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Abstract

Missing values in multivariate time series data
present significant challenges to effective analy-
sis. Existing methods for multivariate time se-
ries analysis either ignore missing data, sacrificing
performance, or follow the impute-then-analyze
paradigm, which suffers from redundant train-
ing and error accumulation, leading to biased re-
sults and suboptimal performance. In this paper,
we propose INTER, a novel end-to-end frame-
work for incomplete multivariate time series anal-
ysis, which bypasses imputation by leveraging pre-
trained language models to learn the distribution
of incomplete time series data. INTER incor-
porates two novel components: the missing-rate-
aware time series patch-dropping (MPD) strategy
and the missing-aware Transformer block, both of
which we propose to enhance model generaliza-
tion, robustness, and the ability to capture under-
lying patterns in the observed incomplete time se-
ries. Moreover, we theoretically prove that the
MPD strategy exhibits lower sample variance for
time series with the same dropout rate compared
to other dropping strategies. Extensive experiments
on 11 public real-world time series datasets demon-
strate that INTER improves accuracy by over 20%
compared to state-of-the-art methods, while main-
taining competitive computational efficiency.

1 Introduction
Multivariate time series analysis [Wen et al., 2022] is widely
used in extensive real-world applications, e.g., physiologic
signals analysis [Moody et al., 2011], stock price forecast-
ing [Wang et al., 2022], and anomaly detection [Franceschi
et al., 2019]. However, real-world multivariate time series
data are usually imperfect and incomplete due to failures
in data collection devices [Miao et al., 2021; Miao et al.,
2022] and an unstable system environment [Wu et al., 2022;
Wu et al., 2023]. For instance, the publicly available medical
time series dataset PhysioNet [Silva et al., 2012] has an aver-
age missing rate exceeding 80%. This incompleteness poses
considerable difficulties for time series analysis, including (1)

Incomplete Time Series

TS Analysis
Model

Imputer

MSE = 5.343

MSE = 2.674

MSE = 2.104
INTER

Imputed Dataset

TS Analysis Model

BRITS, SAITS…
Illness, Weather…

Improve 154.0 %!

Improve 24.5 %!

Imputer
Bypass

(2) ITA paradigm

(1) IMD paradigm

(3) Our end-to-end paradigm

Figure 1: Traditional paradigm vs ours.

missing values that hinder the functionality of certain analyt-
ical methods, (2) disrupted temporal dependencies that lead
to model bias, and (3) reduced model robustness that causes
overfitting to noise or incomplete data, ultimately resulting in
unstable performance in real-world applications. Given these
difficulties, it is crucial to propose an effective solution for
the Incomplete Multivariate Time Series Analysis (IMTSA)
task, which improves the performance of time series analysis
in the presence of missing data.

Existing Multivariate Time Series analysis methods are
primarily designed for the full-knowledge scenario, which
assumes access to completely observed datasets. For the
IMTSA task, current solutions follow two flawed paradigms:
(1) Ignoring missing data (IMD): Performing downstream
analysis without addressing missing values, which leads to
severely degraded performance. (2) Impute-then-analyze
(ITSA): Imputing missing data before analysis, which suffers
from redundant training and error accumulation, resulting in
biased results and suboptimal performance.

Motivating Example. To better illustrate the challenges
of incomplete multivariate time series analysis, we consider
the widely used public medical dataset PhysioNet, which con-
tains ICU patient records for tasks such as mortality predic-
tion and clinical outcome analysis. Figure 1 compares the
performance of existing paradigms for time series analysis
on this dataset. The IMD paradigm that directly performs
downstream analysis without handling missing values results
in severely degraded performance. The ITSA paradigm first
applies a standard imputation method (e.g., MICE [Buuren
and Groothuis-Oudshoorn, 2010]) to fill in missing values,
followed by a state-of-the-art model, such as a Transformer-
based classifier [Lim and Zohren, 2021]. While this paradigm
offers slight improvements, it suffers from error propagation
introduced during the imputation phase, leading to biased
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analysis and suboptimal results.
To address the limitations of the above two paradigms,

we propose a novel end-to-end framework, named INTER,
which introduces a new paradigm for incomplete multivari-
ate time series analysis by bypassing the imputation process.
As shown in Figure 1(c), INTER directly analyzes incom-
plete time series data without requiring separate imputation.
By eliminating error accumulation and effectively capturing
missing patterns, INTER achieves significantly better accu-
racy and robustness results than existing paradigms.

