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Abstract

Conversational Recommender Systems (CRS) have
become increasingly important due to their ability
to recommend items through interactive dialogue,
adapting to user preferences in real time. Traditional
CRS approaches face challenges in generating high-
quality, diverse responses due to the limited avail-
ability of training data and the inherited biases from
domain-specific fine-tuning. Furthermore, existing
systems often overlook the impact of confounding
variables during user interactions, leading to subop-
timal recommendations. In this work, we propose
a novel hybrid framework that integrates large lan-
guage models (LLMs) with traditional recommen-
dation techniques to address these limitations. Our
approach leverages the strengths of LLMs in gen-
erating fluent, contextually appropriate responses
while employing a traditional recommendation mod-
ule to capture complex interaction structures. To
ensure unbiased recommendations, we introduce
causal interventions that disentangle confounding
variables, improving recommendation accuracy. We
evaluate our framework on established CRS datasets,
demonstrating significant improvements in recom-
mendation quality and response generation. Our
results highlight the effectiveness of the causal in-
tervention mechanism in producing more reliable
and personalized recommendations, while the LLM-
based response generation offers scalability across
multiple domains.

1 Introduction

Conversational Recommender Systems (CRS) [Li et al., 2018;
Wang et al., 2024] have gained substantial attention for their
capacity to recommend items through interactive conversa-
tions, capturing users’ interests and intents dynamically. A
standard CRS [Chen et al., 2019; Zhou et al., 2020] gener-
ally consists of two primary components: a recommendation
module responsible for recommending items, and a generation
module that generates the final user-visible responses contain-
ing the recommended items. However, the development of
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Figure 1: (a) An example of conversational recommendation from
the ReDial dataset. (b) The corresponding structural causal model
(SCM) for the conversation in (a).

effective generation modules is often hampered by the scarcity
of training data [Wang et al., 2022] in the conversational rec-
ommendation format. To address this, prior research [Wang
et al., 2022; Wang et al., 2024] has leveraged pretrained lan-
guage models (PLMs), such as DialoGPT [Zhang et al., 2020]
and BART [Lewis, 2019], for the generation module. These
PLMs, trained on large-scale unsupervised data, are expected
to exhibit strong generative capabilities. Nonetheless, during
fine-tuning on domain-specific data, these models often inherit
limitations from the training corpus, producing responses that
adhere to repetitive patterns and lack diversity, reducing the
overall quality of the generated responses.

With the emergence of large language models (LLMs)
[Ouyang et al., 2022; Touvron et al., 2023], there is a grow-
ing trend toward utilizing these models to serve dual roles
in both recommendation and response generation. By incor-
porating relevant external knowledge, LLMs are capable of
generating responses that seamlessly integrate recommended
items [Di Palma, 2023; Dai et al., 2023; Wang et al., 2023a;
Li et al., 2024]. However, external knowledge is often stored
in extensive knowledge graphs, and incorporating such data
into LLMs poses significant challenges. Directly providing
the entire graph as input can overwhelm the model, leading to
prohibitively long inputs that impair its performance.

Another challenge prevalent in previous CRS implementa-
tions is the ignorance of confounding variables when modeling
user interactions. Many CRS systems have relied on extracting
mentioned items as key indicators of user preferences, often
neglecting the broader context — such as whether the items
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were mentioned positively or negatively, and other text-based
expressions of user interest. For instance, in Figure 1(a), the
mention of “Power Rangers (2017)” is clearly negative, yet
traditional systems would likely treat it as a positive indicative
signal for next item recommendation. While the advent of
LLMs addresses some of these issues by improving contextual
understanding, they still struggle with effectively organizing
vast amounts of information. Additionally, real-world user
preferences are influenced not only by conversational inter-
actions but also by external, unobserved factors. Existing
systems often overlook these confounders, resulting in recom-
mendations that are overly reliant on superficial correlations,
ultimately compromising the accuracy of recommendations.

To address these challenges, we propose a hybrid frame-
work that synergizes the strengths of LLMs with traditional
recommendation techniques, capitalizing on LLMs’ ability
to generate fluent, contextually consistent responses, while
leveraging traditional recommendation module to model struc-
tured knowledge more effectively. In our framework, the
recommendation module captures the structural dependencies
within interaction data and external knowledge, generating a
fixed size of candidate items. The LLM subsequently refines
these candidates, producing a re-ranked list and generating a
contextual response that highlights the top item along with a
justification (i.e., explanation shown in Figure 1(b)) for the
recommendation. Crucially, we introduce causal interventions
to isolate and mitigate the impact of confounding variables,
ensuring that recommendations more accurately reflect user
preferences rather than contextually induced biases.

