
tinuous and two one-hot encoded features. All datasets are
split into 70% training, 10% validation, and 20% testing.

Tabular Benchmarking Setup
We divide our tabular benchmark into two stages. First, we
qualitatively and quantitatively evaluate the uncertainty ex-
planation methods in a controlled setting on a synthetically
generated dataset. Second, we investigate the same methods
concerning their local RRA and RMA, faithfulness, and ro-
bustness on synthetic and real-world data.

The first stage of our benchmark aims to detect global
drivers of uncertainty in a synthetic setting. We fit a deep
neural network of four hidden layers with 64, 64, 64, and 32
units and two outputs for the mean and variance prediction.
We train using dropout on the first two layers, Adam opti-
mizer and a batch size of 64. We pre-train using the MSE
and fine-tune the model using the GNLL as the loss function,
selecting weights with the lowest validation loss. We attain a
global feature importance measure as the mean absolute vari-
ance feature attributions over all or a specific subset of test
instances, which we then analyze using GRA and GMA.

We follow the same model training procedure for the sec-
ond benchmarking stage, evaluating accuracy, faithfulness,
and robustness. Estimating the local RRA and RMA for a
given method requires prior knowledge of features affecting
the explained quantity, i.e., uncertainty. As this is not avail-
able for our selected real-world datasets, we augment them
with synthetic noise that we aim to detect, effectively creat-
ing a semi-synthetic setting. For the three real-world datasets,
we consider two scenarios. We add five noise features to
the datasets and heteroscedastic Gaussian noise to the tar-
gets with a standard deviation correlating with these features.
Since the real-world datasets are small, we first use a simple
noise model where the absolute sum of the noise features is
the standard deviation of the noise distribution, a setting re-
ferred to as 1-S. In a second scenario, 50-C, we use the more
complex polynomial noise model described in Section 2.4. To
provide more data to the model in the complex noise scenario,
we replicate each data point in the train sets 50 times before
sampling additional uncertainty features and target noise. For
the synthetic datasets, we similarly perform experiments with

a simple (S) and complex (C) noise model but without adjust-
ing the dataset size.

We evaluate the robustness of the uncertainty explanation
methods for each dataset by estimating the local Lipschitz
continuity for 200 randomly selected data points from the test
set. For each selected point xi, we compute a local Lipschitz
estimate L̂(xi) by introducing 100 perturbations. For each
feature, we sample a perturbation from a uniform distribution
centered at the feature value with a range of 2% of the range
of the feature in the train set (adapted from Wivestad [2023]).
This is not applicable to LSAT’s categorical features. Instead,
we resort to the discrete definition of local Lipschitz continu-
ity. Specifically, we compute L̂(xi) for 200 data points sam-
pled from the test set such that their neighborhood Nϵ(xi)
with ϵ = 0.2 contains more than five instances.

To evaluate faithfulness, we apply standard Gaussian noise
to perturb the three globally most important uncertainty
drivers of the test data. We omit the LSAT dataset as it mainly
contains categorical features for which continuous perturba-
tions lack meaning.

We note that we only add synthetic noise to estimate accu-
racy metrics, i.e., when calculating RRA and RMA. For all
other experiments, we use the real-world datasets as is.

2.5 Benchmark on Image Data: MNIST+U

To extend our evaluation to a higher-dimensional problem
with more realistic feature dependencies, we consider the task
of image regression. We introduce the MNIST+U dataset that
extends the original MNIST dataset [Deng, 2012] with an un-
certainty component. We create 500,000 composite images
with labels. For each sample, two 28 × 28 MNIST digit im-
ages are randomly selected and placed into different corners
of a 64×64 canvas. The first digit is white and represents the
mean (µi) of a target Gaussian distribution. The second gray
digit represents its standard deviation (σi). Thus, we sample
the label (yi) as: yi = µi + ϵi, ϵi ∼ N (0, σ2

i ).

We split the generated data into train, validation, and test
sets consisting of 70%, 10%, and 20% of the data, respec-
tively. For the image benchmark, we apply a CNN with
two parallel encoders where one predicts the mean and the
other estimates the variance. Each encoder has two convolu-
tional layers (16 and 32 filters), max-pooling, and fully con-
nected hidden layers with dropout and 128, 64, and 32 nodes.
We train the model with MSE for 16 epochs, then switch to
GNLL loss until the validation loss converges. We use the
Adam optimizer and a batch size of 256. We evaluate un-
certainty explainers using RMA and RRA by comparing as-
signed pixel relevance to the ground truth variance and mean
masks. To account for explanations extending beyond the
masked digits, each mask is dilated by two pixels.

The code for all experiments and to create the MNIST+U
dataset is available online on GitHub1. We further make the
MNIST+U dataset available separately on Zenodo2.

