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Abstract
Advancements in the capabilities of Large Lan-
guage Models (LLMs) have created a promis-
ing foundation for developing autonomous agents.
With the right tools, these agents could learn to
solve tasks in new environments by accumulating
and updating their knowledge. Current LLM-based
agents process past experiences using a full his-
tory of observations, summarization, retrieval aug-
mentation. However, these unstructured memory
representations do not facilitate the reasoning and
planning essential for complex decision-making. In
our study, we introduce AriGraph, a novel method
wherein the agent constructs and updates a mem-
ory graph that integrates semantic and episodic
memories while exploring the environment. We
demonstrate that our Ariadne LLM agent, con-
sisting of the proposed memory architecture aug-
mented with planning and decision-making, effec-
tively handles complex tasks within interactive text
game environments difficult even for human play-
ers. Results show that our approach markedly out-
performs other established memory methods and
strong RL baselines in a range of problems of vary-
ing complexity. Additionally, AriGraph demon-
strates competitive performance compared to ded-
icated knowledge graph-based methods in static
multi-hop question-answering.

1 Introduction*

Impressive language generation capabilities of large language
models (LLMs) has sparked substantial interest in their ap-
plication as core components for creating autonomous agents
capable of interacting with dynamic environments and exe-
cuting complex tasks. Over the past year, the research com-
munity has explored general architectures and core modules
for such LLM agents [Wang et al., 2024; Sumers et al., 2024;
Cheng et al., 2024]. A crucial property of a general cogni-
tive agent is its ability to accumulate and use knowledge. A

*An extended version of the paper, including appendices, is
available at arXiv:2407.04363.

long-term memory allows an agent to store and recall past ex-
periences and knowledge, enabling it to learn from previous
encounters and make informed decisions. However, the ques-
tion of the best way to equip an agent with these capabilities
remains open. Despite the constraints inherent in transformer
architectures, contemporary methods enable LLMs to man-
age contexts encompassing millions of tokens [Ding et al.,
2024b]. However, this approach proves inefficient for agents
required to maintain continuous interaction with their envi-
ronment. Such agents must hold an entire historical context in
memory to perform actions, which is not only costly but also
limited in handling complex logic hidden in vast amounts of
information. Research into alternative frameworks like Re-
current Memory Transformer [Bulatov et al., 2022; Bulatov
et al., 2024] and MAMBA [Gu and Dao, 2023] seeks to pro-
vide long-term memory solutions, though these models are
still in their infancy.

Currently, the most popular solution for incorporating
memory to LLM agents is the Retrieval-Augmented Gener-
ation (RAG) approach. RAG in a form of vector retrieval
leverages an external database to enhance the model’s prompt
with relevant information. This technique is commonly used
in memory architectures for LLM agents, often to recall spe-
cific observations or learned skills. However, it suffers from
unstructured nature, greatly reducing the ability to retrieve
related information, which may be scattered throughout the
agent’s memory. These limitations can be overcome by us-
ing knowledge graphs as database. This approach has also
experienced a resurgence with the advent of LLMs [Pan et
al., 2024]. However, for a robust memory architecture, in-
tegrating both structured and unstructured data is essential.
In cognitive science, this integration parallels the concepts of
semantic and episodic memories. Semantic memory encom-
passes factual knowledge about the world, whereas episodic
memory pertains to personal experiences, which often con-
tain richer and more detailed information. Though tradition-
ally considered separate due to their distinct neurological rep-
resentations, recent studies suggest these memory types are
interconnected [Wong Gonzalez, 2018]. Semantic knowledge
is built upon the foundation of episodic memory and subse-
quently provides a structured base for associative memory.
This allows for the integration of various memory aspects,
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Figure 1: (A) The architecture of our Ariadne agent, equipped with AriGraph memory. AriGraph integrates both semantic knowledge graph
and past experiences. Memory in the form of a semantic knowledge graph extended with episodic vertices and edges significantly enhances
the performance of LLM-agent in text-based games. (B) The average performance of our agent on text games, compared to various baselines
including human players and other LLM memory implementations. The LLM-agents differ only in the memory module, while the decision-
making component remains identical across all versions. The results for the agents are displayed for the top three out of five runs. For human
players, the results are presented as both the top three and the average across all participants.

including episodic memories themselves.
In our research, we have developed a memory architecture

called Ariadne’s Graph (AriGraph), that integrates semantic
and episodic memories within a memory graph framework. A
knowledge graph represents a network of interconnected se-
mantic knowledge, while episodic memories are depicted as
episodic edges that can connect multiple relations within the
graph. As an agent interacts with environment, it learns joint
semantic and episodic world model by updating and extend-
ing knowledge graph based memory. This architecture not
only serves as a foundational memory framework but also
aids in environmental modeling, improving spatial orienta-
tion and exploration capabilities. For the general framework
of our LLM agent called Ariadne, we employed pipeline of
memory retrieval, planing and decision making. For evalua-
tion of proposed methods we set up experiments to study two
research questions.