However, implementing INTER faces two challenging
problems. First, how can we effectively extract missing pat-
terns and recover critical information from missing parts
without performing explicit imputation? (CH1) The chal-
lenge lies in the fact that missing data patterns often exhibit
complex temporal and spatial dependencies, making them
difficult to model directly. Moreover, skipping the imputa-
tion step can render traditional feature extraction methods in-
effective. Therefore, it is essential to design a mechanism ca-
pable of capturing both explicit and implicit missing patterns,
which will enable accurate representation of incomplete time
series. Second, how can we effectively adapt and transfer
the knowledge derived from the missing data to diverse mul-
tivariate time series analysis tasks? (CH2) Incomplete time
series occur across various downstream tasks, such as fore-
casting, anomaly detection, and imputation. When dealing
with datasets with high missing rates, excessive noise in such
datasets can prevent downstream time series analysis mod-
els from even bootstrapping effectively. Furthermore, differ-
ent tasks require different utilizations of the missing informa-
tion, and a lack of alignment mechanisms makes it difficult to
adapt and fine-tune the missing information for each specific
downstream task

To address these two challenges, INTER consists of two
key modules: the missing-aware patch learning (MPL) mod-
ule and the incomplete time series analysis (ITSA) module,
each designed to tackle one of the challenges independently.
In the MPL module, we devise a novel missing-rate-aware
patch dropping (MPD) strategy and a missing-aware Trans-
former block, both of which we propose to enhance model
generalization, robustness, and the ability to capture under-
lying patterns in the observed incomplete time series. In
the ITSA module, we fine-tune a pre-trained language model
(PLM) with a novel element-wise loss function. By leverag-
ing the pre-trained knowledge from the PLM, ITSA captures
the underlying structure of incomplete time series data and
refines it using the element-wise loss function, which is de-
signed to minimize the interference from noise in the missing
data. This process enables INTER to effectively learn both
the distributions of observed data and the missing state distri-
butions from incomplete time series.

Our main contributions are as follows: (1) Paradigm:
We propose INTER, an end-to-end, missing-aware frame-
work for the IMTSA problem that bypasses imputation and
achieves exceptional performance. To the best of our knowl-
edge, this is the first attempt to develop an end-to-end frame-
work for incomplete multivariate time series analysis. (2)
Model: In INTER, we devise two novel modules, i.e., MPT
based on missing-aware transformer and ITSA based on pre-

train language model, to address the two challenges, respec-
tively. (3) Theory: We propose a novel missing-state-aware
patch-dropping (MPD) strategy and theoretically prove that
MPD achieves lower sample variance for time series with the
same dropout rate compared to other dropping strategies. (4)
Experiment: We conduct extensive experiments on 11 real-
world datasets, demonstrating that INTER outperforms state-
of-the-art methods in terms of accuracy while maintaining
comparable computational efficiency.

2 Related Work
Existing time series imputation models serve as the founda-
tion for most multivariate time series analysis methods. They
include statistical ones, attention-based ones, deep generative
model based ones, and neural ordinary differential equation
(NODE) based ones. In particular, the statistical time se-
ries imputation algorithms substitute missing values with the
statistics, e.g., zero, mean, and last observed value or simple
statistical models, including ARIMA [Bartholomew, 1971].
The attention mechanism based time series imputation meth-
ods contain TransI [Vaswani et al., 2017] and SAITS [Du et
al., 2023]. The deep generative model based time series im-
putation methods use autoencoder and generative adversarial
network to impute missing values, including BRITS [Cao et
al., 2018] and CSDI [Tashiro et al., 2021]. The NODE-based
methods model the dynamics over time by virtue of the con-
tinuous nature of NODE, such as SaShiMi [Goel et al., 2022]
and LS4 [Zhou et al., 2023a].

Multivariate time series analysis methods have attracted
extensive research focus from the AI community [Liang et
al., 2024], and these approaches can be broadly catego-
rized into three types. With the development of technolo-
gies such as Transformers, pretrained language models, and
mixture of experts[Vaswani et al., 2017; Feng et al., 2024;
Feng et al., 2025], Transformer-based models have become
increasingly effective in time series analysis, including In-
former [Zhou et al., 2021], PatchTST [Nie et al., 2022], One-
FitsAll [Zhou et al., 2023b] and Timer[Liu et al., 2024]. The
second category consists of non-Transformer-based models,
such as CNN-based approaches like TimesNet [Wu et al., ]
and TriD-MAE [Zhang et al., 2023], which capture spatial
and temporal patterns using convolutions. With the develop-
ment of GNN methods [Zhu et al., 2023; Liao et al., 2024],
models like FourierGNN [Yi et al., 2023a] have started lever-
aging graph structures for multivariate time series forecast-
ing. MLP-based models like FreTS [Yi et al., 2023b] and
TSMixer [Ekambaram et al., 2023] focus on learning com-
plex feature interactions in time series data. FilterNet [Yi
et al., 2024] employs frequency filtering techniques to en-
hance forecasting performance. The third category involves
diffusion-based models, such as D3VAE [Li et al., 2022] and
DiffTime [Coletta et al., 2024], which model time series dy-
namics by progressively adding and removing noise, making
them effective for handling missing or uncertain data.