1https://github.com/DILiS-lab/DroPAU
2https://doi.org/10.5281/zenodo.15373739
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Figure 2: Explanations for uncertainty and mean predictions for the
synthetic dataset using VFA-SHAP. We display SHAP summaries
for the 10 most important features of (A) model uncertainty or (B)
mean prediction ordered by the mean of their absolute estimated
Shapley values. VFA-SHAP identifies all noise features driving the
model’s aleatoric uncertainty. Explaining the mean output offers
complementary information but does not detect uncertainty features.

3 Results
3.1 Benchmarking the Detection of Uncertainty

Drivers Using Synthetic Datasets
We first examine the capability of VFA-SHAP to identify the
drivers of uncertainty, which are features that correlate with
the magnitude of the heteroscedastic noise. We know the
data-generating process for the synthetic dataset and, there-
fore, the ground truth noise sources. Using this dataset, VFA-
SHAP accurately identifies the five ground-truth noise fea-
tures driving uncertainty, which are distinct from features in-
fluencing the mean (Figure 2 A and B). We verify that our
model captures uncertainty accurately to ensure meaningful
explanations. All trained models are well-calibrated, predic-
tive of model error, and well-suited to our application setting.
Details are available in the GitHub repository.

Further, we analyze the global uncertainty explanation
abilities of all VFA flavors, CLUE and InfoSHAP (Figure 3).
CLUE is applied to the same neural network as VFA, whereas
InfoSHAP utilizes XGBoost. Uncertainty estimation may
facilitate cautious model application only at high certainty
or opting out of model usage due to substantial uncertainty.
Therefore, in addition to 200 random instances, we apply the
explainers to the test set’s 200 highest and lowest uncertainty
instances. We find that VFA flavors and CLUE effectively
identify uncertainty drivers for high-uncertainty instances, re-
flected by their GRAs (with five ground truth noise features)
close to 1. VFA flavors exhibit superior GMA, which sig-
nifies their capacity to disregard irrelevant features. VFA
performs reliably for random and low uncertainty examples,
while CLUE’s performance deteriorates. This suggests that,
unlike CLUE, VFA can explain the factors contributing to
certainty. InfoSHAP, while underperforming for instances
with high uncertainty, clearly outperforms CLUE for random
and low uncertainty instances. We provide code for this figure
and further examples showing that VFA considerably outper-
forms CLUE and InfoSHAP in all three settings.

3.2 Local Accuracies, Faithfulness, and
Robustness

We evaluate the local RRA and RMA for the real-world
datasets and the synthetic dataset in two settings, one sim-
ple (1-S, S) and one complex (50-C, C) as described in Sec-

tion 2.4 (see Table 1). VFA-SHAP outperforms the other
explainers over most datasets. Generally, VFA of any fla-
vor performs best, for the simple settings. However, in the
complex setting, InfoSHAP consistently outperforms VFA-
IG and VFA-LRP and achieves competitive performance to
VFA-SHAP on LSAT and Ailerons.

As shown in Figure 3, CLUE assigns similar importance
to all features. This effect is also present for InfoSHAP but is
less pronounced. They are, therefore, less selective than VFA,
potentially causing uncertainty features not to be detected for
many instances.

To analyze the robustness, we calculate distributions of lo-
cal Lipschitz continuity estimates L̂(xi) over 200 randomly
chosen test set instances for each dataset and method (see Fig-
ure 4). According to the obtained Lipschitz estimates, VFA-
SHAP and VFA-IG are generally more robust than InfoS-
HAP, CLUE, and VFA-LRP. The methods’ individual rank-
ing differs between datasets, suggesting that the choice of the
most robust method is subject to the dataset.

When analyzing the faithfulness metric, we find that per-
turbation of the most important features faithfully reduces
the correlation between uncertainties and residuals when
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Figure 3: Top 15 global importance features with GRA and GMA for
each uncertainty explainer. First column: From 1,500 test samples,
we explain the 200 instances with the highest predicted uncertainty.
VFA flavors highlight the ground truth noise features (red), while
Infoshap and CLUE are less accurate. Second and third columns:
For 200 random or low uncertainty instances, VFA remains accu-
rate, while CLUE becomes unreliable. InfoSHAP maintains ade-
quate performance but consistently detects only three noise features.
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Red Wine Ailerons LSAT Synthetic
1-S 50-C 1-S 50-C 1-S 50-C S C

