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Abstract
Causal inference has emerged as a promising ap-
proach to mitigate long-tail classification by han-
dling the biases introduced by class imbalance.
However, along with the change of advanced back-
bone models from Convolutional Neural Networks
(CNNs) to Visual Transformers (ViT), existing
causal models may not achieve an expected per-
formance gain. This paper investigates the in-
fluence of existing causal models on CNNs and
ViT variants, highlighting that ViT’s global fea-
ture representation makes it hard for causal meth-
ods to model associations between fine-grained fea-
tures and predictions, which leads to difficulties in
classifying tail classes with similar visual appear-
ance. To address these issues, this paper proposes
TSCNet, a two-stage causal modeling method to
discover fine-grained causal associations through
multi-scale causal interventions. Specifically, in
the hierarchical causal representation learning stage
(HCRL), it decouples the background and objects,
applying backdoor interventions at both the patch
and feature level to prevent model from using class-
irrelevant areas to infer labels which enhances fine-
grained causal representation. In the counterfac-
tual logits bias calibration stage (CLBC), it refines
the optimization of model’s decision boundary by
adaptive constructing counterfactual balanced data
distribution to remove the spurious associations in
the logits caused by data distribution. Extensive
experiments conducted on various long-tail bench-
marks demonstrate that the proposed TSCNet can
eliminate multiple biases introduced by data imbal-
ance, which outperforms existing methods.

1 Introduction
Real-world data typically follows long-tailed distributions,
resulting in models that primarily optimize for head classes
and demonstrate limited generalization to tail classes [Zhang
et al., 2023]. Existing CNN-based long-tailed algorithms in-
cluding class balancing methods [Cui et al., 2019; Ren et

∗Corresponding author
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𝒙, 𝒚 ~𝝉𝒍
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Figure 1: The illustration of the proposed TSCNet. It removes se-
mantic bias through hierarchical causal intervention to enhance the
causal representation of tail classes. In the second stage, it adap-
tively calibrates logit bias through counterfactual intervention.

al., 2020], data augmentation [Wang et al., 2024a; Ahn et
al., 2022], enhanced training strategies [Wang et al., 2021;
Du et al., 2023]. With the development of Transformers,
ViT employs an attention-based global feature extraction ap-
proach, facilitating the capture of finer-grained features rel-
ative to CNN architectures. However, this does not change
the essence of the model’s reliance on statistical information
from the data, leading to an overall performance gain but a
persistent gap between head and tail class performance, leav-
ing the long-tail problem unresolved.

Long-tail image classification in ViT can be improved
using two main approaches: parameter-efficient fine-tuning
strategies and information enhancement. The former method
[Li et al., 2024a] mainly leverages pre-trained knowledge
to enhance the generalization of tail classes. LPT [Dong et
al., 2023] designs visual prompts for group-wise categories
to improve the learning of unique representations for tail
classes, while LIFT [Shi et al., 2023] adopts a partial parame-
ter fine-tuning approach to enhance the discriminative ability
for tail classes. However, they struggle with tail classes that
have high intra-class complexity by fine-tuning with a lim-
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ited number of parameters. Information enhancement meth-
ods aim to augment the information for tail classes. VL-
LTR [Tian et al., 2022] leverages textual features to enhance
the learning of image features, and DeiT [Rangwani et al.,
2024] extracts information from pre-trained CNNs through
knowledge distillation. These methods often struggle to ob-
tain accurate knowledge of tail classes, leading to semantic
confusion. The key to solving these problems lies in learn-
ing highly relevant visual features and mitigating spurious
correlations caused by long-tailed distribution, which can be
achieved through causal inference methods. However, di-
rectly applying existing causal methods [Tang et al., 2020;
Zhu et al., 2022] to ViT fails to yield performance gains akin
to CNN-based models due to they are difficult to model the
spurious association between the fine-grained features and the
predictions by calibrating the logits with the estimated cate-
gory consistency bias. This leads to the problem that existing
causal methods struggle to eliminate the spurious associations
between a woman’s image and related categories like ”girl”
or ”table,” with most of the misclassified tail categories being
confused with similar categories, as shown in Figure 2.

