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Abstract

Neurosymbolic (NeSy) AI has emerged as a
promising direction to integrate neural and sym-
bolic reasoning. Unfortunately, little effort has
been given to developing NeSy systems tailored to
sequential/temporal problems. We identify sym-
bolic automata (which combine the power of au-
tomata for temporal reasoning with that of propo-
sitional logic for static reasoning) as a suitable for-
malism for expressing knowledge in temporal do-
mains. Focusing on the task of sequence classifica-
tion and tagging we show that symbolic automata
can be integrated with neural-based perception, un-
der probabilistic semantics towards an end-to-end
differentiable model. Our proposed hybrid model,
termed NESYA (Neuro Symbolic Automata) is
shown to either scale or perform more accurately
than previous NeSy systems in a synthetic bench-
mark and to provide benefits in terms of general-
ization compared to purely neural systems in a real-
world event recognition task. Code is available at:
https://github.com/nmanginas/nesya.

1 Introduction

Sequence classification/tagging is a ubiquitous task in Al
Purely neural models, including LSTMs [Hochreiter, 1997]
and Transformers [Vaswani, 20171, have shown exemplary
performance in processing sequences with complex high-
dimensional inputs. Nonetheless, various shortcomings still
exist in terms of generalization, data-efficiency, explain-
ability and compliance to domain or commonsense knowl-
edge. NeSy AI [Garcez and Lamb, 2023] aims to inte-
grate neural learning and symbolic reasoning, possibly aid-
ing in the afformentioned limitations of purely neural sys-
tems. Recently, various NeSy systems have been devel-
oped for sequential/temporal problems [Winters et al., 2022;
De Smet et al., 2024; Umili et al., 2023b], with large differ-
ences among them, in terms of semantics, inference proce-
dures, and scalability of the proposed hybrid models.

In this work, we identify symbolic automata as an attrac-
tive low-level representation of complex temporal proper-
ties. These differ from classical automata as they support
symbolic transitions between states (defined in propositional
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Figure 1: Symbolic automata (middle) are used to reason over se-
quences of subsymbolic inputs (top) from which information is ex-
tracted with the aid of a neural network, performing multilabel clas-
sification. For instance, for the image , the correct symbol
grounding is {tired, —blocked, —fast}. The symbolic automaton
shown captures the following logic: If the driver is tired or the road
is blocked, then in the next timestep they should not be going fast.
NESYA computes the probability of the SFA accepting the input se-
quence (bottom), which is then used for learning.

logic), thus combining temporal reasoning (through the au-
tomaton) and atemporal reasoning (through the logical tran-
sitions). We show that symbolic automata can be efficiently
integrated with neural-based perception and thereby extended
to subsymbolic domains. Figure 1 illustrates the core NESYA
architecture in a running example, which is used throughout
the paper.

The key characteristics of NESYA that can be used for
comparison to existing NeSy systems, are: [C1] its focus
on temporal domains, [C2] its probabilistic semantics, [C3]
its capacity to integrate static logical reasoning into temporal
patterns, [C4] its efficient and exact inference scheme based
on matrices and knowledge compilation [Darwiche and Mar-
quis, 2002].

The closest system to our work is FuzzyA [Umili et
al., 2023b], which attempts to address the NeSy integration
of LTL; with neural networks. That system differs from
NESYA primarily in terms of [C2], as it is based on fuzzy


https://github.com/nmanginas/nesya

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

logic and specifically on Logic Tensor Networks [Badred-
dine er al., 2022]. As we shall show in this paper, proba-
bilistic semantics can provide significant benefits, in terms of
predictive accuracy, over fuzzy logic, as used in FUZZYA.

On the other hand, NES YA differs from approaches like the
Semantics Loss (SL) [Xu et al., 2018] and DEEPPROBLOG
[Manhaeve et al., 2018], in terms of [C1], as they are not
tailored to temporal reasoning. In this paper, we shall show
that this makes them scale considerably worse than NESYA
when faced with problems with a temporal component.

The more recent DEEPSTOCHLOG system [Winters et al.,
2022] is based on unification grammars and therefore differs
from NESYA in terms of both [C1] but mostly [C4]. Our ex-
periments show that this difference makes DEEPSTOCHLOG
orders of magnitude slower than NESYA.