Furthermore, we validate our approach through extensive
experiments on established CRS datasets, including ReDial [Li
et al., 2018] and OpenDialKG [Moon ef al., 2019]. Our results
demonstrate overall improvements in recommendation quality
compared to baseline models. Additional analyses reveal the
effectiveness of our causal intervention through visualizations
of the causal effects. In summary, our contributions are:

* We propose a novel hybrid framework that combines the
strengths of LLMs and traditional recommendation tech-
niques for conversational recommender systems.

* We introduce a deconfounded recommendation module that
effectively mitigates the influence of confounding variables
using causal interventions.

* We demonstrate the effectiveness of our approach through
extensive experiments, achieving improved recommendation
quality and response generation across multiple domains.

2 Related Work

2.1 Conversational Recommender Systems

Conversational recommender systems (CRSs) aim to over-
come the limitations of traditional recommendation systems,
which rely on sparse implicit feedback. Conventional CRS
are divided into two main approaches: question-driven sys-
tems, which refine user preferences through clarifying ques-
tions [Christakopoulou et al., 2018; Zhang et al., 2018;
Aliannejadi et al., 2019; Xu et al., 2021], and multi-turn
strategy exploration, which balance exploration and exploita-
tion to optimize recommendations, especially in cold-start
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Figure 2: (a) Structural Causal Model (SCM) example, (b) interven-
tion illustration, (¢) SCM of Our Work.

scenarios [Li er al., 2010; Christakopoulou ef al., 2016;
Li er al., 2020]. Recent advances also explore the inte-
gration of large language models (LLMs) into CRS, where
LLMs can act as direct recommenders [Geng et al., 2022;
Hua er al., 2023], assist traditional systems [Xi er al., 2023],
or manage recommendation pipelines [Wang et al., 2023b].
These LLM-based CRS enhance user interaction, refine rec-
ommendation processes, and incorporate external knowledge
sources [Liu et al., 2023; Li et al., 2024; Spurlock et al., 20241,
driving further improvements in system performance and user
satisfaction.

2.2 Causality and Interventions

Causal inference has become an increasingly relevant tool in
machine learning, providing a framework to identify and con-
trol confounding variables that may introduce bias into model
predictions [Pearl and others, 2009; Yao et al., 2020]. Unlike
associative reasoning, which models conditional probabilities
based on observed data, causal inference enables the simula-
tion of interventions to estimate the causal effects of actions,
a critical advantage in recommender systems where spurious
correlations can lead to suboptimal recommendations. Us-
ing tools like the do-operator [Pearl, 2009], causal inference
helps evaluate how changes in user preferences affect rec-
ommendations while controlling for confounding influences.
This approach has been successfully applied to mitigate bias
[Bareinboim and Pearl, 2012], enhance generalization [Paras-
candolo et al., 2018], and modularize reusable features in
learning systems [Besserve er al., 2018]. Recent research
continues to integrate causal methods into machine learning
pipelines, enabling more accurate differentiation between true
causal relationships and mere associations [Pearl et al., 2016].

3 Methodology
3.1 Causal Analysis in CRS

We model the causal relationships among history items X, con-
text confounder C, explanation F, and recommended items
Y using a structural causal model (SCM, a mathematical
framework used to describe causal relationships between vari-
ables) [Pearl er al., 2016], shown in Figure 2(c). The direct
links represent causal effects.

C — X: The user’s contextual information C (e.g., tempo-
ral, social, environmental factors) affects the historical items
X they interact with. This suggests that past preferences are
shaped by context, with C' acting as a confounder for X.

C — E < X: Both C' and X influence the generation of
explanations E' for recommending items. These explanations
rationalize why certain items are suggested, drawing on the
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user’s history and context. For example, if a user liked certain
movies (X) during a specific season (C'), the explanation for
recommending similar movies (F) reflects both factors.