3 Problem Definition
The input multivariate time series dataset contains a set
of samples D = {X1, · · · ,XN} with d dimensions
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Figure 2: The architecture of INTER

and L timestamps. Formally, X = (x1, · · · ,xd)
⊤ =

(x:1, · · · ,x:L) ∈ Rd×L with xi being (xi1, · · · , xiL). In par-
ticular, xij is the i-th feature value of X at the j-th timestamp,
which is probably missing in the incomplete multivariate time
series dataset.

Definition 1. Incomplete multivariate time series, IMTS.
To encode the missing information of each sample X in D,
a mask matrix M = (m1, · · · ,md)

⊤ = (m:1, · · · ,m:L) ∈
{0, 1}d×L w.r.t. X is used to indicate whether the values in
X exist or not. mi = (mi1, · · · ,miL), and mij being 0 or 1
means that, xij is missing or observed.

Definition 2. Incomplete multivariate time series repre-
sentation learning, IMTSRL. Given an incomplete multi-
variate time series X with its mask matrix M, the goal of
incomplete time series representation learning is to train a
neural network model (i.e., encoder) f : Rd 7→ Rdr , where
dr is the dimensionality of the representation, such that the
representation z = f(X) can be informative for downstream
analysis tasks, e.g., multivariate time series classification.

Based on probability theory [Feng et al., 2023], we claim
that, during model optimization, the analysis approach lever-
aging IMTSRL proves more effective than the imputation-
then-analysis solution, as highlighted in Observation 1.

Framing the classification task as the foundation for
IMTSRL, the objective is to train a classifier H that uses
the IMTS data X ∈ D to predict the label y. For ease of
representation, we restrict our domain to a three-class task
in this part, i.e., y ∈ {0, 1, 2}. Inspired by [Feng et al.,
2023], we evaluate the classifier’s performance differences
across various categories in the discrete attribute K in X
that exhibits a complex missing mechanism, e.g., MAR
and MNAR. Such a classifier is to solve a constrained
optimization problem maxH E[I(H(X) = Y)] subject to
Disc(H) ≤ ϵ, where ϵ ≥ 0 is a tolerance threshold. When the
optimization is over binary mappings, the optimal solution
of the constrained optimization problem only depends on
the data distribution PK,X,Y and ϵ. We denote the opti-
mal solution of this problem by Fϵ(PK,X,Y). Here, I is
the indicator function, returning 1 if H correctly predicts
H(X) = Y, and 0 otherwise. Disc(H) represents the
model’s disparity in performance across different categories

in K, i.e., Disc(H) = maxy,ŷ,k,k′ |Pr(H(X) = ŷ | Y =
y,K = k) − Pr(H(X) = ŷ | Y = y,K = k′)|.
Moreover, we use mutual information [Kraskov et
al., 2004] to quantify the dependence between the
missing matrix M and the label Y, i.e., I(M;Y) ≜∑

m∈M

∑
y PM,Y(m, y) logPM,Y(m, y)/(PM(m)PY(y)).

The detailed proof can be found in Appendix A.

Observation 1. Suppose that the incomplete IMTS dataset
X with the mask matrix M and label set Y consists of a sin-
gle discrete attribute K, which is subject to a complex miss-
ingness mechanism, such as MAR or MNAR. Let α represent
the probability that the outcome of the three-class classifi-
cation is not equal to 0 for a given sample. For any ϵ and
α ∈ ( 12 , 1), there exists a data distribution PK,X,Y such that
the optimal solution Fϵ(PK,X̂,Y) is less than or equal to the

optimal solution Fϵ(PK,X,Y), i.e., supfimp
Fϵ

(
PK,X̂,Y

)
≤

Fϵ (PK,X,Y) − α, where fimp is the mapping function of the
IMTS imputation model. The imputed data X̂ = fimp(X).