Further, systems based on neural networks and classical
automata, such as [Umili et al., 2023a; Umili and Capo-
bianco, 2024] differ from NESYA in terms of [C3], since
classical automata lack symbolic transitions and support for
atemporal reasoning.

Lastly, [De Smet er al., 2024] is based on very expres-
sive models in mixed discrete and continuous domains. It is
based on approximate inference, thus differing from NESYA
in terms of [C4].

Our contributions are as follows:

* We introduce NESYA a probabilistic NeSy system for
sequence classification and tagging, which combines au-
tomata, logic and neural networks.

* We introduce an efficient algorithm for inference in
NESYA, utilizing matrix-based automata inference and
knowledge compilation based approaches for logical in-
ference [Darwiche and Marquis, 2002].

* On a synthetic sequence classification domain, we show
that NESYA leads to large performance benefits over
FuzzYyA [Umili et al., 2023b] and scales orders of
magnitude better than DEEPSTOCHLOG [Winters e al.,
2022], which is also based on a probabilistic semantics.

* On a real-world event recognition domain we show that
NESYA can lead to a more accurate event recognition
system, compared to purely neural approaches.

2 Background

2.1 Propositional Logic and Traces

We shall use lowercase to denote propositional variables, e.g.
blocked. A propositional formula ¢ over a set of variables V'
is defined as:

¢u=V |21 | o1 Ao | 1V do.

These connectives are sufficient to then define —, etc. An
interpretation w C V assigns a truth value to each vari-
able. We use subsets to denote interpretations. For in-
stance for V' = {tired, blocked, fast} the interpretation w =
{tired, blocked} is shorthand for {tired, blocked, —fast}. If
an interpretation w satisfies a formula ¢ we write w = ¢ and
w is called a model of ¢.

The semantics of propositional logic are given in terms of
interpretations. Traces generalize interpretations for temporal

domains. A trace over variables V, 7 = (w1,wa,...,wy,) is
a sequence of interpretations, with w; C V. We use m; to
denote the interpretation w; at timestep ¢.

2.2 SFA: Symbolic Automata
A symbolic automaton (SFA) is defined as:

A= (MQaQ(%dvF)v

where V' is a set of variables, () a set of states, gy € @ the
initial state, 6 : @ x @ — B(V) is the transition function
and ' C @ is the set of accepting states. B(V') is used
to denote the set of all valid formulae in propositional logic
over variables V. The difference between an SFA and a clas-
sical automaton is that § is given in a factored form, e.g.
0(q0,q1) = tired V blocked in Figure 1. One can always
convert the SFA to a classical automaton by replacing each
transition d(q, ¢’) with multiple ones representing all models
w = 8(q,q"). This approach does not scale to complex for-
mulae and large sets of variables, as the number of resulting
transitions can be exponential in V. This factored transition
function is also common in the Markov Decision Process lit-
erature [Guestrin et al., 2003] with the goal being to exploit
the symbolic nature of the transitions without “propositional-
izing”.

A symbolic automaton reads traces, i.e. sequences of inter-
pretations (w1, ...,wy) (w; C V) over the variables V. We
shall consider deterministic SFAs, in which:

VgeQuwe?2V 3¢ wkdgd).

That is, for any state ¢ € Q and any interpretation w € 2"
exactly one transition outgoing from state ¢ will be satis-
fied by w. For the SFA in Figure 1 consider the transi-
tions outgoing from state gy. For any intepretation, either
(—tired A —blocked) or (tired V blocked) will be true. If the
SFA ends up in an accepting state after reading the trace m
we write 7 = A.

2.3 Probabilistic Logical Inference

Probabilistic logical inference is the task of computing the
probability of a logical formula under uncertain input. For
a propositional formula ¢ over variables V, let p denote a
probability vector over the same variables. Each element pl[i]
therefore denotes the probability of the i symbol in V being
true. The probability of the formula given p is then defined

' P [p) =3 P(w|p),

“ (1)
with P(w | p) = [ ] pli] [T 1 — plil.
i€w i¢w

This task is reducible to weighted model counting (WMC),
one of the most widely-used approaches to probabilistic log-
ical inference [Chavira and Darwiche, 2008]. As computing
WMC involves summing over all models of a propositional
formula, it lies in the #P complexity class of counting prob-
lems [Valiant, 1979]. Knowledge Compilation (KC) [Dar-
wiche and Marquis, 2002] is a common approach to solve
WDMC problems. It involves transforming a logical formula
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Figure 2: A d-DNNF circuit for the formula ¢ = —fast A (blocked V
tired) (left) and an arithmetic circuit produced from the d-DNNF
circuit (right). The computation of WMC is shown for the vector

p = [0.8,0.3,0.6] for the symbols {tired, blocked, fast} respec-
tively.