X — Y « E: Historical items X influence the rec-
ommendation of new items Y, with E mediating the effect.
Explanations help justify the recommendations and align user
expectations. For instance, if X represents a preference for
action movies and F explains why a particular action movie is
recommended, the recommended Y will match this rationale.

In this causal structure, C' acts as a confounder, affecting
both historical preferences X and recommendation explana-
tions E. The recommendation process, recommending items
Y, can be biased by the confounding effect of C'. To cor-
rect for this, we apply intervention on X using the backdoor
adjustment technique to estimate P(Y | do(X)). In obser-
vational settings, the causal effect of X on Y is confounded
by C, which influences both X and Y, potentially skewing
results. To isolate the true effect of X on Y, we intervene with
do-calculus on X, setting X to specific values (e.g., the last
interaction), which breaks the causal link between C and X.

The backdoor adjustment formula [Pearl erf al., 2016] for
estimating P(Y | do(X)) is:

P(Y | do(X ZPY\XC) (©) (1)

It removes C’s influence on X by averaging over C, allowing
for an accurate estimate of X’s causal effect on Y. By con-
trolling for C, the system can provide recommendations that
better reflect the user’s true preferences, unaffected by external
factors. Implementation details are provided in Section 3.3.

3.2 RGCN-Based Recommendation

A typical CRS consists of two main modules: the generation
module and the recommendation module. The system pro-
cesses the conversation history S = (t1,to, ..., ), where
each ¢; is an utterance from the user or the CRS itself, and
m is the total number of utterances. Each utterance is made
up of word tokens, t; = (w;1,W; 2, ..., W;n, ), where n; is
the number of tokens in ¢;. The recommendation module uses
the conversation context S and external knowledge sources
(e.g., knowledge graphs) to suggest items Z; from a candidate
set Z. The generation module then creates a natural language
response R = (y1,¥2,- - -, Yn), where n is the number of to-
kens in the response, based on the recommended items and
the conversation history.

To enhance entity modeling, we incorporate external knowl-
edge graphs, such as DBpedia, which provide additional con-
text about the items (e.g., actors for movie recommendations).
Knowledge graphs help refine the representation of entities to
alleviate data sparsity. A knowledge graph triplet is defined
as (e1,r, ea), where e and e, are entities, and r is a relation
between them.

We employ a Relational Graph Convolutional Network (R-
GCN) [Schlichtkrull et al., 2018] to generate relation-aware
entity representations. It aggregates features from neighboring
entities in the knowledge graph to learn a better representation.

The update rule for an entity e at layer (I + 1) is:

=ReLU (> >
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where hgl) is the representation of entity e at layer [, £ is the
set of neighboring entities under relation r, and R’ includes
all relations plus a self-loop. The learned relation-specific

transformation matrix Wr(l) and normalization factor Z, ,
help adjust the aggregation process.

Through multiple layers of aggregation, the R-GCN incor-
porates structural and relational information, producing a final
entity representation h, that is used for further recommenda-
tion and generation tasks.

With the modeled entity representations, we can summarize
the user’s preferences from the entities mentioned in context
S. These entities, denoted as 7, = {ei1,ez,..., €7, }, are
extracted from two sources: item entities and contextual enti-
ties (such as actors in a movie, which may not be part of the
item set). Entities not found in the entity set £ are ignored,
following prior work [Chen er al., 2019; Zhou et al., 2020;
Lu et al., 2021]. Each entity e; € T, is ordered based on its
appearance in the conversation. We then map these entities to

their corresponding representations, H = {he}
in the sequence (hy, ho, ..., h7,|).

To build a user preference vector that captures the evolving
nature of the conversation, we use a time-aware attention
mechanism [Wang et al., 2024]. This mechanism gives more
weight to recent entities:

o—1, resulting

[Tl
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Here, )\ is a hyperparameter controlling the influence of re-
cency, typically set to a value greater than 1. This ensures
that more recent entities have a greater impact on the recom-
mendation. Finally, the initial recommendation probability is
calculated as:

=1

pe = softmax(mask(hZPHT)) “

The mask operation filters out non-item entities by setting
their values to —oo, ensuring that the recommendation focuses
only on the candidate items in Z. Thus, p. € RI¢l represents
the probability distribution over the item set.