4 Methodology
4.1 Overall
Our proposed INTER framework consists of two key mod-
ules: Missing-aware Patch Learning (MPL) and Incomplete
Time Series Analysis (ITSA). The architecture of INTER is
shown in Figure 2. Specifically, INTER takes an incom-
plete multivariate time series X = {x1, . . . , xL} ∈ Rd×L

as input and processes it sequentially through the MPL and
ITSA to generate outputs for downstream tasks. Figure 2 il-
lustrates an example of the output for a time series forecast-
ing task, X̂T = {xL+1, . . . , xL+T }. First, the MPL mod-
ule includes three components: incomplete time series en-
coding (TSE), missing-state-aware patch dropping (MPD),
and missing-aware Transformer (MAT). TSE applies main-
stream time series processing components for standard pre-
processing and, moreover, learns the missing patterns in each
incomplete multivariate time series. MPD adopts a novel
patch-dropping strategy to reduce noise, enhancing model
generalization and robustness. MAT learns the observed data
distribution and the missing state distribution based on a
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transformer-based encoder. Second, the ITSA module lever-
ages pre-trained language models to provide prior knowledge
for bootstrapping the learning of underlying observed time se-
ries patterns. It then uses a flattening layer and linear head to
project the learned representations onto specific downstream
tasks. Additionally, an element-wise loss function is intro-
duced to mitigate the risk of learning incorrect information
from missing values. The pseudo-code of INTER can be
found in Appendix B.

4.2 MPL: Missing-aware Patch Learning
Traditional multivariate time series analysis models typically
rely on imputation algorithms to handle missing data when
performing IMTSA tasks. However, this paradigm introduces
unnecessary training redundancy, error propagation, and ulti-
mately leads to suboptimal performance. To address these is-
sues, we propose the MPL module, which operates directly
on incomplete multivariate time series, extracting patches
containing missing values and observed time series data. This
process enables the model to learn the underlying patterns of
missing data and generate high-level hidden representations
without imputation. Next, we elaborate on the three key com-
ponents of the MPL module.

TSE: Incomplete Time Series Encoding. The TSE serves
two primary purposes for processing incomplete time series
data: (1) extracting missing state information and (2) gener-
ating embedded representations of the time series.

For the first purpose, TSE employs a feedforward neu-
ral network (FFN) to extract the missing-state matrix Ms ∈
Rd×L from the mask indicator matrix M ∈ {0, 1}d×L. To
achieve this, the mask indicator matrix is divided into patches
P , which are then passed through the FFN to learn the miss-
ing state matrix, where for the i-th patch, the missing state
ms,p

i = fFFN(m
p
i ). This learned missing state is then used in

the MPD module to provide a missing pattern of each patch
for further refinement.

For the second purpose, TSE first normalizes the incom-
plete time series using Z-score scaling. Specifically, for each
time series xi ∈ X with its corresponding mask vector
mi ∈ M, we calculate the mean µi and standard deviation
σi across the observed elements, i.e.,

µi =

∑L
j=1 xi,j ·mi,j∑L

j=1 mi,j

, σi2 =

∑L
j=1 (xi,j − µi)

2 ·mi,j∑L
j=1 mi,j

.

Then, for each observed value in xi, we subtract µi and di-
vide by σi. This normalization reduces variability, promoting
stable learning across the data. Note that a de-normalization
procedure is applied to the forecasted data to ensure that the
predicted time series are interpretable in relation to the his-
torical data. After normalization, we divide the time series
into non-overlapping patches ẍp

i ∈ RP×N , where each patch
corresponds to a subseries-level segment of the time series
[Nie et al., 2022]. Finally, we apply an Input Embedding
layer to project the time series embedding ẍp

i to xp
i , where

xp
i is mapped to the required dimensions for the subsequent

pre-trained model [Zhou et al., 2023b]. This embedding cap-
tures complex dependencies across time steps and is crucial
for facilitating the learning process in later modules.

MPD: Missing-state-aware patch dropping. The core
idea of the MPD is to perform dropping based on the miss-
ing states of the time series data. Unlike traditional dropout
methods, which apply a uniform dropping probability across
all data points, MPD introduces a random incomplete patch
dropping strategy. This strategy directly applies dropping to
incomplete time series patches, rather than individual time se-
ries values. Specifically, MPD drops incomplete time series
patches at a rate of δ, such that, on average, δ · P patches are
masked in each time series. Moreover, the dropping probabil-
ity δpi for each patch is dynamically determined based on its
missing rate γp

i , with patches that have a higher proportion
of missing data being more likely to be dropped due to the
significant noise they carry.