—fast
tired

—tired  blocked

to a tractable representation, on which WMC queries can be
cast in linear time. Importantly, once a formula has been
compiled to a tractable representation, WMC cannot only be
computed in linear time but also differentiably. The compu-
tational complexity of the problem is effectively shifted to an
initial compilation phase but can be amortized, since multiple
queries can be cast on the compiled representation. Consider
for example the formula ¢ = —fast A (tired V blocked), i.e.
the transition ¢; — ¢ in Figure 1. Its compiled form as a
d-DNNF circuit [Darwiche, 2001], one of the tractable KC
representations, and the computation of WMC can be seen
in Figure 2. The logical circuit in Figure 2 (left) is converted
to an arithmetic circuit Figure 2 (right) by replacing AND
gates with multiplication and OR gates with addition. The
weighted model count for the probability vector in Figure 2
can be verified to be correct by:

P(—fast A (tired V blocked) | p = [0.8,0.3,0.6])
= P({tired}|p) + P({blocked }|p)

+ P({tired, blocked }|p)
=08x0.7x04+02x03x04+08x0.3x0.4
= 0.344.

Recall that interpretations are given in shorthand, e.g. {tired}
is shorthand for {tired, —blocked, —fast}.

3 Method

3.1 Formulation and Inference

We introduce NESYA as a NeSy extension of the SFAs in-
troduced earlier. Rather than assuming a trace of propo-
sitional interpretations 7 = (wi,wa,...,w,) We assume a
sequence of subsymbolic observations o = (01,02, ...,0,)
with o; € R™. NESYA is defined as a tuple (A, fy), with A
an SFA over variables V and fy : R™ — [0,1]/V! a neural
network, which computes a probability vector fp(o;) over the
variables V' from the observation o;. Therefore fy(o;)[i] de-
notes the probability of the i variable in V' being true given
the observation o;. The neural network is used to bridge be-
tween the discrete representation of the SFA and the contin-
uous representation of the observations.

OO

Figure 3: Graphical model for NESYA. Following the approach used
in [McCallum et al., 2000I, it resembles a Hidden Markov Model
with the arrows between states and observations reversed. The ran-
dom variables g; take values from @), the state space of the SFA, and
the random variables o; take values from high-dimensional continu-
ous spaces.

The resulting model is depicted in graphical model nota-
tion in Figure 3, where ¢; denotes a discrete random variable
over the states of the SFA and o, the input observation at time
t. Following [McCallum et al., 20001, we define

ai(q) = P(q|o1,...,00)

as the probability of being in state g at timestep ¢ after seeing
the observations (o1, ..., 0¢). «; can be computed recursively
(using dynamic programming) as follows:

ao(q0) = 1; aolq) =0 Vg # qo
aii(a) = Y Plald o) auld),

q'eQ
where P(q | ¢',0i41) = P(8(q',q) | fo(ot+1))
= Z P(w| fo(ot41))-

wkEd(q’,q)

2

Thus, to update the probability of being in each state, one
must first compute the probabilities of the logical formulae in
the SFA’s transitions given the outputs of the neural network
for the current observation. Instead of naively summing over
all models of each formula, we use KC to make the compu-
tation efficient. The state update, which is similar to the one
in Hidden Markov Models, can be captured via matrix oper-
ations and is therefore amenable to parallelization and exe-
cution on GPUs. It is well-known that «; can be represented
with a vector of size ||, whose elements are the probabilities
of being in each state at timestep ¢. In what follows we adopt
this notation.