3.3 Deconfounded Recommendation with Causal
Intervention

To address potential confounding effects between a user’s his-
torical interactions and context C', we apply causal interven-
tion. The goal is to isolate the true causal effect of the user’s
preferences (captured by X, i.e., historical entities) on rec-
ommended items (Y) without interference from confounding
factors. We achieve this by introducing an intervention on X
using the backdoor adjustment technique (P (Y | do(X))). In
practice, this intervention is implemented through a masking
mechanism applied to the representation of the last entity in
the user’s history, 7,. By selectively masking parts of the his-
torical sequence, particularly the final entity, we simulate how
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Figure 3: Workflow of our LLM-powered conversational recommender system.

changes in X influence recommendations (Y') and disentangle
the effect of confounder C'.

Formally, the intervention on the last entity’s representation
h|7,| is performed with a masking operation M, resulting in
the updated user representation as follows:

|7ul-1

T S S Y
J— i + 7
i=1 Z‘T <l i1 Z‘lﬁ' At

The corresponding intervention-adjusted probability is then:

hir, ©

Pe = softmax(mask(hPH ")) ©)

This approach prevents the model from relying on spurious
correlations between context and past interactions (C' and X),
enhancing the robustness and accuracy of recommendations.

To formalize the causal intervention, we define a causal loss
function that penalizes the similarity between intervention-
adjusted recommendations and ground truth while maintaining
the similarity between non-intervened recommendations and
ground truth. The causal loss is defined as:

L = Sim(pe, p) — Sim(pe, P) 7

where p represents the true recommendation labels (as a one-
hot vector), and Sim measures the similarity between two
distributions (using cosine similarity in our experiments).

The overall training objective combines the causal interven-
tion loss and the regular recommendation loss:

£rec = CrossEn(pe,ﬁ) +a- L + ﬁ : KL(f)ere) (8)

Here, CrossEn represents the cross-entropy loss for the regular
recommendation task, and the KL-divergence term between
the original and deconfounded recommendations limits the
extent of modification introduced by the intervention mask.
« and 8 are hyperparameters controlling the impact of the
causal loss and KL-divergence terms. This combined objective
encourages the model to make accurate recommendations
while ensuring robustness against confounding effects.

3.4 LLM-Enhanced Causal Fused
Recommendation and Response Generation

To produce response with recommendation, our framework uti-
lizes the capabilities of large language models (LLMs) without

the need for extensive tuning on specialized datasets, contrast
to traditional CRS. While domain-specific fine-tuning can be
effective, it often struggles with poor generalizability and de-
pends on scarce, high-quality data. On the other hand, relying
solely on LLMs, though fluent, can lead to irrelevant or im-
practical recommendations (e.g., suggesting items not in the
candidate list, as shown in Table 2). Our approach overcomes
these limitations by combining the generalization power of
LLMs with a dedicated recommendation module, enabling
scalable, effective response generation.

In our approach, the conversational history .S and the ranked
recommendation list /" — obtained from our previous recom-
mendation module and ranked based on the predicted proba-
bility — are provided as input to the LLM. The LLM is asked
to generate the final response based on the information, while
simultaneously producing contextualized explanations £ and
refining the item list from 17 to I"""™ for enhanced personal-
ization. This process is formalized as follows:

E, Ill'm’ R« g(S7 IT'@C)’ (9)

where G represents the LLM. The output includes F, the gener-
ated explanation for the recommended items, [ m the refined
item list, and R, the natural language response incorporating
the recommendations and explanations.

We highlight the necessity of generating additional output
in the form of contextualized explanations E. This draws in-
spiration from chain-of-thought (CoT) prompting [Wei et al.,
2022], but extends it further. Our system makes the LLM to
take specific reasoning procedure informed by causal reason-
ing, rather than merely prompting for more reasoning steps.
Specifically, we require the LLM to analyze the causal rela-
tionships between the given candidate items (i.e., ["°°) and
the context (i.e., S), producing causal-level explanations E
prior to generating the final re-ranked recommendation list.

4 Experimental Setup

Datasets. We conduct experiments on two widely-used CRS
datasets: ReDial [Li ef al., 2018] and OpenDialKG [Moon et
al., 2019]. Table 1 provides a summary of the key statis-
tics for both datasets. We follow standard dataset splits:
80%:10%:10% for training, validation, and test sets in Re-
Dial [Li et al., 2018], and 75%:15%:15% in OpenDialKG
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|Conv # Utter # AvgUtter # Domain
ReDial ‘ 10,006 182,150 18.2 Movie
Movie, Book,

OpenDialKG | 13,802 91,209 6.6 Sports, Music

Table 1: Statistics of ReDial and OpenDialKG datasets.