RQ1. Can LLM based agents learn useful structured world
model from scratch via interaction with an environment?

RQ2. Does structured knowledge representation improve
retrieval of relevant facts from memory and enable effective
exploration?

We evaluated our agent in complex interactive tasks in
Textworld and NetHack environments [Côté et al., 2018;
Küttler et al., 2020]. Experimental results demonstrate that
our agent Ariadne can effectively learn through interactions
with environment and significantly outperforms other mem-
ory approaches for LLMs such as full history, summarization,
RAG, Simulacra [Park et al., 2023] and Reflexion [Shinn et
al., 2023]. We also show that our method outperforms exist-
ing reinforcement learning (RL) baselines. We also evaluated

our approach on the classical roguelike game NetHack, where
our agent with local observations achieved scores comparable
to an agent with ground-truth knowledge. Although AriGraph
was originally designed for an agent interacting with the en-
vironment, it also demonstrates competitive performance on
multi-hop question answering tasks.

2 AriGraph World Model
Memory graph structure. AriGraph world model G =
(Vs, Es, Ve, Ee) consists of semantic (Vs, Es) and episodic
memory (Ve, Ee) vertices and edges (see Figure 2). At
each step t agent receives observation ot and sends ac-
tion at back to the environment. The environment also re-
turns rewards rt that are not visible to the LLM agent but
are used to evaluate its performance. The agent continu-
ously learns world model G by extracting semantic triplets
(object1, relation, object2) from textual observations ot.

• Vs is a set of semantic vertices. Semantic vertices corre-
spond to objects extracted from triplets.

• Es is a set of semantic edges. Semantic edge is a tuple
(v, rel, u), where u, v are semantic vertices and rel is a
relationship between them. Semantic edges essentially
represent triplets integrated in the semantic memory.

• Ve is a set of episodic vertices. Each episodic vertex
corresponds to an observation received from the envi-
ronment at the respective step vte = ot.

• Ee is a set of episodic edges. Each episodic edge
ete = (vte, E

t
s) connects all semantic triplets Et

s extracted
from ot with each other and corresponding episodic ver-
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Algorithm 1: Memory Graph Search
Input: set of queries Q, Vs, Es, Ve, Ee,

number of episodic vertices k, semantic
search depth d and width w

Result: retrieved episodic vertices V Q
e , retrieved

semantic triplets EQ
s

EQ
s ← ∅,

foreach q in Q do
E′

s ← SemanticSearch(q, Vs, Es, d, w)
EQ

s ← EQ
s ∪ E′

s
end
V Q
e ← EpisodicSearch(EQ

s , Ve, Ee, k)
return EQ

s , V Q
e

tex vte. In other words episodic edges represent temporal
relationship “happened at the same time”.1

Constructing AriGraph. Interaction with the environment
can provide the agent with an information about the world to
create new or update previously acquired knowledge. Given
new observation ot, LLM agent extracts new triplets as se-
mantic vertices V t

s and edges Et
s. To find already existing

knowledge about the objects mentioned in ot a set of all se-
mantic edges Erel

s incident to vertices V t
s is filtered out. Then

outdated edges in Erel
s are detected by comparing them with

Et
s and removed from the graph. After clearing outdated

knowledge we expand semantic memory with V t
s and Et

s.
Episodic memory is updated by simply adding new episodic
vertex vte containing ot and new episodic edge that connect
all edges in Et

s with vte. Episodic nodes store agent’s past
history and episodic edges connects all knowledge received
at the same step. See Appendix E for prompts used to extract
new triplets and detect outdated knowledge.

Retrieval from AriGraph. For successful decision-
making in a partially observable environment, the agent
needs to be able to retrieve relevant knowledge. Retrieval
from the AriGraph memory consists of two procedures: (1)
a semantic search returns the most relevant triplets (semantic
edges) and (2) an episodic search that, given extracted
triplets, returns the most relevant episodic vertices Ve. The
pseudo-code for the search is presented in the Algorithm 1.