To address these issues, this paper proposes a two-stage
causal modeling framework by multi-scale causal interven-
tion termed TSCNet, as shown in Figure 1. To enhance the
model’s fine-grained causal representation and mitigate the
spurious associations on logits, we design two stages: hier-
archical causal representation learning (HCRL) and counter-
factual logits bias calibration (CLBC). HCRL enhances the
model’s fine-grained causal representation for tail classes by
introducing class-independent semantic information such as
background at both the patch-level and global feature-level.
This enables the model to focus on class-relevant regions
through hierarchical interventions. CLBC calibrates the spu-
rious associations in label predictions caused by domain dis-
tribution from counterfactual perspective. By counterfactual
generation and adaptively refining the intensity of counter-
factual augmentation to construct different distributions, we
effectively model category relationships and calibrate logits’
bias caused by long-tailed distribution. The two-stage causal
modeling method enables independent interventions on mul-
tiple biases, allowing TSCNet to maintain head class perfor-
mance while improving tail class accuracy.

Experiments were conducted on two datasets, including
performance comparison, ablation study, case study, and
other in-depth analyses. The results confirm that TSCNet ef-
fectively enhances causal representations for tail data, while
mitigating the logits bias caused by long-tailed distributions.
The main contributions of this paper are:

• This paper points out that due to the different feature ex-
traction, existing long-tailed causal methods face chal-
lenges when applied to transformer architectures.

• This paper proposes a two-stage causal framework with
multi-scale interventions. To the best of our knowledge,
it’s the first causal framework that uses backdoor adjust-
ment to remove various biases and is applicable to ViT.

• Experiments show that TSCNet effectively mitigates se-
mantic and distributional biases, reducing errors in both
head and tail class predictions.
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Figure 2: The example of Similar-FP and Non-similar-FP on (a), the
error confusion analysis of the existing causal method xERM on ViT
on (b), the bias correction mechanism of causal methods TDE on (c),
the difference in counterfactual estimation logits class consistency
long-tail bias between the method TDE on ViT and CNNs. on (d).

2 Related Work

2.1 Long-tailed Image Classification

Previous studies addressing the negative impacts of long-
tail distributions have focused on three distinct aspects:
class balancing methods, which enhance optimization for tail
classes by designing resampling strategies [Cui et al., 2019;
Dang et al., 2023], reweighting loss functions [Ren et al.,
2020; Zhou et al., 2024], and adjusting logits [Hong et
al., 2021; Liao et al., 2024]; data augmentation, which im-
prove the information scarcity of tail classes through cur-
riculum learning for image augmentation[Ahn et al., 2022;
Wang et al., 2024a], transfer learning from head classes to
tail classes [Chen and Su, 2023; Dang et al., 2024a], and
feature enhancement for tail classes [Qi et al., 2023; Li et
al., 2024b]; improving training strategies [Du et al., 2023;
Fu et al., 2025], which typically involve decoupling repre-
sentation learning from classifiers [Kang et al., 2019] and
employing ensemble learning strategies [Zhou et al., 2020;
Cui et al., 2022; Dang et al., 2024b; Dang et al., 2025] to
further optimize both head and tail classes. Causal methods
[Tang et al., 2020; Zhu et al., 2022] have shown remark-
able performance improvements in CNNs by calibrating the
logits bias induced by data distribution through backdoor ad-
justments. Transformer-based long-tailed methodologies[Xu
et al., 2023; Zhu et al., 2024] primarily focus on fine-
tuning strategies for ViT, including prompt tuning to enhance
shared prompts for tail classes[Dong et al., 2023; Li et al.,
2024a], parameter-efficient fine-tuning techniques[Shi et al.,
2023] to facilitate the learning of tail classes. Some meth-
ods further enhance the representation of tail classes by in-
corporating external knowledge through visual-language con-
trastive learning[Tian et al., 2022] and knowledge distillation
techniques[Rangwani et al., 2024].
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2.2 Causal Inference in Image Classification
Causal inference and counterfactual reasoning have received
increasing attention in a variety of tasks in computer vi-
sion, including scene graph generation[Sun et al., 2023],
image recognition[Meng et al., 2025; Guan et al., 2023],
and video analysis[Wang et al., 2024d; Dang et al., 2024c].
Causal methods in the field of image classification demon-
strated significant performance improvements. Existing re-
search has implemented backdoor adjustment strategies by
designing causal classifiers[Liu et al., 2022], using attention
mechanisms[Yang et al., 2023] to identify and mitigate the in-
terference of confounding factors[Zhang et al., 2024]. More-
over, prevailing front-door adjustment strategies involve de-
signing local-global feature attention mechanisms[Wang et
al., 2024c] to extract distinguishable causal features. Ad-
ditionally, causal invariant representation learning methods
[Mao et al., 2022; Liu et al., 2024] utilize style generation
models or Fourier transform techniques in conjunction with
invariant loss functions[Lv et al., 2022] to improve the iden-
tification of causal factors. However, existing causal methods
in image classification are inadequate for addressing the long-
tailed distribution problem, as they overlook the influence of
long-tailed bias on causal graph construction and the limited
effectiveness of interventions in tail classes with sparse data.