Running example computation:
Consider the SFA in Figure 1. Let the first observation be

01 = and let fy(01) = [0.8,0.3,0.6] the output of

the neural network. We define the transition matrix 7'(o;)
where T'(0;)[¢’,q] = P(6(q’,q) | fo(0i)). We thus have:

0.14 086 0 ]

T():l0‘056 0.344 0.6
0 0 1

The calculation of the entry T'(CCFRE®)[¢1, ¢1] was shown
in Section 2.3. Similarly, the computation of other entries is

performed by propagating an arithmetic circuit for each tran-
sition, given the neural network predictions for the current
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observation. Observe that the sum of each row in the tran-
sition matrix, i.e. the total mass out of each state is 1. This
is a direct consequence of the deterministic propertry of the
SFA, where exactly one outgoing transition from each state
will be true for any possible intepretation. It also ensures that
quQ ay[q] = 1 for all ¢.

We start with «g, where ag[go] = 1 and ag[g] = 0 for all
q € Q, q # qo, We then recursively compute o for each sub-
sequent timestep. Let o = (01 = [ClnA® 02 = [CHEAD)-
Consider the neural network predictions for o1 as above and
let fo(02) = [0.7,0.9,0.3]. We is is

Qg = 1 X T(Og)
=g X T(Ol) X T(OQ)

0.14 086 0
=1 0 0]x [0.056 0.344  0.6| x T(0y)
0 0 1
0.03 097 0
—[0.14 0.86 0] x {0.021 0.679 0.3]
0 0 1

=[0.023 0.7197 0.258].

Depending on the task, the a-recursion can be used in various
ways. For sequence classification, one only cares about the
state probabilities in the final timestep and would aggregate
over accepting states to get the probability of accepting the
sequence. Concretely:

Paccept (0) = Z Ofn(f)-

feF

where n is the length of the sequence. In this case
Paccept(0) = 0.023 4+ 0.7179 = 0.742. In other applica-
tions, such as sequence tagging, one is interested about the «
values in every timestep.

3.2 Learning

For ease of exposition we shall consider the sequence classi-
fication task, in which NESYA is given a subsymbolic se-
quence o and computes P,ccept(0). The computation of
Paccept(0) is differentiable with respect to the neural net-
work outputs as the only operations necessary to compute
the acceptance probability are: (a) the computation of WMC
which, as shown in Section 2.3, reduces to propagating an
arithmetic circuit comprised of addition, multiplication and
subtraction, (b) the a-recursion which is implemented via
standard matrix operations, and (c) a summation over the final
« values.

Therefore, given a dataset of pairs (o, L), where L € {0, 1}
is a binary label for the sequence o, one can train the neural
component of NESYA by minimizing a standard supervised
learning loss, e.g.

,C(O, L) = BCE(Paccept (O)a L)a

where BCE stands for the standard binary cross entropy.
This amounts to training the neural network via weak su-
pervision, where no direct labels are given for the sym-
bol grounding of each observation, but rather for the se-
quence as a whole. This weak-supervision learning setup

is common and can be found in [Manhaeve et al., 2018;
Yang et al., 2020; Winters et al., 2022; Umili et al., 2023b].
More concretely, observe that we don’t require examples of
the form ([CFFY®, {tired, =blocked, —fast}), as we would
in a fully supervised multilabel problem, but rather of the
form (EIETH CIZTS, CXZMM). 0).  Such high-level
labels are in general much fewer in number and more easily
attained. Given the differentiability of the model, explained at
the start of this subsection, the neural component fj is trained
via standard gradient descent on the distant labels.

3.3 Semantics and Discussion

Consider a sequence of probability vectors (p1, P2, ..., DPn)
with each vector p; assigning a probability to each propo-
sition v € V at timestep ¢t. In NESYA p; = fp(os), i.e.
these probability vectors are computed via a neural network
conditioned on the observation at each timestep, but we ig-
nore the neural component at this stage of the analysis. Given
(P1,---,Pn), the probability of trace , a sequence of inter-
pretations, is then:

n

b)) = [[ PG | po)

t=1

P(ﬂ— | (p17p23 v

To elaborate, the probability of a sequence of interpretations
is the product of the probability of each interpretation
given py.