RRA

VFA-IG 0.61± 0.05 0.60± 0.04 0.81± 0.03 0.70± 0.05 0.81± 0.04 0.74± 0.05 0.75± 0.02 0.38± 0.05

VFA-LRP 0.62± 0.05 0.61± 0.04 0.79± 0.04 0.67± 0.06 0.81± 0.02 0.73± 0.06 0.75± 0.01 0.41± 0.05

VFA-SHAP 0.85 ± 0.02 0.90 ± 0.02 0.88 ± 0.01 0.88 ± 0.02 0.93 ± 0.02 0.92 ± 0.02 0.85 ± 0.01 0.70 ± 0.06

CLUE 0.38± 0.22 0.65± 0.02 0.41± 0.12 0.58± 0.02 0.54± 0.02 0.49± 0.01 0.07± 0.00 0.07± 0.00

InfoShap 0.41± 0.06 0.72± 0.04 0.52± 0.02 0.88 ± 0.02 0.79± 0.01 0.92 ± 0.01 0.59± 0.02 0.49± 0.05

RMA

VFA-IG 0.57± 0.05 0.64± 0.03 0.79± 0.04 0.72± 0.07 0.83± 0.04 0.81± 0.08 0.50± 0.02 0.25± 0.03

VFA-LRP 0.57± 0.05 0.65± 0.04 0.76± 0.04 0.70± 0.08 0.82± 0.04 0.86± 0.05 0.49± 0.01 0.26± 0.03

VFA-SHAP 0.83 ± 0.03 0.92 ± 0.01 0.89 ± 0.02 0.87 ± 0.05 0.95 ± 0.03 0.94 ± 0.02 0.75 ± 0.02 0.44 ± 0.09

CLUE 0.34± 0.17 0.60± 0.02 0.27± 0.11 0.47± 0.01 0.52± 0.02 0.50± 0.01 0.07± 0.00 0.07± 0.00

InfoShap 0.38± 0.04 0.67± 0.04 0.41± 0.01 0.83± 0.03 0.79± 0.02 0.94 ± 0.01 0.31± 0.01 0.26± 0.03

Table 1: Average local RRA and RMA over all test set instances for all considered uncertainty explainers and datasets (1-S: simple noise
model and original train set, 50-C: complex noise model and artificially enlarged train set). Results are averaged across five folds, with
standard deviations shown in brackets and best performances in bold. VFA consistently outperforms InfoSHAP and CLUE in all simple
scenarios. VFA-SHAP also consistently performs best in all complex scenarios, while VFA-LRP and VFA-IG outperform CLUE in most
cases and InfoSHAP in some complex scenarios.

VFA is used in the Ailerons and synthetic datasets (see Ta-
ble 2). However, VFA-LRP exhibits weaker faithfulness on
the Ailerons dataset, demonstrating performance comparable
to the baseline methods.

On the small Red Wine dataset, the faithfulness of all meth-
ods near zero. In essence, the challenge of learning and ex-
plaining uncertainty is amplified in scenarios where data are
scarce, leading to suboptimal faithfulness metrics.

3.3 Benchmark on MNIST+U Image Data
We evaluate the variance explainers on the MNIST+U
dataset to understand their capability of dealing with higher-
dimensional image data. We expect high attributions for pix-

1e+00

1e+03

1e+06

Red Wine Ailerons LSAT Synthetic

Dataset

L
ip

s
c
h

it
z
 E

s
ti
m

a
te

VFA-IG

VFA-LRP

VFA-SHAP

InfoSHAP

CLUE

Figure 4: Local Lipschitz continuity estimates for 200 randomly
chosen test set instances for all methods and datasets. Lower val-
ues indicate higher robustness. Having the lowest median Lipschitz
estimates for most datasets, VFA-SHAP and VFA-IG are the gener-
ally more robust explainers.

els in the area of the uncertainty mask and, relative to that,
low attribution on the mean mask.

All explanation methods, excluding VFA-IG, focus on the
area of uncertainty mask (see Figure 5). VFA-LRP performs
best, demonstrating the highest relevance attribution to the
variance mask. This observation aligns with our expectation
that most relevance should correspond to the variance, rep-
resenting the primary source of uncertainty in the synthetic
labels. We also see this in a randomly selected explanation
example for VFA-LRP shown in Figure 6.

While InfoSHAP and CLUE assign a considerable amount
of relevance to the variance mask, they also have larger pro-
portions of the variance explanation assigned to the mean
mask.