3 Problem Formulation
The long-tailed dataset is represented as D = {x, y}. Let
nj denote the number of training sample for class j, and
let n =

∑C
j=1 nj be the total number of training sample

and n1 ≫ nC . Conventional methods extract visual fea-
tures : Fv = Mv(x), where Mv(·) denotes the feature ex-
tractor. Then, predicting the category of the sample, i.e.
P = classifier(Fv). In the first stage, we initially ex-
tract confounder S = [s1, s2, ...sn] and perform causal inter-
ventions P (Y |do(X)) at both the token level and the global
feature level, thereby obtaining a causally enhanced model
M(·). In the second stage, we construct a counterfactual bal-
anced distribution x through counterfactual data augmenta-
tion F (x, Le

c) while adaptively adjusting the intensity Le
c to

perform causal interventions P (Y |do(D)). This process can
get predictions after calibration Pc = M(x).

4 Method
This study proposes a two-stage debiasing method for long-
tail learning, called TSCNet. The method constructs a struc-
tured causal graph to analyze the interfering factors in the
inference path. Specifically, TSCNet consists of two main
stages, as shown in Figure 4. The Hierarchical Causal Repre-
sentation Learning (HCRL) stage enhances the model’s fine-
grained causal representation through debiasing at the patch
and global feature levels eliminating semantic confusion. The
Counterfactual Bias Calibration (CLBC) stage utilizes coun-
terfactual data augmentation and refinemention strategies to
reduce the logits’ bias caused by data distribution.

4.1 Causal View at Long-tailed Classification
We use the structural causal model to model the variable rela-
tionships of complex spatiotemporal data in long-tailed image

S

D C∗
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Figure 3: The Causal view of Long-tailed Image Classification.

classification tasks. As illustrated in Figure 3, it is a directed
acyclic graph G = {N,E} in which the nodes N denote
variables and edges E denote association between variables.
The SCM G includes four variables: image X , semantic con-
founder S, data distribution confounder D and prediction Y .
The correlations in graph G are as follows:
S −→ X . This path indicates that similar semantic factors

such as the background influence the composition of image
content and tend to affect the tail classes where data is sparse.

S −→ Y . This path indicates that the predicted label dis-
tributions(logits) follow their own training domain prior.

D −→ X . This path indicates that an image is sampled
according to the selected data distribution,e.g., imbalanced
data distribution is prone to head classes.

D −→ Y . This path indicates that the predicted label dis-
tributions follow their own training domain prior.

X ← S −→ Y , X ← D −→ Y . This two back-door path
contribute spurious correlation between X and Y , where S
and B acts as confounder.

4.2 Hierarchical Causal Representation Learning
To eliminate the semantic confusion between tail classes and
head classes, we propose a hierarchical causal representation
learning method. By extracting class-agnostic information
and performing causal interventions at both the patch and
global feature levels, the method enhances the model’s fine-
grained representation learning for tail classes.