[Moon et al., 2019]. For ReDial, we use a subset of DBpedia
as the linked knowledge graph provided by [Chen er al., 2019].
For OpenDialKG, we extract a DBpedia subset by mapping
items to corresponding DBpedia entities and linking them to
dialogue content following [Daiber et al., 2013].

Evaluation Metrics. We evaluate the performance of the
recommendation and generation separately. For the recommen-
dation task, we use Recall@K (with K = 1, 10, 50 for ReDial
following [Chen et al., 2019], and K = 1, 3, 5, 10, 25 for Open-
DialKG following [Moon et al., 2019]). Recall @K checks if
ground truth items are in the top-K predictions. For genera-
tion, we report Dist-n (n=2, 3, 4), along with case-insensitive
BLEU-n (n=2, 4) scores. BLEU scores are calculated using
the NLTK package'. For LLM-generated recommendations,
we employ fuzzy matching, considering 90% token overlap
as a match with the ground truth. LLM-based methods report
Recall@K for K < 10 to avoid noise from longer recommen-
dation lists.

Baselines and Variants. For the ReDial dataset, we com-
pare our model against seven competitive baselines: ReDial
[Li et al., 2018], KBRD [Chen et al., 2019], CRWalker [Ma
et al., 2020], KGSF [Zhou et al., 2020], RevCore [Lu et al.,
20211, C2-CRS [Zhou et al., 2022], and CTA-CRS [Wang et
al., 2024]. While for the OpenDialKG dataset, we compare
the following models based on prior works [Moon et al., 2019;
Wang et al., 2024]: seq2seq [Sutskever et al., 2014], Tri-
LSTM [Young et al., ], Ext-ED [Parthasarathi and Pineau,
2018], DialKG Walker [Moon et al., 2019], and CTA-CRS
[Wang et al., 2024].

In addition, we establish several LLM-based baselines: (1)
ChatGPT Vanilla: A baseline using standard ChatGPT. (2)
ChatGPT Few-shot: A few-shot learning variant using Chat-
GPT. (3) ChatGPT CoT: Chain-of-thought prompting applied
to ChatGPT. Finally, we evaluate the performance of several
variants of our model to examine the impact of the proposed
modules. The FULL MODEL refers to the complete model
as described in Section 3. The w/0 LLM MODULE variant
removes the LLM-based reranking module, while the w/0
CAUSAL variant omits the causal interventions and the KL
loss during the training of the recommendation module.

Implementation Details and Parameter Settings. For the
RGCN, we set both the entity embedding size and the hidden
dimension to 128, with the layer number as 1 and the normal-
ization factor Z, . fixed at 1, consistent with prior work [Chen
et al., 2019; Zhou er al., 2020; Wang er al., 2024]. The re-
cency coefficient X\ in Eq. 5 is set to 1.5. Additionally, the
balance factors in Eq. 8 are set as a = 2.0 and 5 = 0.5, re-
spectively. For the response generation module, we employ

'We use NLTK (https://www.nltk.org) for BLEU computation.

Models | Tmput | pec@l Rec@10 Rec@50
\ Context KG Rev \

Baselines

REDIAL v 24 14.0 32.0

KBRD v 3.1 15.0 33.6

CRWALKER v 3.1 15.5 36.5

KGSF v 3.9 18.3 37.8

REVCORE v V| 46 220 39.6

C2—CRS v V] 53 23.3 40.7

CTA-CRS v 7 5.9 24.0 413

LLM-Based

CHATGPT VANILLA v 2.6 15.7

CHATGPT FEW-SHOT v 2.4 11.0

CHATGPT COT v 2.7 17.3

Our Models

OUR FULL MODEL v v 6.1 28.0 -
w/0 LLM MODULE v 5.9 23.0 41.8

W/0 CAUSAL v 52 18.2 34.6

Table 2: Recommendation results (in %) on ReDial dataset. Our
full model achieves the best performance with less external domain-
specific knowledge as input, compared to the previous work. “KG”
refers to knowledge graph and “Rev” represents review information.

the gpt—-4o0-mini model. During generation, we set the
temperature to 1.0. All hyperparameters are tuned based on
the model’s performance on the validation set.