The dropping operation in MPD can be viewed as a patch-
sampling process. For each patch xp

i in the time series, an
independent mask αi is generated to determine whether the
patch will be preserved, following a Bernoulli distribution:

αi ∼ Bernoulli(1− δp), (1)

where δp is the dropping probability dynamically assigned
to each patch xp

i , based on its missing rate γp. Specifically,
the dropping probability δp for each patch is designed to be
positively correlated with its missing rate γp, such that:

δp = f(γp), f(γp) ∝ γp, (2)

where f(γp) is a function that increases with the patch’s miss-
ing rate, enabling an adaptive dropping strategy that effec-
tively addresses the challenges posed by patches containing
a high proportion of missing values. Subsequently, for each
patch xp

i and its corresponding missing state ms,p
i , the mask

αi is generated based on the Bernoulli distribution with the
dropping probability δp. Finally, the perturbed time series
matrix is obtained by performing element-wise multiplication
of each patch with its corresponding mask αi.

The effectiveness and theoretical advantages of the MPD
strategy are demonstrated through rigorous analysis. Specifi-
cally, Theorem 1 shows that the MPD strategy based on miss-
ing rates results in lower sample variance at the same dropout
rate, contributing to a more stable training process. There-
fore, the MPD strategy can serve as an additional regulariza-
tion term of INTER, thereby improving the model’s robust-
ness. The detailed proof can be found in Appendix C.
Theorem 1. Compared to two existing dropping strategies,
i,e, (i) a value-based dropping strategy, and (ii) a random
patch-dropping strategy based on uniform distribution, the
MPD strategy achieves a smaller sample variance on time
series with the same dropout rate.

MAT: Missing-aware Transformer. The MAT module
leverages an n-layer Transformer to process missing state-
aware patches and time series patches, capturing hidden tem-
poral patterns and producing a sequence of hidden represen-
tations {zi}Ni=1 that integrate both observed data and missing
state information.

First, the time series vector xp
i and the corresponding miss-

ing state ms,p
i are concatenated to form a combined repre-

sentation for each patch, i.e., zpi = concat(xp
i ,m

s,p
i ). This

embeds the missing state distribution into the time series
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patches, enriching the input representation with information
about both observed data and missing patterns.

Next, during the self-attention computation, patches
marked as dropped need to be excluded by masking their
attention scores. Therefore, we devise a missing-aware at-
tention with a new score-updating mechanism. Specifically,
given the attention score matrix A ∈ RN×N , the scores are
updated as follows:

Ai,j =

{
−∞ if i ∈ D or j ∈ D,

Ai,j otherwise,
(3)

where D is the dropped data. This ensures that dropped
patches do not influence the attention mechanism, focusing
the model only on valid patches.

Finally, the remaining patches are passed through the
Transformer, which performs missing-aware self-attention
and feedforward operations to generate the hidden represen-
tation for each patch, i.e., z̃pi = Transformer({zpj | j /∈ D}).
This enables the Transformer to aggregate temporal depen-
dencies across patches while incorporating missing state in-
formation into the learned representations. The MAT mod-
ule outputs the sequence of hidden representations Z̃p =

{z̃pi }
P−|D|
i=1 , where each vector effectively encodes both ob-

served time series data and missing state information, provid-
ing a robust foundation for downstream tasks.

4.3 ITSA: Incomplete Time Series Analysis
After the MPL module, INTER employs the incomplete time
series analysis (ITSA) module, which processes each patch
independently in a sequence-to-sequence framework. ITSA
leverages pre-trained parameters from NLP models, specifi-
cally GPT-2 [Radford et al., 2019], to enhance the represen-
tation of incomplete time series data.

Architecture. In ITSA, time series patches Z̃p from MPL
are treated as sequence tokens and passed through the pre-
trained language model (PLM). ITSA retains the PLM’s posi-
tional embeddings and self-attention blocks. As most knowl-
edge resides in the self-attention and FFN layers, these are
frozen during fine-tuning, allowing only final layers to adapt
and better capture temporal dependencies in time series data.

Specifically, the input to ITSA is a sequence of patches
Z̃p. The PLM processes this as: H = PLM(Z̃p), where
H ∈ RN×D is the output hidden representation and D is
the PLM hidden size. GPT-2 is used as the PLM in our
experiments. During fine-tuning, only the output layers are
updated, while self-attention and FFN remain frozen. The
output H captures complex temporal patterns from incom-
plete multivariate time series. ITSA is designed to leverage
PLM knowledge to model incomplete structures. Fine-tuning
on incomplete patches improves the model’s ability to learn
latent temporal dependencies, helping INTER better handle
missing values and uncover hidden patterns for downstream
tasks.

Objective. On top of PLM, ITSA applies a flatten layer
(FL) and a linear head (LH) to infer future time series: x̂T

i =
(x̂1

i , · · · , x̂d
i ) = FL(LH(H)). where H is the ITSA output.