Mitigating the bias caused by S is to intervene on X , en-
suring that class-agnostic semantic information contributes
equally to the image classification. We extract class-agnostic
semantic information and intervene on X:

P (Y | do(X)) =
∑

S P (Y | X,S)P (S) (1)

where do(X) denotes intervene on X , the path in Fig. 3 from
S to X is cut-off. Due to the inability to combine all class-
agnostic information with the image, only approximate inter-
ventions are possible. We propose a hierarchical intervention
strategy to strengthen the intervention for tail class and im-
prove the fine-grained causal representation of tail classes.

Patch-level Intervention
At the patch-level intervention, we introduce class-agnostic
patch information alongside the original image patches, lever-
aging the encoder’s attention mechanism to finely uncover
the causal regions within the image. Specifically, we can ap-
ply this method on CNNs to merge the original image with
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Figure 4: Illustration of the proposed TSCNet. It contains two main stages: HCRL and CLBC. The former introduces class-independent
semantic information and performs backdoor adjustments to enhance the model’s fine-grained causal representation for tail classes S ̸→ X .
The latter generates counterfactual distribution to calibrate logits bias and model category relationships D ̸→ X .

theclass-agnostic information.
Confounder Dictionary S We extract class-irrelevant se-

mantic information from the training set and construct a con-
founder dictionary. Given an image xi, it uses off-the-shelf
methods such as Grad-CAM [Selvaraju et al., 2020] to de-
tect the main subject of the image. Then, we apply an in-
verse transformation to obtain the class-agnostic information
mask Mi. Then we paste the mask onto the original image by
Mi ⊙ xi to obtain a class-irrelevant image si.Then, TSCNet
constructs the confounder dictionary S = [s1, s2, ..., sn].

Patch-level intervention requires multiple backpropaga-
tions over all irrelevant information. To reduce training cost,
we assume a uniform distribution of confounding patches and
apply a random sampling strategy:

P (Y | do(X)) ≈ 1
N

∑N
j=1 P (Y | f(X, sj)) ≈ P (Y | f(E(X), E(sk)))

(2)
where sk is randomly sampled from the confounder dictio-
nary S, E(·) is the patch embeddings of the image, and
f(x, sk) is the function that indicates stacking and concate-
nation on the sequence length dimension, the length of the
sequence can be changed by random sampling from E(sk).

Then,we can get the causal-enhanced representation:

Fv = φ(f(E(X), E(sk))) (3)

where φ(.) is the visual backbone.

Feature-level Intervention
To further mitigate the effects caused by class-agnostic se-
mantics on the feature distribution and enhance the model’s
generalization ability for tail classes, TSCNet introduces a
global feature causal intervention module.

We construct a confounder prototype dictionary Sp =
[c1, c2, ..., cl] structured as an l ∗ d matrix to systematically
address these feature-level factors. Where l is the dictionary
size and d is the feature dimension using the pre-trained back-
bone. We apply k-means++ to derive ci from the confounder
dictionary S, each ci is the average feature of its cluster.
To implement the theoretical interventions in Eq 2 and re-
duce computation, we use Normalised Weighted Geometric
Mean [Xu, 2015] to approximate the results expected from
the above feature layers:

P (Y | do(X))
NWGM
≈

∑
S P (Y | X,S)P (S) (4)

We parameterize the network model to approximate the con-
ditional probability of Eq.6, inspired by[48], as follows:

P (Y | do(X)) = WaFf +WbEc[g(c)] (5)

where Wa ∈ Rdm×da and Wb ∈ Rdm×d are learnable param-
eters. We approximate Ec[g(c)] as a weighted integration of
all background prototypes:

Ec[g(c)] = 1/Ni

∑N
i=1 µici (6)

where µi represents the important weight coefficient measur-
ing the interaction between each ci and the feature Fv .

4.3 Counterfactual Logits Bias Calibration

Although we obtained features of causal enhancement in the
first stage, the model relies on this long-tail distribution prior,
leading to bias in label prediction. Therefore, we propose
a model-agnostic counterfactual intervention method, which
generates a balanced distribution through counterfactual aug-
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mentation and refinement to adaptively calibrate the logits:

P (Y |do(X)) =
∑

D P (Y |X,D)P (D) (7)

where d = 0 denotes the imbalanced data distribution, and
d = 1 denotes the balanced data distribution.