Theorem 1 (a-semantics). It holds that:

afq] = Z

TEtraces(q,t)

,Pt))~

P(Tl' | (p17p27' c

where traces(q, t) is the set of all traces which cause the SFA
to end up in state q starting from qq in t timesteps. The prob-
ability of being in state q at timestep t is then the sum of
all such traces (sequences of interpretations) weighted by the
probability of each trace given (p1,...,pPt)-

This directly follows from the graphical model but refer to
Appendix A for a proof from first principles. A direct conse-

quence is that for an SFA A and the sequence (p1,...,Pn)
of symbol probabilities:
Zan[.ﬂ: Z P(W|(P1ap2a---,Pn))- 3)

feF TE=A

Once the logical transitions of the SFA have been compiled to
a tractable form, see Section 2.3, this computation is polyno-
mial in the number of nodes of the compiled circuits and the
number of states of the SFA. This makes the compiled SFA,
a tractable device for performing computations over uncertain
symbolic sequences.

This result is important for extending NeSy systems to the
temporal domain. Consider the symbolic component of a
NeSy system, e.g. DEEPPROBLOG. It eventually reduces
to a propositional formula ¢ and relies on the computation of
> wi—e P(w | p), where p is usually the output of a neural net-
work conditioned on an observation. For temporal NeSy sys-
tems if the symbolic component can be captured by an SFA
A, then thA P(w|p1,p2,---,Dpt) is computable as shown
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Pattern
Sequence Length ~ Method 1 2 3

Accuracy  Time Accuracy Time Accuracy Time
10 NESYA 1.0 0.8 098+0.03 1.1 1.0 2.3
FuzzyA 0.91+0.06 108 0.704+0.13 22.5 0.78+0.04 29.9

20 NESYA 1.0 1.2 099+£0.01 1.7 0.99+0.01 3
FuzzyA 0.77£0.22 214 0.69+0.14 43.7 0.7+0.1 57.7
30 NESYA 1.0 1.7 094+0.11 23 097+0.03 3.8
FuzzyA 098=+£0.01 31.7 0.55+0.1 559 0.5 86.6

Table 1: Accuracy results on a test set, and timings (in minutes) for NESYA against FUZZYA averaged across 5 runs, as well as standard
deviation (when over 0.01). Both systems are trained with a learning rate of 0.001 following [Umili ez al., 2023b]
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Figure 4: Scalability results for NESYA (solid) and DEEP-

STOCHLOG (dashed) for each of the three patterns tested.The y-axis
represents the update time for a single batch of 16 sequences in log-
arithmic scale and the x-axis the sequence length. The systems were
benchmarked for three different patterns of varying complexity both
in terms of symbols, as well as states of the automaton.

in Equation 3. To further motivate the potential efficacy of
SFAs as promising low-level representations in the context
of NeSy, we note that they are known to capture STRIPS do-
mains as well as temporal logics [De Giacomo er al., 2013]
and are thus quite expressive. Hence, it is possible, that SFAs
can serve as an efficient compilation target for temporal NeSy
systems, much like d-DNNF and similar representations have
done for atemporal NeSy systems.

4 Results

In this section we provide empirical results for the perfor-
mance of NESYA and its comparison to other NeSy systems,
as well as to purely neural ones. We aim to answer the fol-
lowing questions:

[Q1] Scalability: How does NESYA compare to DEEP-
STOCHLOG and FUZZYA in terms of runtime on the same
NeSy learning task?

[Q2] Accuracy: How does NESYA compare to FUZZYA in

terms of accuracy on the same NeSy learning task? !

[Q3] Generalization: How does NESYA compare to purely
neural solutions in terms of generalization?

All experiments were run on a machine with an AMD Ryzen
Threadripper PRO 3955WX 16-Core processor, 128GB of
RAM, and 2 NVIDIA RTX A6000 with 50GB of VRAM of

which only one was utilized.

4.1 Synthetic Driving

We first benchmarked NeSy systems on a synthetic task,
which allowed us to control the complexity. In particular,
we used the domain introduced as a running example, in
which a sequence of images must be classified according to
a temporal pattern. Each image represents a set of binary
symbols. In the example from Figure 1 the symbols were
{tired, blocked, fast}, however we test for sets of up to five
symbols. Their truth value is represented via two emojis, one
corresponding to the value true and one false. Random Gaus-
sian noise is added to each image to make the mapping be-
tween an image and its symbolic interpretation less trivial.
We generate three patterns (different SFAs) with 3, 4 and 6
SFA states and 3, 4 and 5 symbols respectively. For each
pattern, we generated 100 random trajectories which satisfy
the pattern (positive) and 100 negative ones. We use the same
setup for generating a training and a testing set.