The recommendation module is trained on an NVIDIA 3090
GPU. We set the batch size to 32, with an update frequency of
4. We employ the Adam optimizer with an initial learning rate
of 5e-3, and training is conducted with 1000 warm-up steps
followed by a polynomial decay learning rate scheduler. Early
stopping is applied based on the validation performance.

5 Experimental Results

5.1 Recommendation Result Comparison

We present the recommendation results on the ReDial dataset
in Table 2. Several key observations can be drawn:

e Our full model surpasses the baselines without requiring
additional external knowledge. Our method outperforms pre-
vious SOTASs in terms of both Rec@1 and Rec@10, demon-
strating that it can produce more precise recommendations
without extra domain-specific knowledge, such as reviews.

o The causal-enhanced recommendation module plays a
key role. Our model variant “w/0 LLM MODULE” exhibits
competitive performance, especially in terms of Rec@50. It
surpasses baselines such as REVCORE and C?—CRS, both of
which leverage additional external knowledge, while further
removing causal relative modules (“W/0 CAUSAL”) results in
a larger performance drop.

o The LLM reranking enhances the overall performance
of our full model. A comparison between the full model and
its variant without the LLM module (“w/0 LLM MODULE”)
highlights the critical role of the LLM in refining and reranking
the recommendations. The improvement in Rec@10 from
23.0% to 28.0% suggests that the LLM’s reranking process
helps better surface relevant items in the top recommendations.
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Models Rec@1 Rec@3 Rec@5 Rec@10 Rec@25

Baselines

seq2seq 3.1 18.3 29.7 44.1 60.2

Tri-LSTM 32 14.2 22.6 36.3 56.2

Ext-ED 1.9 5.8 9.0 13.3 19.0

DialKG Walker 13.2 26.1 353 479 62.2

CTA-CRS 18.0 335 41.5 50.0 64.8

Our Models

OUR FULL MODEL 20.9 40.1 53.1 60.7 -
w/0 LLM MODULE 19.8 35.6 40.9 52.4 65.8

W/0 CAUSAL 16.0 28.9 343 45.1 57.9

Table 3: Recommendation results (in %) on OpenDialKG.

Models | Dist-2 Dist-3 Dist-4 | BLEU-2 BLEU-4
TRANSFORMER 14.8 15.1 13.7 - -
REDIAL 22.5 23.6 22.8 17.8 74
KBRD 26.3 36.8 423 18.5 7.4
KGSF 28.9 434 51.9 16.4 7.4
REVCORE 424 55.8 61.2 - -
CTA-CRS 45.7 65.3 76.1 19.1 8.9
OURS | 46.2 67.2 718 | 8.5 2.3

Table 4: Generation results (in %) on the ReDial dataset.

We also present the recommendation results on the Open-
DialKG dataset in Table 3, where similar observations can be
drawn. The experimental results on both ReDial and Open-
DialKG demonstrate the versatility and effectiveness of our
framework, consistently outperforming the state-of-the-art
baselines without relying on domain-specific knowledge.

5.2 Generation Result Comparison

We evaluate the generation performance of our models and
baselines on the ReDial dataset using both automatic evalua-
tion (Table 4) and human evaluation (Table 5). These evalu-
ations provide insights into both the diversity and quality of
generated responses, offering a comprehensive assessment.

Automatic Evaluation
Table 4 presents the automatic evaluation results. We can find:

e Our method outperforms the baselines in diversity. Our
model achieves the highest scores in all Dist-n metrics, indi-
cating that our model generates more varied and less repetitive
responses compared to baselines.

e BLEU scores of our model are relatively low due to the
nature of LLM-based generation. Since the LLM in our sys-
tem is not specifically fine-tuned on the ReDial dataset, the
reference-based BLEU scores are lower than the baselines.
However, we argue that BLEU, being a reference-dependent
metric, is not well-suited to capture the true quality of LLM-
generated responses, as LLMs prioritize fluency, coherence,
and diversity over matching specific reference sentences. We
have conducted a human evaluation to further validate it.