Counterfactual Generation
Simple balanced sampling is not applicable as it leads to the
model’s overfitting to tail classes. We use Fourier transforma-
tion [Lv et al., 2022] to perform counterfactual augmentation
by disturbing non-causal factors to construct a counterfactual
balanced distribution:

F(x) = A(x)× e−j×P(x) (8)

where A(x), P(x) denote the amplitude and phase compo-
nents respectively. We then perturb the amplitude information
via linearly interpolating between the amplitude spectrums of
the original image x and an image x′ sampled randomly:

Â(xo) = (1− λ)A(xo) + λA((x′)o) (9)

where λ ∼ U(0, Le
c) and Le

c controls the strength of perturba-
tion, which adjusts the perturbation strength for class c during
an epoch e. Then we can obtain the counterfactual augmented
image. We can obtain the counterfactual augmented image:

F(xa) = Â(xo)× e−j×P(xo), xa = F−1(F(xa)) (10)

Counterfactual Refinement
The counterfactual refinement module adaptively adjust the
strength Le

c of counterfactual data augmentation to enable the
model to progressively adjust the logits bias from easy to dif-
ficult. At epoch e, we define a computation function Pl for
each class to adaptively update the perturbation strength:

Le
c = Pl(Dc, L

e−1
c ,M(·), γ) (11)

where γ is threshold hyperparameter, M(·) is the model from
stage 1. We can update VLoL as follows:

Pl = Le−1
c + 0.1 if Acc(Dc,M(·)) ≥ γ (12)

VLoL = Le−1
c − 0.1 otherwise (13)

where Acc is a function which outputs the number of cor-
rectly predicted examples by the model fθ.

After updating Le
c, TSCNet control the intensity of generat-

ing the non-causal factor Â(xo) and conterfactual augmented
image xa to construct a balanced dataset x = (xB , yB)∼τB .
Then, We can get Pz = M(x).

4.4 Training Strategies
The training of TSCNet follows two steps: the first step is
de-confounded training for HCRL. After obtaining a causal
representation-enhanced model, counterfactual fine-tuning is
subsequently applied for CLBC. The details are as follows:

The HCRL stage uses causal intervention modules at the
patch and feature levels. The process is constrained by:

Lcls = −(
∑C

i=1 yi log(ŷi)) (14)

The CLBC construct and refine counterfactual distribution
x to mitigate the long-tail bias. The process is constrained by:

Lf = Lcls + αgf
1
N

∑N
i=1 ∥M(x)−M(x′)∥22 (15)

where αgf is the weight factor, M(.) is the model from step
1, x′ is a counterfactually augmented sample of x.

5 Experiments
5.1 Experiment Settings
Datasets
Experiments are conducted on two datasets: CIFAR-100LT
and the more challenging VireoFood-172 [Chen and Ngo,
2016] of 66,071 training and 33,154 test images.

Evaluation Protocol
For CIFAR-100LT dataset, we evaluated Top-1 accuracy
under three different imbalance ratios: 100/50/10. For
VireoFood-172, we evaluated Top-1 accuracy under an im-
balance ratio of 50. We followed TDE [Tang et al., 2020] and
CMLTNet [Li et al., 2024c] to test the performance of the
head, middle, and tail classes in the CIFAR100 dataset and
VireoFood-172 dataset.

Implementation Details
For CIFAR100-LT, we use warm-up scheduler for fair com-
parisons. All models were trained by using SGD optimizer
with momentum µ = 0.9 and batch size 64. The learning
rate was decayed by a cosine scheduler from 0.01 to 0.0 over
200 epochs for the ResNet50 and 40 epochs for the ViT and
VPT . For VireoFood-172-LT, all models were trained by us-
ing Adam optimizer with momentum µ = 0.1 and batch size
64. The learning rate is chosen in the range of 1e-4 to 5e-
5. The learning rate decays every 4 epochs, with each model
decaying 3 times by a factor of 0.1.