VFA-IG performs poorly and assigns similar amounts of
relevance to mean and variance masks, highlighting that the
choice of the explanation method strongly influences the re-
sults. This aligns with findings that IG explanations on im-
ages focus on specific pixels rather than relevant patterns
driving the prediction [Samek et al., 2021]. This empha-
sizes the importance of selecting an appropriate explainer tai-

Red Wine Ailerons Synthetic

VFA-IG −0.001± 0.017 −0.139± 0.064 −0.167± 0.026

VFA-LRP −0.004± 0.020 −0.083± 0.042 −0.154± 0.028

VFA-SHAP 0.003± 0.018 −0.171± 0.026 −0.158± 0.032

InfoSHAP −0.001± 0.054 −0.099± 0.036 −0.082± 0.023

CLUE −0.000± 0.016 −0.025± 0.009 −0.009± 0.015

Table 2: Faithfulness of the uncertainty explanations: Change of
Spearman correlation between uncertainties and squared residuals
when most important features are perturbed. We expect faithful
uncertainty explanations to induce a negative change. We exclude
LSAT because we define perturbations only for continuous features.
Results are the mean and standard deviation of 12 folds.
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Figure 5: RMA and RRA for each uncertainty explainer and LRP
mean explanations. We compare the attribution of pixels in the
ground truth mask of the mean or the noise. We expect most of
the relevance to be contained in the uncertainty mask. We show the
mean and standard deviation over all samples in the test set.
(*) Note: for CLUE, we only use 40% of the test samples due to its
high runtime.

lored to the specific characteristics of the data and uncertainty
sources, which can be achieved in practice by considering
faithfulness on a validation set.

4 Discussion and Limitations
We presented a straightforward strategy for explaining pre-
dictive aleatoric uncertainties, which requires minimal modi-
fications to existing neural network regressors. We use neural
networks with a Gaussian output distribution to estimate un-
certainty and apply explanation methods to the variance out-
put to explain uncertainty. In synthetic tabular experiments,
the resulting explanations generally outperform alternative
methods. As seen in the experiments with low uncertainty
instances, we can also explain how features contribute to a
model’s certainty, which is relevant in high-risk applications.
Since conventional evaluation metrics are not always directly
applicable, we have introduced an evaluation protocol to as-
sess uncertainty explainers. Parts of our evaluation depend
on the knowledge of ground truth noise sources. This neces-
sitated the incorporation of synthetic noise, which may devi-
ate from the arbitrarily complex real-world noise patterns. We
extend unsupervised explanation quality metrics for accuracy,
faithfulness, and robustness to uncertainty attributions. In our
benchmark, VFA compares favorably to CLUE and InfoS-
HAP. Using the MNIST+U image benchmark, we establish

Input Mean Explanation Uncertainty Explanation

Figure 6: Mean and uncertainty explanations using LRP/VFA-LRP
for a random sample from the MNIST+U test set. Both explanations
focus on the digits relevant for mean and uncertainty, respectively.

that the selection of the explanation method is a significant
variable in generating high-fidelity uncertainty explanations.
Generally, as we combine deep heteroscedastic regression
with existing XAI methods, we inherit all the benefits and
limitations of these methods, including computational com-
plexity. A limitation of our analysis is its focus on aleatoric
uncertainty. Approaches to model and explain epistemic un-
certainty are equally crucial for safety-critical settings and
should be used alongside our approach [Bley et al., 2025].
Future work might involve studying synergies in explaining
point and uncertainty predictions. For example, in the context
of explainable active learning [Ghai et al., 2021], a visualiza-
tion of both explainability modes could be beneficial.

Ethical Statement
There are no ethical issues.

Acknowledgments
This work is supported by a BMWK grant (DAKI,
01MK21009E), a BMBF grant (act-i-ml, 01IS24078B),
and a European Research Council grant (eXplAInProt,
101124385).

Contribution Statement
PI and SW contributed equally to this work. KW and BYR
share senior authorship.

References
[Abdar et al., 2021] Moloud Abdar, Farhad Pourpanah,

Sadiq Hussain, Dana Rezazadegan, Li Liu, Mohammad
Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khos-
ravi, U. Rajendra Acharya, Vladimir Makarenkov, and
Saeid Nahavandi. A Review of Uncertainty Quantification
in Deep Learning: Techniques, Applications and Chal-
lenges. Information Fusion, 76:243–297, December 2021.
arXiv:2011.06225 [cs].

[Adadi and Berrada, 2018] Amina Adadi and Mohammed
Berrada. Peeking Inside the Black-Box: A Survey on
Explainable Artificial Intelligence (XAI). IEEE Access,
6:52138–52160, 2018.

[Almosallam et al., 2016] Ibrahim A. Almosallam, Matt J.
Jarvis, and Stephen J. Roberts. GPz: non-stationary sparse
Gaussian processes for heteroscedastic uncertainty estima-
tion in photometric redshifts. Monthly Notices of the Royal
Astronomical Society, 462(1):726–739, July 2016.

[Alvarez-Melis and Jaakkola, 2018] David Alvarez-Melis
and Tommi S. Jaakkola. On the Robustness of Inter-
pretability Methods. In WHI 2018, June 2018.

[Antoran et al., 2021] Javier Antoran, Umang Bhatt,
Tameem Adel, Adrian Weller, and José Miguel
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