Semantic search relies on semantic similarity and semantic
graph structure to recall the most relevant triplets. Given a
query, the retriever (pre-trained Contriever model [Izacard et
al., 2022]) selects the most relevant semantic triplets. Then,
the set of vertices incident to the found triplets is used to
recursively retrieve new edges from the graph. Depth and
breadth of the search can be controlled by respective hyper-
parameters d and w. For details see Appendix A.

Episodic search starts with the results of the semantic
search as an input. Episodic edges link the input triplets with
past episodic vertices representing observations. The number
of input triplets associated with a particular episodic vertex is

1Strictly speaking, episodic edges cannot be called edges or
even hyperedges, because they connect vertices with multiple graph
edges, but for simplicity we call them edges or episodic edges.

used to calculate their relevance:

rel(vie) =
ni

max(Ni, 1)
log(max(Ni, 1)) , (1)

where ni is a number of input triplets incident to episodic
edge ei, Ni is a total number triplets (semantic edges) inci-
dent to ei and log (max(Ni, 1)) is a weighting factor to pre-
vent high scores for low information observations. k most rel-
evant episodic vertices (containing respective observations)
are returned as a result of the episodic search.

3 Ariadne Cognitive Architecture
To test utility of AriGraph world modelling method we pro-
pose an agentic architecture called Ariadne. Ariadne agent
interacts with an unknown environment to accomplish a goal
set by a user. Throughout this process, at each time step, the
agent learns a world model, plans and executes actions. Ari-
adne has long-term memory stored as AriGraph and working
memory containing information for current planning and de-
cision making.

Given an observation the agent updates world model and
retrieves semantic and episodic knowledge from AriGraph to
working memory. Working memory is also populated with
a final goal description, current observation, history of recent
observation and actions. At the planning stage, Ariadne agent
uses content of working memory to create new or update ex-
isting plan as a series of task-relevant sub-goals, each accom-
panied by a concise description. The planning module also
evaluates the outcomes of actions based on feedback from
the environment after each action at step t − 1, adjusting the
plan accordingly.

The revised plan is added to the working memory which is
accessed by the decision-making module, tasked with select-
ing the most suitable action aligned with the current plan’s
objectives. This module adheres to the ReAct [Yao et al.,
2023] framework, requiring the agent to articulate the ratio-
nale behind an action before execution. Separation of plan-
ning from decision-making enables LLMs to focus on distinct
cognitive processes. In text-based environments an agent se-
lects an action from the list of valid actions. Our agent can
also use graph specific function for navigation utilizing its
memory module. It extends its action space with “go to loca-
tion” type commands and infers an optimal route to a target
location using spatial relations stored in a semantic graph.

4 Experimental Setup
4.1 TextWorld Interactive Environments
We compared Ariadne agent with alternative methods in a se-
ries of text based games involving spatial navigation, object
collection and tool manipulation. All these games can be con-
sidered Partially Observable MDPs (POMDPs). Such games
have long been benchmarks for researching agents capable of
effectively remembering information and establishing long-
term dependencies [Parisotto et al., 2020; Pleines et al., 2022;
Sorokin et al., 2022].

Treasure Hunting. The primary objective is to retrieve
the hidden treasure, with a series of rooms providing keys
and clues leading to the final goal. The basic variation has 12
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Figure 2: AriGraph world model and Ariadne cognitive architecture. (A) AriGraph learns episodic and semantic knowledge during interaction
with unknown environment. At each time step t new episodic vertex (containing full textual observation ot) is added to the episodic memory.
Then LLM model parses observation ot to extract relevant relationships in a form of triplets (object1, relation, object2). These triplets are
used to update semantic memory graph. The connection between episodic and semantic memory occurs through episodic edges that link each
episodic vertex with all triplets extracted from respective observation. (B) Ariadne agent explores the environment and accomplishes tasks
with AriGraph. User sets goal to the agent. Working memory is populated with recent history of observations and actions, relevant semantic
and episodic knowledge retrieved from the AirGraph world model. Planing LLM module uses content of working memory to generate new
or update existing plan. Results of planning are stored back in working memory. Finally, a ReAct-based module reads memory content and
selects one of possible actions to be executed in the environment. Every observation triggers learning that updates agent’s world model.

rooms and 4 keys, hard one has 16 rooms and 5 keys and hard-
est contains 36 rooms, 7 keys and additional distract items in
every room.