Moreover, the ITSA module incorporates distinct objective
functions specifically designed for various tasks, including

forecasting (both long-term and short-term), anomaly detec-
tion, and imputation on incomplete time series data. Taking
the incomplete time series forecasting task as an example, the
ITSA module is designed to effectively learn the mapping be-
tween incomplete historical time series and future observa-
tions. To achieve this, we propose an incomplete time series
Mean Squared Error (MSE) loss function, defined as:

LMSE =
1

N

∑
X∈X

[∑d
i=1 ||

(
mT

i

)
⊙ (xT

i − x̂T
i )||22

||MT ||22

]
, (4)

where ⊙ is the element-wise multiplication. || · ||22 represents
the squared Euclidean norm, which is the sum of the squares
of the elements of a vector. xT

i is the ground-truth future data
of the time series xi ∈ X. mT

i in MT is the mask vector
w.r.t. xT

i . The incomplete time series forecasting loss func-
tion LMSE is designed to enforce the consistency between the
true underlying data distribution in incomplete future time se-
ries and output data distribution. It can be easily generalized
to other time series analysis tasks, e.g., the incomplete time
series classification, as described in Appendix D.

5 Experiment
In this section, we evaluate the performance of our proposed
model INTER on five tasks—long-term forecasting, short-
term forecasting, imputation, classification, and anomaly
detection—using 11 (in)complete multivariate time series
datasets. The performance is compared with a total of 8 state-
of-the-art time series analysis methods. All approaches were
implemented in Python. The experiments were conducted on
a server with an Intel Core 2.80GHz processor, 3 NVIDIA
A40 GPUs, and 192GB RAM, running Ubuntu 18.04.

5.1 Experiment Settings
Metrics. We evaluate the effectiveness of models in time se-
ries forecasting tasks using the mean square error (MSE) and
mean absolute error (MAE), where smaller metric values in-
dicate better prediction performance. For time series classi-
fication tasks, we use Accuracy as the evaluation metric to
measure model effectiveness. To evaluate the effectiveness
of forecasting models on incomplete multivariate time series
datasets, we randomly remove 50% of the observed values
prior to model training. Each metric value is obtained by av-
eraging the results of five experimental runs on each dataset.

Baselines. In the experiments, the baselines include six
state-of-the-art time series forecasting methods, including:
Informer [Zhou et al., 2021], PatchTST [Nie et al., 2022],
TimesNet [Wu et al., ], OneFitsAll [Zhou et al., 2023b],
Timer [Liu et al., 2024], and TriD-MAE [Zhang et al., 2023].
Since almost all the above baselines cannot be trained with
incomplete time series data, we employ five state-of-the-art
multivariate time series imputation methods, i.e., Zero [Che
et al., 2018], BRITS [Cao et al., 2018], TransI [Vaswani et
al., 2017], SAITS [Du et al., 2023], and CSDI [Tashiro et al.,
2021] to impute missing values.

5.2 Comparison Study
Overall, the proposed method, INTER, outperforms other
models across various tasks, including incomplete time series
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Models Electricity Weather Exchange Illness
MSE MAE MSE MAE MSE MAE MSE MAE

In
fo

rm
er Zero 0.352 ± 0.012 0.428 ± 0.009 0.463 ± 0.001 0.458 ± 0.012 0.524 ± 0.007 0.564 ± 0.003 5.706 ± 0.123 1.480 ± 0.051

BRITS 0.358 ± 0.006 0.434 ± 0.004 0.514 ± 0.007 0.480 ± 0.005 0.522 ± 0.005 0.576 ± 0.007 5.552 ± 0.456 1.591 ± 0.032
TransI 0.356 ± 0.015 0.432 ± 0.015 0.462 ± 0.014 0.444 ± 0.009 0.504 ± 0.009 0.570 ± 0.005 5.168 ± 0.789 1.510 ± 0.076
SAITS 0.352 ± 0.01 0.430 ± 0.007 0.510 ± 0.019 0.475 ± 0.016 0.549 ± 0.001 0.588 ± 0.009 5.706 ± 0.012 1.616 ± 0.091
CSDI \ \ \ \ 0.508 ± 0.006 0.570 ± 0.001 5.278 ± 0.345 1.532 ± 0.043

Pa
tc

hT
ST Zero 0.222 ± 0.018 0.320 ± 0.018 0.201 ± 0.015 0.279 ± 0.007 0.582 ± 0.008 0.580 ± 0.004 3.943 ± 0.678 1.402 ± 0.025