5.2 Performance Comparison
We conducted a comprehensive comparison involving 3 vi-
sual modal backbones, 3 causal methods and 8 long-tailed
methods: ResNet50 [He et al., 2016], ViT [Alexey, 2020],
VPT[Jia et al., 2022], CCIM [Yang et al., 2023], GOAT
[Wang et al., 2024b], CaDeT [Pourkeshavarz et al., 2024],
TDE [Tang et al., 2020], xERM [Zhu et al., 2022], PLOT
[Zhou et al., 2024], LiVT [Xu et al., 2023], Gpaco [Cui et
al., 2023], H2T [Li et al., 2024b], LPT [Dong et al., 2023].
To make a fair comparison, the hyper-parameters of all mod-
els are chosen in above section. The following observations
are drawn from Table 1:

• TSCNet achieved significant improvements across
different vision networks especially in the Trans-
formers. This is due to multi-level causal interventions
that enhance the model’s fine-grained causal represen-
tations, along with the introduction of a model-agnostic
counterfactual bias calibration strategy.

• TSCNet generally achieved better performance than
other algorithms in both datasets. The two-stage
causal debiasing framework has been validated, demon-
strating significant improvements in tail class perfor-
mance while maintaining head class performance.

• Causal methods for image classification enhance
head class performance but offer limited gains for
tail classes. They enhance causal representation for
data-rich head classes, but fail to provide fine-grained
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Algorithms Backbone CIFAR100-ratio0.01 CIFAR100-ratio0.02 CIFAR100-ratio0.1 VireoFood172-ratio0.02
Acc@all Acc@h Acc@t Acc@all Acc@h Acc@t Acc@all Acc@h Acc@t Acc@all Acc@h Acc@t

ResNet50 ResNet50 0.404 0.661 0.128 0.454 0.690 0.219 0.557 0.662 0.559 0.748 0.850 0.530
ViT ViT 0.795 0.929 0.613 0.817 0.932 0.712 0.885 0.926 0.836 0.811 0.884 0.642
VPT VPT 0.812 0.930 0.657 0.840 0.941 0.748 0.895 0.929 0.862 0.826 0.895 0.658

CCIM ViT 0.779 0.934 0.567 0.829 0.945 0.711 0.888 0.931 0.841 0.826 0.896 0.657
CaDeT ViT 0.788 0.933 0.597 0.823 0.936 0.703 0.887 0.928 0.842 0.812 0.887 0.649
GOAT ViT 0.819 0.930 0.671 0.837 0.941 0.736 0.890 0.926 0.845 0.829 0.890 0.672
TDE ResNet50 0.450 0.644 0.202 0.490 0.635 0.328 0.561 0.665 0.432 0.751 0.814 0.567

xERM ResNet50 0.455 0.680 0.174 0.492 0.670 0.296 0.575 0.691 0.426 0.770 0.835 0.572
CUDA ResNet50 0.431 0.639 0.197 0.472 0.612 0.255 0.565 0.671 0.431 0.764 0.823 0.550
PLOT ResNet50 0.445 0.640 0.219 0.487 0.607 0.330 0.573 0.680 0.443 0.769 0.830 0.573
TDE ViT 0.803 0.937 0.624 0.836 0.930 0.737 0.887 0.924 0.840 0.810 0.880 0.651

xERM ViT 0.799 0.930 0.615 0.834 0.946 0.720 0.888 0.926 0.841 0.813 0.883 0.650
LiVT ViT 0.807 0.921 0.674 0.823 0.923 0.732 0.885 0.924 0.847 0.834 0.873 0.752
Gpaco ViT 0.832 0.913 0.717 0.858 0.934 0.789 0.907 0.915 0.899 0.831 0.875 0.746
H2T ViT 0.840 0.915 0.740 0.832 0.919 0.731 0.887 0.916 0.853 0.798 0.630 0.876
LPT VPT 0.861 0.933 0.778 0.884 0.931 0.853 0.908 0.916 0.899 0.830 0.888 0.690