Cleaning. The goal is to clean a house by identifying and
returning misplaced items to their correct locations. Environ-
ment consists of 9 rooms (kitchen, pool, etc.) and contains
11 misplaced items (among many other items). To solve the
problem, the agent needs to memorize the location of rooms
and objects, as well as reason about objects placement.

Cooking. The goal is to prepare and consume a meal by
following a recipe, selecting the correct ingredients, and us-
ing appropriate tools, while navigating in multi-room house.
Basic difficulty task features 9 locations and 3 ingredients and
hard task features 12 locations and 4 ingredients, while hard-
est task also features closed doors and inventory management.

For baselines we used Ariadne’s planning and decision
making module with one of the following types of memory
instead of AriGraph model: full history of observations and
actions, iterative summarization, RAG, RAG with Reflexion
[Shinn et al., 2023], and Simulacra - memory implementation
from [Park et al., 2023].

Full history involves retaining a complete record of all
observations and actions to inform decision-making at ev-
ery step. Summarization, as an alternative to storing the
full history, focuses on retaining only the necessary informa-
tion while discarding the rest. The standard RAG baseline
retrieves top-k memories based on their similarity score to
the current observation and plan. Simulacra features a scor-
ing mechanism that integrates recency, importance, and rele-
vance, alongside reflections on the extracted memories. The
Reflexion baseline differs from other methods in its approach,
as it operates over multiple trials. After failing a trial, the
agent reflects on its trajectories to document information that
may assist in solving the task in subsequent trials. We used

the gpt-4-0125-preview as LLM backbone for AriGraph and
other LLM-based baselines.

Additionally, we tested our architecture on a variation of
the cooking test from [Adhikari et al., 2021] to compare it
with RL baselines. These tasks have 4 levels of difficulty,
however, they are significantly simpler than our main tasks,
having fewer locations, ingredients, and required actions (Ap-
pendix F).

For RL baselines, we collect the best results reported by
[Adhikari et al., 2021; Tuli et al., 2022; Basu et al., 2024]
for the GATA, LTL-GATA, and EXPLORER architectures on
the Cooking task with four difficulties levels from [Adhikari
et al., 2021].

To estimate human performance in the same games, we
developed a graphical user interface , allowing volunteers to
play basic versions of the Treasure Hunt, The Cleaning, and
the Cooking. After collecting the data, we excluded sessions
where the game was not completed.

4.2 NetHack Environment
NetHack [Küttler et al., 2020] is a classic roguelike adventure
game featuring procedurally generated multi-level dungeon
(see Figure 13 in Appendix for a dungeon level example).
It poses significant challenges for both LLM-based and RL-
based approaches, requiring complex exploration, resource
management, and strategic planning.

We based our experiments on NetPlay [Jeurissen et al.,
2024] agent, which demonstrates state-of-the-art perfor-
mance among LLM agents that do not rely on finetuning or
RL. In NetPlay agent receives textual observations containing
all information about current explored dungeon level. These
observations (Level obs) effectively function as handcrafted
memory oracle for the agent.

To evaluate our Ariadne agent, we restricted textual ob-
servations to agent’s current room or corridor (Room Obs),
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Figure 3: AriGraph world model enables Ariadne agent to successfully solve variety of text games. (A) Ariadne outperform baseline agents
with alternative types of memory. (B) Ariadne with episodic and semantic memory scales to harder environments without losing performance.
(C) Ariadne shows performance comparable to the best human players. The Y-axis shows the normalized score, which is calculated relative
to the maximum possible points that can be obtained in each environment. Error bars show standard deviation. The number of max steps is
set to 60 in the Cooking and to 150 in other games.

testing whether AriGraph world model could compensate for
this restriction by remembering all relevant level information.

We compare three agents. The first is NetPlay [Room obs]
with restricted textual observations, the second is our Ariadne
[Room obs] agent that receives Room Obs and updates Ari-
Graph, and the last is NetPlay [Level obs] with access to in-
formation about explored level.