The neural component of all systems is a CNN. The learn-
ing task is as described in Section 3.2, where the neural com-
ponent must perform symbol grounding without direct su-
pervision. Instead supervision is provided at the sequence
level and the neural component is trained weakly. We bench-
marked against DEEPSTOCHLOG [Winters ez al., 2022] and
DEEPPROBLOG [Manhaeve et al., 2018] in terms of scala-
bility and with FuzzyA [Umili et al., 2023b] both in terms
of scalability and accuracy. Figure 4 shows the comparison
of NeSyA against the DEEPSTOCHLOG system on temporal
patterns of ranging complexity in the synthetic driving bench-
mark. The DEEPPROBLOG system lagged behind the other
two considerably and therefore is omitted from the results
for brevity. Accuracy results are also omitted here, since all

!The accuracy of DEEPSTOCHLOG is not compared against that
of NESYA, as they generate the same results on the same input.
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Figure 5: Sample of the CAVIAR data. Models are given the two
bounding boxes per timestep instead of the complete image, in or-
der to make the task simpler for the neural component. Along with
the pair of bounding boxes, a close(pl, p2) feature is provided,
which captures whether the two people are close to each other.The
CNN for NESYA must ground one bounding box to the symbols
walking(pl), running(pl), active(pl), inactive(pl) and corre-
spondingly to p2 for the second bounding box. The correct ground-
ing for this image is active(pl) and walking(p2). These are the
low-level activities performed by each person. The high-level activ-
ities performed by the pair are annotated for each image in one of
the three classes no_event, meeting, moving. For the image shown
here the annotation is moving.

three systems are equivalent in their computation and learn-
ing setup and therefore perform identically in terms of accu-
racy. In terms of computational performance, NESYA does
significantly better than DEEPSTOCHLOG, being on average
two orders of magnitude faster. As an indication, for the most
complex task and a sequence length of 30, NES YA takes 0.08
seconds for a single batch update and DEEPSTOCHLOG takes
about 30 seconds, rendering the latter system of limited prac-
tical use. As an indication of the difference against DEEP-
PROBLOG, for the simplest pattern and a single sequence of
length 15, the update time for DEEPPROBLOG is 140 seconds
compared to 0.02 seconds for NESYA.

Next, in Table 1 we show accuracy and scalability results
of NESYA against the FUZZYA system. NESYA, which in-
terfaces between the SFA and the neural representations us-
ing probability, seems to offer a much more robust NeSy so-
lution. FuzzYA delivers significantly lower accuracy com-
pared to NESYA, especially as sequence length grows. Fur-
ther FUZZYA lags significantly in terms of scalability.

The results on our synthetic benchmark allow us to affirma-
tively answer [Q1] and [Q2]. NESYA seems to scale better
than both DEEPSTOCHLOG and FUZZYA for even the sim-
plest patterns considered here, often by very large margins.
Further, our system is more accurate than FUZZYA, with the
difference in performance becoming very large for large se-
quence lengths and complex patterns.

4.2 Event Recognition

In our second experiment we compared NESYA against
pure neural solutions on an event recognition task from the

initiated(moving)

no_event [« “|moving

0 terminated(moving)

initiated (moving) <+

walking(p1l) A walking(p2) A close(pl, p2)

terminated(meeting) <
—close(pl, p2) A (walking(pl) V walking(p2))
V running(pl) V running(p2)

initiated(meeting)
terminated(meeting)

=
@
@
=8
=
®

Figure 6: The SFA used for the CAVIAR experiments. It defines
transitions between two classes meeting and moving and a third no-
event class. Only a subset of the transition logic is shown for brevity.
In the case that no outgoing transition from a state is satisfied the
SFA loops in its current state.

CAVIAR benchmark dataset>. The task was to recognize
events performed by pairs of people in raw video data. We
focused on two of the events present in CAVIAR, namely
moving and meeting, which appear more frequently in the
data, and a third no_event class. We present three meth-
ods; NESYA a CNN-LSTM and a CNN-Transformer. The
data consists of 8 training and 3 testing sequences. The label
distribution for the training data is 1183 frames of no_event,
851 frames of moving and 641 frames of meeting. For the
test set, these are 692, 256 and 894 respectively. The mean
sequence length is 411 with a minimum length of 82 and a
maximum length of 1054. We use the macro F1 score for
evaluation of all models.