Human Evaluation

To evaluate response quality, we conducted a human evaluation
using 100 randomly sampled context-response pairs from the
test set, comparing our model’s outputs with baselines. Two
crowd-workers independently rated the responses on three
aspects (following [Bao er al., 2020]) using a [0, 1, 2] scale,
where higher scores indicate better quality. Table 5 presents

Models \ Fluency Informativeness Coherence
Ground Truth | 195 1.71 1.71
REDIAL 1.92 1.32 1.23
KBRD 1.95 1.39 1.31
KGSF 1.91 1.02 0.95
CTA-CRS 1.95 1.54 1.66
OURS 1.98 1.96 1.80
CHATGPT VANILLA 1.98 1.76 1.95

Table 5: Human evaluation of the generation results on ReDial.
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Figure 4: Figures 4(a) and 4(b) visualize ranking changes (A Rank)
relative to the original rank (position of the ground truth item in the
recommendation list) after applying causal intervention. Deeper col-
ors indicate higher frequencies, with darker regions showing greater
instance concentrations. Figure 4(c) shows KL divergence trends
for two instance categories: “Rank +” (higher ground-truth ranking
post-intervention) and “Rank -” (lower ground-truth ranking post-
intervention), based on the original ranking.

the results. The Cohen’s kappa coefficient for inter-rater relia-
bility exceeds 0.65, demonstrating substantial agreement. Key
observations include:

e LILM-based methods consistently outperform others in
overall quality. Our model scores highest in fluency and in-
formativeness, producing grammatically superior and richer
responses than traditional models. Notably, LLM-based meth-
ods sometimes surpass ground truth, indicating they can gen-
erate responses more polished than human annotations.

o Our model is more informative than CHATGPT VANILLA,
with a slight trade-off in coherence. It achieves a higher in-
formativeness score (1.96 vs. 1.76), likely due to the rec-
ommendation module’s item list. However, this emphasis
on recommendations occasionally reduces coherence, as the
model prioritizes item suggestions.

5.3 Effectiveness of Proposed Mechanisms

Analysis of Causal Intervention Via Ranking Changes

Causal intervention helps the model address confounding fac-
tors, improving recommendations. To evaluate its case-level
impact, we analyze Arank—the change in the ground-truth
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Models \ Rec@1 Rec@3 Rec@5 Rec@10
CHATGPT VANILLA 2.6 3.5 8.9 15.7
CHATGPT WITH ORACLE 11.1 18.3 26.6 53.0
CHATGPT WITH ORACLET 28.7 64.7 85.3 94.7
OUR MODEL 6.1 10.7 222 28.0

Table 6: Results (%) on ReDial dataset. CHATGPT WITH ORACLE
ensures ground truth items are in the candidate list, while CHATGPT
WITH ORACLET includes all items mentioned in the conversation.

item’s ranking in the final recommendation list when causal
intervention is applied versus when it is not. Using the rec-
ommendation module, we recorded the top-50 recommended
items for each sample, both with and without causal interven-
tion, and calculated Arank for the ground-truth item.

Figure 4 illustrates the results for both datasets, with the
x-axis showing the original rank (without intervention) and the
y-axis showing Arank. A positive Arank indicates improved
ranking due to causal intervention. The trends in both datasets
are similar: the area above the x-axis (positive Arank) is
larger and darker than below it, demonstrating that causal
intervention generally enhances item rankings.

Analysis of Causal Intervention Via KL Divergence

As discussed in Section 3, the causal loss and KL divergence
loss (Equation 8) are in a trade-off relationship. The causal
loss pushes the representation after causal intervention to de-
viate from the original, while the KL divergence loss seeks to
maintain similarity between them. A higher KL divergence
value indicates a weaker trade-off, suggesting that confound-
ing factors significantly impact the target item. To analyze
KL divergence trends across instances with varying difficulty
(using the ground-truth item’s original rank as a proxy), we
plot KL divergence values over different ranking ranges on
ReDial in Figure 4(c). Figure 4(c) reveals the following: 1) KL
divergence increases for more challenging instances (lower
original rankings), confirming its correlation with poorer per-
formance. 2) Instances with performance declines after causal
intervention ("Rank -” category) exhibit higher KL divergence
than those with improvements ("Rank +7), indicating that KL
divergence effectively reflects recommendation performance.