4.3 Multi-hop Q&A
Although our memory architecture was originally designed
for an agent interacting with the environment, we evaluated
its performance on standard multi-hop Q&A benchmarks —
Musique [Trivedi et al., 2022] and HotpotQA [Yang et al.,
2018] to show its robustness and efficiency in more standard
retrieval tasks. We made slight adjustments to the promts
and replaced Contriever model with BGE-M3[Chen et al.,
2024], as it is a better fit for general text encoding. We
used 200 random samples from both datasets similar to [Li et
al., 2024a]. We compared the performance of our approach
against Graphreader [Li et al., 2024a], ReadAgent [Lee et al.,
2024], HOLMES [Panda et al., 2024], GraphRAG [Edge et
al., 2024] and RAG baselines provided in [Li et al., 2024a].

5 Results
5.1 TextWorld
Every LLM based agent had five attempts to solve each game.
The normalized score of one means that an agent completed
the game, and score less than one represents intermediate
progress. Results on text-based games are shown on the Fig-
ure 3 (for dynamics see Appendix G). We estimate perfor-
mance as average of three best runs. Ariadne successfully re-
members and uses information about state of the world for all

three tasks. Baseline agents are unable to solve the Treasure
Hunt, and fail to find even second key in the Treasure Hunt
Hardest. On the other hand, Ariadne successfully solves the
Treasure Hunt in about fifty steps, maintains robust perfor-
mance in the Treasure Hunt Hard, and is able to complete
the Treasure Hunt Hardest with more then double amount of
rooms compared to Hard version, additional keys and distrac-
tors (see Appendix G).

Compared to the Treasure Hunt, the Cleaning game it is
more important to properly filter outdated information about
object locations, than not to lose any information. This is
evident from the reduced usefulness of Episodic Memory in
Ariadne agent and Full history baseline, since both memory
modules focus on retaining long-term information. Over-
all Ariadne notably outperforms alternatives in this game.
Moreover, Ariadne also outperforms Reflexion, which has ad-
ditional information between episodes [Shinn et al., 2023].
This baseline shows markable performance growth (in com-
parison wuth RAG) at the second try, but degrades with fol-
lowing tries.

The Cooking game has the highest difficulty, because any
error at intermediate step prevents completion of the whole
game. All baseline agents (except Reflexion 2-shot with ob-
vious advantage over other methods) fail to complete cooking
tasks due to insufficient or misused information. In this game,
episodic memory is particularly important, allowing the agent
to recall useful observations such as the content of the recipe
or cooking instructions. For token usage of every method see
Table 3, Appendix D.

Comparison with RL baselines on variation of the Cooking
task is shown in Figure 4. We run Ariadne and GPT-4 with
Full history on 4 difficulty levels from the cooking benchmark
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Figure 4: Ariadne LLM agent shows top performance compared
to RL alternatives. Comparison of Ariadne and Full History base-
line (GPT-4) with RL baselines in the cooking benchmark. Ariadne
demonstrates superior performance across all 4 difficulty levels

[Adhikari et al., 2021]. Ariadne shows superior performance
to RL-agents on all 4 levels, especially harder ones. GPT-4
agent with Full history solves only first two levels which is
consistent with previous result as the Cooking from Figure
3.A is harder than level 4.

Human evaluation. Comparison with respect to human
players is shown in Figure 3.C. All Humans is the average
score of all valid (completed) human trials. Human Top-3
is the average score of three best plays for each task. Ari-
adne outperforms average human player from our sample on
all tasks, and scores similarly to the best human plays in the
Cooking and the Treasure Hunt, but underperforms in the
Cleaning.

Graph quality. We measured AriGraph’s growth rate and
update rate during gameplay (see Figure 5). The graph ac-
tively grows during the exploration phase and flattens once
the agent becomes familiar with the environment. We argue
that this indicates that agent can generalize to long interac-
tions with the environment despite constant updates to the se-
mantic graph. Additional results in Appendix C demonstrate
that the growth rate of the graph decreases with the increase
in quality of LLM backbone.

Overal results demonstrate clear advantage of Ariadne
agent over LLM based and RL baselines. Semantic mem-
ory enables the Ariadne Agent to build and update knowledge
about the current state of the POMDP environment, which is
crucial for navigation, exploration and capturing relevant de-
tails in interactive environments. On the other hand, episodic
memory assists the agent in retrieving detailed long-term in-
formation that may not be captured in semantic memory, as
demonstrated by the results in the Cooking task.