BRITS 0.201 ± 0.02 0.299 ± 0.012 0.146 ± 0.01 0.190 ± 0.014 0.143 ± 0.003 0.288 ± 0.008 2.729 ± 0.901 1.104 ± 0.087
TransI 0.207 ± 0.01 0.303 ± 0.016 0.163 ± 0.003 0.204 ± 0.018 0.362 ± 0.012 0.471 ± 0.006 3.024 ± 0.234 1.216 ± 0.036
SAITS 0.198 ± 0.018 0.296 ± 0.008 0.143 ± 0.012 0.181 ± 0.01 0.266 ± 0.004 0.367 ± 0.003 2.520 ± 0.567 1.052 ± 0.019
CSDI \ \ \ \ 0.05 ± 0.007 0.156 ± 0.002 8.191 ± 3.191 1.640 ± 0.057

Ti
m

es
N

et Zero 0.202 ± 0.014 0.311 ± 0.014 0.473 ± 0.004 0.480 ± 0.015 0.978 ± 0.004 0.753 ± 0.01 5.253 ± 0.135 1.620 ± 0.049
BRITS 0.175 ± 0.019 0.284 ± 0.019 0.144 ± 0.017 0.198 ± 0.017 0.194 ± 0.009 0.352 ± 0.007 3.949 ± 0.246 1.366 ± 0.067
TransI 0.183 ± 0.02 0.289 ± 0.002 0.159 ± 0.002 0.213 ± 0.004 0.408 ± 0.011 0.508 ± 0.004 4.436 ± 0.369 1.499 ± 0.008
SAITS 0.172 ± 0.012 0.282 ± 0.006 0.144 ± 0.009 0.196 ± 0.009 0.114 ± 0.005 0.263 ± 0.005 3.926 ± 0.789 1.354 ± 0.099
CSDI \ \ \ \ 0.061 ± 0.008 0.180 ± 0.001 7.140 ± 0.012 1.805 ± 0.027

O
ne

Fi
sA

ll Zero 0.267 ± 0.01 0.359 ± 0.011 0.277 ± 0.005 0.361 ± 0.001 0.720 ± 0.006 0.677 ± 0.009 5.009 ± 0.395 1.571 ± 0.041
BRITS 0.213 ± 0.017 0.301 ± 0.014 0.159 ± 0.016 0.206 ± 0.008 0.133 ± 0.003 0.291 ± 0.008 3.579 ± 0.678 1.421 ± 0.056
TransI 0.219 ± 0.012 0.305 ± 0.005 0.175 ± 0.007 0.217 ± 0.019 0.366 ± 0.007 0.487 ± 0.006 3.287 ± 0.901 1.308 ± 0.013
SAITS 0.21 ± 0.02 0.296 ± 0.019 0.159 ± 0.011 0.198 ± 0.006 0.083 ± 0.01 0.216 ± 0.003 4.328 ± 0.234 1.531 ± 0.078
CSDI \ \ \ \ 0.052 ± 0.001 0.161 ± 0.002 6.455 ± 0.567 1.638 ± 0.009

Ti
m

er

Zero 0.272 ± 0.016 0.378 ± 0.016 0.290 ± 0.019 0.411 ± 0.007 0.800 ± 0.004 0.737 ± 0.007 5.343 ± 0.89 1.720 ± 0.083
BRITS 0.186 ± 0.013 0.281 ± 0.007 0.179 ± 0.003 0.236 ± 0.014 0.173 ± 0.008 0.311 ± 0.001 3.549 ± 0.135 1.461 ± 0.045
TransI 0.193 ± 0.002 0.285 ± 0.003 0.215 ± 0.008 0.260 ± 0.018 0.386 ± 0.002 0.457 ± 0.005 3.337 ± 0.246 1.318 ± 0.015
SAITS 0.167 ± 0.016 0.267 ± 0.015 0.184 ± 0.015 0.212 ± 0.005 0.059 ± 0.006 0.188 ± 0.01 2.674 ± 0.369 1.091 ± 0.06
CSDI \ \ \ \ 0.053 ± 0.007 0.196 ± 0.012 4.288 ± 0.789 1.501 ± 0.031

TriD-MAE 0.311 ± 0.018 0.391 ± 0.004 0.233 ± 0.027 0.322 ± 0.091 1.388 ± 0.200 0.940 ± 0.009 8.290 ± 0.012 2.170 ± 0.092

INTER (Ours) 0.147 ± 0.01 0.250 ± 0.018 0.139 ± 0.017 0.192 ± 0.020 0.049 ± 0.003 0.158 ± 0.013 2.104 ± 0.345 0.984 ± 0.007

Table 1: Long-term forecasting performance comparison under different datasets

long-term and short-term forecasting, classification, anomaly
detection, and imputation. Due to space limitations, the ex-
perimental results for anomaly detection and imputation tasks
are presented in Appendix E.1. These results highlight the
effectiveness and robustness of the proposed INTER frame-
work in handling incomplete time series data.