TSCNet ResNet50 0.472 0.640 0.258 0.510 0.674 0.331 0.590 0.657 0.487 0.790 0.832 0.598
TSCNet ViT 0.860 0.932 0.778 0.877 0.937 0.819 0.905 0.927 0.885 0.847 0.885 0.750
TSCNet VPT 0.887 0.934 0.830 0.901 0.937 0.877 0.915 0.924 0.917 0.875 0.890 0.819

Table 1: Performance comparison of algorithms on CIFAR100 and VireoFood-172

Models CIFAR100-ratio0.02 VireoFood172-ratio0.02
Acc@all Acc@h Acc@t Acc@all Acc@h Acc@t

ViT 0.817 0.932 0.712 0.811 0.884 0.642
+I 0.839 0.944 0.728 0.823 0.893 0.666
+F 0.828 0.942 0.713 0.820 0.892 0.665

+I+F 0.845 0.943 0.748 0.826 0.893 0.667
+I+F+C 0.864 0.933 0.805 0.839 0.878 0.741

+I+F+C+R 0.877 0.937 0.819 0.847 0.885 0.750

Table 2: Ablation study of TSCNet with ViT backbone.

causal representations for tail classes and do not address
decision boundary bias in long-tail distributions.

• Long-tail algorithms boost tail class performance but
degrade head class. Existing long-tail algorithms per-
form poorly on the imbalanced VireoFood-172 test set
due to spurious associations, which cause a trade-off be-
tween head and tail class performance.

5.3 Ablation Study
In this section, we further studied the working mechanism of
each module of TSCNet, as shown in Table 2:

• Hierarchical causal interventions(+I+F) effectively
improve the feature representation for tail classes.
Incorporating patch-level intervention (+I) and feature-
level intervention (+F) can significantly improve ViT’s
performance for tail classes, but there is still a signifi-
cant gap compared to the head classes.

• Counterfactual generation (+C) helps further opti-
mize the decision boundary. Training the model with a
counterfactual balanced distribution (+C) leads to a sig-
nificant improvement in tail class performance. How-
ever, the uncontrollable counterfactual strength leads to
performance decline in the head classes.

Setting CIFAR100-ratio0.02 VireoFood172-ratio0.02
Acc@all Acc@h Acc@t Acc@all Acc@h Acc@t

Base 0.817 0.932 0.712 0.811 0.884 0.642
Random 0.821 0.938 0.702 0.806 0.881 0.642

Zero 0.816 0.937 0.688 0.810 0.881 0.642
Average 0.820 0.938 0.703 0.810 0.887 0.637

Confounder 0.828 0.942 0.713 0.826 0.896 0.657

Table 3: The results on different versions of dictionary in Feature-
level Invention model. Random, Zero, Average, and Confounder
Dictionary use random, zero, average features of the image, and the
average features of the class-independent factors as confounders.

• Counterfactual refinement (+R) enhances learning
for both head and tail classes. By adopting a difficulty-
progressive refining strategy (+R), it simulates different
data distributions to finely model the spurious correla-
tions between head and tail logits.

5.4 In-depth Analyses
Effectiveness Analyses of the Dictionary Sp

As delineated in Table 3, we scrutinized the efficacy of the
class-non confounder dictionary Sp within the BD module.
Experimental results show that replacing Sp with a random
dictionary or a zero dictionary significantly deteriorates per-
formance. Using average Image features as a confounder dic-
tionary is less effective than class-agnostic confounder fea-
tures, indicating that random dictionaries and class averages,
among others, are insufficient as confounder.

Effect of the counterfactual enhancement parameter Le
c

As shown in Figure 5, compared to the multiple fixed param-
eters (0.36, 0.64), the adaptive adjustment of the enhance-
ment parameter Le

c achieves performance improvements on
most categories of the VireoFood-172 dataset. This effec-
tively demonstrates that the designed adaptive enhancement
parameter Le

c can progressively increase the counterfactual
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Figure 5: Comparison of our adaptive adjustment of the enhance-
ment parameter Le

c with using fixed parameters 0.36 and 0.64 in
terms of performance, positive values indicate that our parameter
adjustment performs better in this category.