The CAVIAR data is annotated at a frame level with
bounding boxes of the people in the scene, as well as with
low-level activities they perform, such as walking and run-
ning. From the raw data, we extract sequences of two
bounding boxes per timestep, as well as a boolean feature of
whether the distance between the bounding boxes is smaller
than some threshold. Refer to Figure 5 for an overview. The
symbolic component of NESYA in this case is a three-state
automaton, capturing a variant of the Event Calculus [Kowal-
ski and Sergot, 1986] programs for CAVIAR found in [Ar-
tikis er al., 2014] and can be seen in Figure 6. We use the
SFA to label the sequence with the current high-level event
in each frame given the ground truth labels for the low level
activities. The true high-level events are also given in the
CAVIAR data, but the labels are noisy, i.e. there is some dis-
agreement between the start and end points of the high-level
events generated by the logic and those provided by human
annotators. Using the labels generated by the SFA, we as-
sume perfect knowledge, i.e. that the symbolic component of
NESYA can perfectly retrieve the high-level events, given the
low-level activities. Learning with a label noise is beyond the
scope of this work.

The task in CAVIAR is therefore to tag a sequence of pairs
of bounding boxes, along with a boolean distance feature,
with the high-level event being performed in each timestep.

*https://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
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Learning rate

0.001 0.0001 0.00001
#Params Train Test Train Test Train Test
NESYA 258884 0.81+0.13 0.60+0.18 0.87+0.03 0.85+0.20 0.86+0.10 0.81+0.18
CNN-LSTM 399683 0.70+0.23 0.56+0.21 0.844+0.08 0.354+0.19 0.17+0.05 0.15+£0.06
CNN-Transformer 2659767 0.72+0.26 0.404+0.10 1.00+0.00 0.68+0.16 0.97+0.02 0.78+0.14

Table 2: Results for the CAVIAR dataset. Performance is averaged over 10 random seeds. The metric reported is macro F'1 score. We
present results for 3 different learning rates as the dataset is small and constructing a validation split to tune for the learning rate would further
reduce the size of the training data. For all systems training is stopped by monitoring the training loss with a patience of 10 epochs. Best test

results for each method are underlined.

For NES YA each bounding box is processed by a CNN which
gives a probability for each of the low-level activities (walk-
ing, running, active and inactive). Combining this with the
feature close(pl, p2), these are then passed through the SFA
which outputs the probability of each high-level event per
timestep. As a baseline, we drop the final linear projection
of the CNN used for NESYA. The resulting CNN computes a
64-dimensional embedding for each bounding box. We con-
catenate the embeddings of the bounding boxes along with
the distance feature finally producing a 129-dimensional em-
bedding per frame. This embedding is then given to either an
LSTM or a Transformer, whose hidden state is projected to
the three high-level event classes. All systems are trained by
computing a cross entropy loss on the high-level event pre-
dictions in every timestep of each sequence. The supervision
is therefore in the frame level contrary to the experiment in
Section 4.1 where supervision was on the sequence level. For
NESYA the loss in the CAVIAR dataset is:

L(O, L) = Z CE(O{t,Lt),

where n denotes the sequence length, a; the probabilities of
being in each state of SFA at timestep ¢ (and therefore of
emitting each label) and L; denotes the true high-level event
label for that timestep, e.g. meeting. For the pure neural
solutions « is replaced with the output of a linear projection
on the LSTM/Transformer hidden state at timestep ¢. The
performance of the three systems can be seen in Table 2.

The results in Table 2 allow us to also answer [Q3] affir-
matively. The inclusion of knowledge about the structure of
the high-level events based on the low-level activities aids in
generalization and the discrepancy between train and test per-
formance is generally small for NESYA and larger for purely
neural solutions in this low data regime. The Transformer
baseline is able to compete with NESYA, albeit with an or-
der of magnitude more parameters. It is interesting that 2.5
million parameters (the difference between NESYA and the
CNN-Transformer) are necessary to find a solution that de-
livers comparable performance with the three state SFA and
simple transition logic used by NES YA as background knowl-
edge. The results in CAVIAR are to be taken with a grain of
salt as standard deviations are high due to the small size of
the data which causes outlier runs for all methods.