5.2 NetHack
The results are presented in Table 1. Scores column shows
average game score across 3 runs, Levels column shows av-
erage number of dungeon levels completed by an agent. GPT-
4o was used for all agents. Underscoring the importance
of memory in this task, NetPlay [Level obs] with access to
memory oracle achieved the highest scores, while NetPlay
[Room obs] with only current room observations performed
the worst. Ariadne [Room obs] successfully utilized Ari-
Graph word model, achieving performance comparable to the

Method Score Levels
Ariadne (Room obs) 593.00± 202.62 6.33± 2.31
NetPlay (Room obs) 341.67± 109.14 3.67± 1.15
NetPlay (Level obs) 675.33± 130.27 7.33± 1.15

Table 1: Ariadne with obscured partial observations performs com-
parable to NetPlay agent full level information.

baseline with memory oracle.

5.3 Multi-hop Q&A
We compared AriGraph with the latest LLM-based ap-
proaches that employ knowledge graph construction and re-
trieval techniques for question answering over documents
(Table 2). Our memory architecture, adapted from the Ari-
adne TextWorld agent, utilizing both GPT-4 and GPT-4o-
mini outperformed baseline methods like ReadAgent (GPT-
4), GPT-4 RAG, GPT-4 full context and GraphReader (GPT-
4). GraphRAG served as a strong GPT-4o-mini baseline,
due to its extremely hight costs. ArigGraph (GPT-4o-mini)
showed weaker performance on Musique, but outperformed
GraphRAG on HotpotQA. Notably, our approach is more
then 10x cheaper in comparison to GraphRAG (Table 3, Ap-
pendix D).

The best performance using GPT-4 was achieved by
HOLMES, but AriGraph (GPT-4) exhibited comparable re-
sults. Notably, all baseline methods were specifically de-
signed for Q&A tasks, incorporating task-specific prompt
tuning and additional architectural enhancements. Both
GraphRAG and HOLMES employ hyper-relations in their
graphs to connect source data with extracted entities, simi-
lar to our method. However, these approaches lack mecha-
nisms for updates in dynamic environments, a key advantage
of AriGraph.

Method MuSiQue HotpotQA
EM F1 EM F1

BM25(top-3) 25.0 31.1 45.7 58.5
Ada-002(top-3) 24.5 32.1 45.0 58.1

GPT-4 full context 33.5 42.7 53.0 68.4
GPT-4 + supporting facts 45.0 56.0 57.0 73.8

ReadAgent(GPT-4) 35.0 45.1 48.0 62.0
GraphReader(GPT-4) 38.0 47.4 55.0 70.0
HOLMES(GPT-4) 48.0 58.0 66.0 78.0
AriGraph(GPT-4) 45.0 57.0 68.0 74.7

GraphRAG(GPT-4o-
mini)

40.0 53.5 58.7 63.3

AriGraph(GPT-4o-mini) 36.5 47.9 60.0 68.6

Table 2: AriGraph memory demonstrates competitive performance
on Multi-Hop Q&A datasets. Even in non interactive tasks AriGraph
is comparable to strong QA baseline agents. The best results with
the base GPT-4o and GPT-4o-mini are shown in bold and underline
respectively.
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Figure 5: AriGraph demonstrate good scaling during learning and with environment size. A size of the knowledge graph quickly saturates
during exploration and learning phase. KG grows moderately when the Treasure Hunt and the Cooking games include more rooms and
objects in their hard versions.

6 Related Work
Voyager [Wang et al., 2023a], Ghost in the Minecraft [Zhu
et al., 2023] and Jarvis-1 [Wang et al., 2023b] are ad-
vanced, open-ended LLM agents that show significantly bet-
ter performance in Minecraft compared to earlier techniques.
These agents feature memory capabilities through a library of
learned skills, summaries of successful actions, and episodic
memory with plans for successful task execution. However,
they fall short in representing knowledge with semantic struc-
ture and depend heavily on the LLM’s extensive Minecraft
knowledge. Generative agents [Park et al., 2023] mimic hu-
man behavior in multi-agent environments and were among
the pioneers in introducing an advanced memory system for
LLM agents. Reflexion [Shinn et al., 2023] and CLIN [Ma-
jumder et al., 2023] enables agents to reflect on past trajecto-
ries, allowing them to store relevant insights about completed
actions in a long-term memory module, but has no structural
representation of knowledge and episodic memories. LARP
[Yan et al., 2023] utilizes the concepts of episodic and seman-
tic memories but treats them as separate instances and lacks a
structural representation of knowledge.