Head  Samples Medium  Samples Tail Samples

Input

CCIM

PCLT

HCRL 

camel fish bowl mouse lobster    wolf turtleracconwoman

Figure 6: Visualization of attention on sampled image from the
CIFAR100-LT. Four lines respectively represent the input, the
CCIM, the Patch-level Intervention (PCLT) and HCRL.

data strength from easy to difficult and assign appropriate en-
hancement intensity to each class.

5.5 Case Study
Visualization of the Causal Representation by HCRL
To assess the efficacy of HCRL, we conducted a compara-
tive evaluation against CCIM [Liu et al., 2022] on the CI-
FAR100 validation set, emphasizing causal visual informa-
tion in long-tail data using GradCAM [Selvaraju et al., 2020]
heatmaps as shown in Figure 6. CCIM demonstrated weak
causal perception for tail-class images such as ”wolf” and
”woman.” In contrast, the proposed patch-level intervention
method (PCLT) enriched fine-grained causal representations,
enabling the model to capture intricate features, such as facial
details in ”woman” and ”mouse,” as well as edge features in
”flowerpot,” effectively mitigating the interference of irrele-
vant information. Furthermore, HCRL improved the model’s
attention, enhancing its intervention on tail-class.

Visualization of the Decision Boundary by CLBC
We utilized tSNE visualization to illustrate the feature distri-
bution and decision boundaries of three commonly confused
head-tail categories in the CIFAR100 dataset, as shown in
Figure 7. We observed a clearly separable boundary for the
three categories in the feature space through HCRL. How-
ever, due to the confounding effect of the data distribution,
a significant number of tail-class samples were misclassified
as head-class samples. By incorporating the CLBC module
and constructing a counterfactual balanced distribution, the
model’s bias towards tail classes at the decision boundary was

HCRL HCRL+CLBC

97
3
34

97
3
34

t-SNE Visualization of Selected Classes t-SNE Visualization of Selected Classes

Figure 7: Visualization results of HCRL and HCRL+CLBC on the
CIFAR100 dataset. The regions in different colors represent the pre-
dictions for the corresponding color categories.

xERM - Non-Similar-FP
xERM - Similar-FP
TSCNet - Non-Similar-FP
TSCNet - Similar-FP

Class(from head to tail)

Confusion Analysis between TSCNet and LPT

Er
ro

r C
ou

nt

LPT - Non-Similar-FP
LPT - Similar-FP
TSCNet - Non-Similar-FP
TSCNet - Similar-FP
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Er
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nt

Confusion Analysis between TSCNet and xERM

Figure 8: The error confusion analysis of TSCNet, and the compari-
son of xERM and LPT in terms of similar-FP and non-similar-FP in
CIFAR100.

effectively mitigated. Notably, the CLBC module further en-
hanced the model’s representation of long-tail data.

Error confusion analysis of TSCNet
We compared the error confusions of different models with
our method, as shown in Figure 8. The error confusions were
categorized into two types: similar-class confusion and non-
similar-class confusion. The results demonstrate that TSCNet
effectively alleviates error confusions in similar classes by
leveraging fine-grained causal representations and bias cal-
ibration, particularly in the middle and tail classes, with a
more significant improvement observed in the middle classes.
In contrast, xERM and LPT faces challenges in modeling the
relationship between feature regions in ViT and model predic-
tions, leading to a concentration of errors in similar classes.

6 Conclusion
To effectively mitigate the biases induced by long-tail distri-
butions and tackle the challenges associated with applying ex-
isting causal methods to ViT, this paper introduces TSCNet.
It strengthens the model’s fine-grained causal representation
through hierarchical causal representation learning. Further-
more, TSCNet employs a model-agnostic counterfactual log-
its bias calibration stage to adaptively eliminate the predic-
tion biases caused by long-tail distributions. Experimental re-
sults indicate that the synergistic interaction of the two stages
significantly enhances long-tailed image classification perfor-
mance across various backbones. Future work will focus on
exploring the use of causal methods in large models to further
improve long-tail performance.
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