5 Future Work

Recently, [Yang et al., 2023] used the DEEPPROBLOG sys-
tem to integrate logical constraints in the training of Re-
inforcement Learning (RL) agents in subsymbolic environ-
ments. We believe NESYA can aid in this direction, by al-
lowing for the specification of more complicated temporal
constraints, which require memory, i.e. some notion of state
to be remembered from the execution of the environment so
far, while being more scalable. A large class of systems is
based on constraints for RL agents [Alshiekh er al., 2018;
Jansen et al., 2020] often using LTL. This seems a promising
avenue for NeSyA which can extend such methods to sub-
symbolic RL domains. Further, NESYA can be used to ex-
tend systems where automata are used to specify tasks and
reward structures for RL agents [Icarte ef al., 2018] and their
NeSy extension [Umili et al., 2023a] to incorporate logical
transitions.

Of significant interest is also the work of [Ahmed et al.,
2024], who define a pseudo-semantic loss for autoregres-
sive models with constraints and [Zhang er al., 2023], who
similarly address the problem of incorporating constraints is
LLMs. Both approaches assume a flat vocabulary. We be-
lieve NES YA can be beneficial for constrained autoregressive
models when the output structure includes many features, i.e.
the model generates structured traces, instead of natural lan-
guage.

Perhaps the most natural avenue for future work is the def-
inition of a high-level NeSy language for the specification of
temporal programs which utilizes NESYA as a compilation
target. Automata are generally low-level devices, cumber-
some to define by hand, motivating the creation of a human-
centric interface.

6 Conclusion

We presented the NESYA system for integrating neural
networks with symbolic automata, under clean probabilis-
tic semantics. We showed that current systems, such as
DEEPSTOCHLOG, DEEPPROBLOG, and FUZZYA struggle to
achieve scalable and accurate solutions in temporal domains.
The NESYA system was instead shown to scale considerably
better and achieve higher accuracy.
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A Proof of Theorem 1

We focus on the meaning of «a;(q), from which we can also
draw further conclusions. Consider an SFA over proposi-
tions V. Let traces(g, t) denote all traces over V which start-
ing from state gy cause the SFA to end up in state ¢ after ¢
timesteps. Further, consider a sequence of probability vectors
(p1, P2, - - -, Pn) With each vector p; assigning a probability to
each proposition v € V at timestep 7. Refer to Section 2.3 for
an example of p;. The probability of a trace 7 is then:

n

P(r) = [[P(m | po),

t=1
Theorem 1 states that

a(q) = Z

mEtraces(q,t)

P(n).

Proof. We shall prove Theorem 1 by induction. For ¢t = 1 we

have:
S Pelb)= Y

wl=6(q0,9) mEtraces(q,1)

recalling that ag(q) = 1 if ¢ = go and 0 otherwise and from
Equation 1 and 2. Assuming the hypothesis holds for ¢, we
can prove it for ¢ + 1, as follows:

ai1(g) = Z P(q| ¢ pey1) ar(q)
7eq

Z Z P(w | pts1)

q'€Quw=d(q’,q)

= 2

mEtraces(q,t+1)

ai(q) = P(m),

>, P

mEtraces(q’,t)

P(n).

The last step follows from:

traces(q, t+1) = U {rw|wE 6, q),m € traces(q', t) }
q'eQ

with . the concatentation of an interpretation w with a trace

m, e mw = (7,...,m,w). To elaborate, the set of traces

which end in state ¢ in ¢ 4+ 1 timesteps is the union over all

traces which ended in state ¢’ in ¢ timesteps concatenated with

each interpretation w causing the SFA to transition from ¢’ to
q. O

An immediate consequence of Theorem 1 is that:
Y P =) ar(f)
T=A fer

for an SFA A.

B Implementation Details

All experiments were implemented in Pytorch and Python
3.11. For the experiment in Section 4.1 we use the imple-
mentation of FUZZYA provided by the authors® with mini-
mal changes. Both NESYA and FUZZYA were trained for

3https://github.com/whitemech/grounding_LTLf_in_image_
sequences

a fixed ammount of 100 epochs. For the second experiment
(Section 4.2) we use an LSTM with a single layer and a 128
dimensional hidden state. The Transformer architechture has
3 attention heads per layer, 4 layers and an hidden state di-
mensionality of 129 (same with the input dimensions). Both
architectures utilize the same CNN to extract visual embed-
dings of the bounding boxes.
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