Effectiveness of LLM Re-Ranking
We further investigate the effectiveness of LLMs in re-ranking
recommendation lists with varying quality of candidate items.
The results presented in Table 6 illustrate the performance
of different models in terms of recommendation accuracy at
various cutoffs (Rec@1, Rec@3, Rec@5, and Rec@10).
Notably, the CHATGPT WITH ORACLE setting significantly
enhances performance across all metrics compared to CHAT-
GPT VANILLA. This improvement indicates that the quality of
the candidate list plays a critical role in re-ranking. Our model
demonstrates a moderate performance improvement, restricted
by the candidate list produced by the recommendation module.
This suggests that while our model is capable of generating
relevant recommendations, there is still room for enhancement,
especially when compared to the CHATGPT WITH ORACLE{
setting, which yields the highest performance. The results
underscore the importance of candidate quality in maximizing
the potential of LLMs for effective recommendation systems.

Conversation History

Seeker: Ihave seen The Conjuring (2013) I very much enjoyed this movie. When
I was younger I liked movies like Friday the 13th (1980).

Rec: 1 liked that one too!
Seeker: I also liked to watch the A Nightmare on Elm Street (1984) Series.

Rec: Iloved that as well mainly because Johnny Depp is in it

Seeker: I love Johnny Depp! So handsome, such a great actor. I love johnny
Depp in Alice in Wonderland (2010).
Model Output
Ground: Me too one of my favorites from him is The Astronaut’s Wife (1999)
ReDial: ihave n’t seen that one yet . i "ve seen It (2017) .
KBRD: ihave n’t seen that one . i will check it out .
KGSF: Thope you enjoy them !
CTA-CRS: Yes, I love Johnny Depp too ! Have you seen the new It (2017) movie?

Ours:  Since you love Johnny Depp, I highly recommend you check out
Sweeney Todd: The Demon Barber of Fleet Street (2007). In this film,
Depp delivers a captivating performance in a gothic, musical thriller,
which I believe aligns well with your taste for his unique characters and
dramatic storytelling.

Candidate list from recommendation module: ”Alice in Wonderland
(2010)”, ”Charlie and the Chocolate Factory (2005)”, ”"Dark Shadows
(2012)”, "Edward Scissorhands (1990)”, "Pirates of the Caribbean ”,
”Public Enemies (2009)”, ”Chocolat (2000)”, "Sweeney Todd: The
Demon Barber of Fleet Street (2007)”, "The Grudge (2004)”, ...

Reranked list from LLM: "Sweeney Todd: The Demon Barber of Fleet
Street (2007)”, ”Alice in Wonderland (2010)”, ”Charlie and the Choco-
late Factory (2005)”, ”Dark Shadows (2012)”, ...

Explanation: 1 suggested Sweeney Todd: The Demon Barber of Fleet
Street (2007) because it stars Johnny Depp, whom you admire, and it
combines his acting talent with a dark, thrilling storyline that aligns with
your love for horror and suspense films.

Table 7: An example on movie item recommendation from ReDial.

5.4 Case Study

We analyze a conversation example from the ReDial dataset
(Table 7) to demonstrate the effectiveness of our method. In
this interaction, the Seeker expresses enjoyment for movies
featuring Johnny Depp, highlighting preferences for horror and
suspense genres. like A Nightmare on Elm Street (1984). The
seeker explicitly states admiration for Johnny Depp, especially
in Alice in Wonderland (2010). The model outputs reveal how
different recommender systems respond to the conversation.
The Ground Truth response suggests The Astronaut’s Wife
(1999), aligning well with the seeker’s stated preference. In
contrast, the ReDial model misses the connection with Johnny
Depp, recommending It (2017), not aligning with the seeker’s
preferences. KBRD and KGSF provide generic responses
lacking substantial recommendations. Although CTA-CRS
acknowledges Johnny Depp, it still pivots to recommending
It (2017). Our approach yields a more relevant recommen-
dation: Sweeney Todd: The Demon Barber of Fleet Street
(2007). This suggestion not only matches the seeker’s admi-
ration for Johnny Depp but also aligns with their interest in
darker, suspenseful films. The response is also more informa-
tive, providing the rationale behind the recommendation.

6 Conclusion

We propose a hybrid framework for Conversational Recom-
mender Systems that combines large language models with
causal intervention. Our approach addresses domain-specific
tuning limits and confounding factors in user interactions. A
deconfounded recommendation module enhances personaliza-
tion through causal methods, while an LL.M-based response
generator ensures fluent, scalable dialogue without retraining.
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