Considerable research is dedicated to leveraging estab-
lished knowledge graphs for enhancing Q&A [Baek et al.,
2023; Li et al., 2024b] systems to address the factual
knowledge deficiency observed in LLMs. The latest re-
search demonstrating best performance in Q&A tasks in-
cludes Graphreader [Li et al., 2024a], HOLMES [Panda et
al., 2024], HippoRAG [Gutiérrez et al., 2024], GraphRAG
[Edge et al., 2024] which all employ the technique of build-
ing knowledge graphs from texts. However, these studies do
not address the context of functioning within an interactive
environment, nor do they take into account the updates to
knowledge graphs prompted by new experiences.

Text-based environments [Côté et al., 2018; Hausknecht et
al., 2019; Shridhar et al., 2021; Wang et al., 2022] were origi-
nally designed to evaluate reinforcement learning (RL) agents
[Guo et al., 2020; Yao et al., 2020; Ammanabrolu et al., 2020;
Ammanabrolu and Hausknecht, 2020; Tuli et al., 2022;

Adhikari et al., 2021]. Multiple experiments have already
explored the potential of LLMs in these complex scenarios
[Tsai et al., 2023; Tan et al., 2023; Momennejad et al., 2023;
Ding et al., 2024a]. However raw LLMs show poor results in
these games without proper agentic architecture and memory.

7 Conclusions
In this paper, we introduced AriGraph, a novel knowledge
graph world model tailored for LLM agents. AriGraph
uniquely integrates semantic and episodic memories from
textual observations, providing a structured and dynamic rep-
resentation of knowledge. We evaluated this approach across
a range of interactive text-based games and multi-hop Q&A
benchmarks, comparing it against existing memory architec-
tures. To test its capabilities comprehensively, we developed
a cognitive architecture called Ariadne, which combines Ari-
Graph with planning and decision-making components.

Our results demonstrate that AriGraph significantly out-
performs other memory systems in tasks requiring long-term
memory, such as decision-making, planning, and exploration
in partially observable environments. The structured knowl-
edge representation provided by AriGraph enables efficient
retrieval and reasoning, accelerating learning and task com-
pletion. Additionally, AriGraph’s scalability was evident as
it maintained high performance even when the complexity
of tasks increased, involving more objects and locations. In
multi-hop Q&A benchmarks, AriGraph exhibited competi-
tive performance, underscoring its robustness and adaptabil-
ity beyond interactive environments.

While promising, our approach can be further enhanced
by incorporating multi-modal observations, procedural mem-
ories, and more sophisticated graph search methods.
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Alexandre Côté, Yonatan Bisk, Adam Trischler, and
Matthew Hausknecht. ALFWorld: Aligning Text and Em-
bodied Environments for Interactive Learning. In Proceed-
ings of the International Conference on Learning Repre-
sentations (ICLR), 2021.

[Sorokin et al., 2022] Artyom Sorokin, Nazar Buzun,
Leonid Pugachev, and Mikhail Burtsev. Explain my sur-
prise: Learning efficient long-term memory by predicting
uncertain outcomes. Advances in Neural Information
Processing Systems, 35:36875–36888, 2022.

[Sumers et al., 2024] Theodore R. Sumers, Shunyu Yao,
Karthik Narasimhan, and Thomas L. Griffiths. Cognitive
architectures for language agents, 2024.

[Tan et al., 2023] Qinyue Tan, Ashkan Kazemi, and Rada
Mihalcea. Text-based games as a challenging benchmark
for large language models, 2023.

[Trivedi et al., 2022] Harsh Trivedi, Niranjan Balasubrama-
nian, Tushar Khot, and Ashish Sabharwal. MuSiQue:
Multihop questions via single-hop question composition.
Transactions of the Association for Computational Lin-
guistics, 2022.

[Tsai et al., 2023] Chen Feng Tsai, Xiaochen Zhou, Sierra S.
Liu, Jing Li, Mo Yu, and Hongyuan Mei. Can large lan-
guage models play text games well? current state-of-the-
art and open questions, 2023.

[Tuli et al., 2022] Mathieu Tuli, Andrew C. Li, Pashootan
Vaezipoor, Toryn Q. Klassen, Scott Sanner, and Sheila A.
McIlraith. Learning to follow instructions in text-based
games, 2022.

[Wang et al., 2022] Ruoyao Wang, Peter Jansen, Marc-
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