In addition, we investigate the influence of different ele-
ments of INTER on the prediction performance over the in-
complete multivariate time series data, i.e., Ablation Study.
The detailed experimental results are described in Appendix
E.2. We can observe that, each component of INTER pos-
itively affects performance. Then, we study the Effect of
Missing Rate (i.e., how many features/values in multivari-
ate time series data are dropped) on the time series analysis
performance. The detailed experimental results are described
in Appendix E.3. One can observe that, INTER basically
achieves the best forecasting performance in each case.

Incomplete Long-term Time Series Forecasting
Setups. To fully evaluate model performance in forecasting,
we adopt two benchmark types: long-term and short-term.
For the long-term setting, we use four widely-used public
multivariate time series datasets: Electricity [Gasparin et al.,
2022], Weather [Zhou et al., 2021], Exchange [Zhang and
Berardi, 2001], and Illness [Zhou et al., 2021], covering four
real-world scenarios.

Results. Table 1 presents the experimental results of in-
complete time series forecasting methods. For Electricity and
Weather, results of CSDI-based baselines are unavailable (de-
noted as “\”) due to exceeding the 105-second time limit.

Models M4-Yearly M4-Monthly
SMAPE MASE SMAPE MASE

TimesNet Zero 18.523 7.512 17.421 2.980
SAITS 15.460 5.079 14.371 1.922

OneFitsAll Zero 17.531 7.015 17.283 4.965
SAITS 15.419 5.033 14.320 1.870

Timer Zero 18.586 7.180 17.491 5.046
SAITS 15.510 5.124 14.478 1.982

INTER (Ours) \ 15.322 4.913 14.106 1.790

Table 2: Short-term forecasting performance

This is caused by the much higher complexity of CSDI’s
score-based diffusion model compared to other imputation
methods.

It can be observed that INTER substantially outperforms
all baselines. In forecasting accuracy (MSE and MAE),
INTER surpasses the best imputation-based method (Timer
with SAITS) by 20.91% on average, reaching 24.46% on Ill-
ness in terms of MSE. Compared to TriD-MAE, which inte-
grates built-in imputation, INTER achieves an average im-
provement of 76.20% in MSE, demonstrating a significant
accuracy gain. This is attributed to INTER’s use of an ef-
fective analysis model that combines a missing-state-aware
dropping strategy with an incomplete forecasting loss, thus
boosting accuracy.

Visualization. Figure 3 visualizes forecasting results for the
top 4 features of a randomly selected sample from Exchange.
It clearly shows that INTER yields much better accuracy than
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Figure 3: Visualization of incomplete multivariate time series forecasting on Exchange

Models Impu. Physionet Heartbeat JapaneseVowels
Informer Zero 0.774 0.724 0.904

2021 BRITS 0.786 0.730 0.962
SAITS 0.803 0.735 0.962

PatchTST Zero 0.867 0.780 0.910
2022 BRITS 0.877 0.737 0.965

SAITS 0.875 0.780 0.964
Dlinear Zero 0.769 0.717 0.874
2023 BRITS 0.782 0.722 0.912

SAITS 0.797 0.727 0.929
TimesNet Zero 0.865 0.722 0.906

2023 BRITS 0.878 0.751 0.964
SAITS 0.874 0.756 0.963

OneFitsAll Zero 0.873 0.728 0.912
2023 BRITS 0.886 0.761 0.966

SAITS 0.882 0.757 0.965
Timer Zero 0.872 0.734 0.876
2024 BRITS 0.885 0.767 0.914

SAITS 0.881 0.763 0.931

TriD-MAE \ 0.776 0.723 0.856

INTER (Ours) \ 0.897 0.820 0.989

Table 3: Classification accuracy under different datasets

baselines, consistently being closest to the ground truth, fur-
ther confirming its strong forecasting ability on incomplete
multivariate time series.

Incomplete Short-term Time Series Forecasting
Setups. For the short-term setting, we adopt the M4 [Makri-
dakis, 2018] dataset and its representative subsets, including
yearly and monthly collected univariate marketing data. The
M4 dataset contains 100,000 time series at varying frequen-
cies. We adopt three baselines with strong performance on
this task: TimesNet, OneFitsAll, and Timer. For each impute-
then-analysis method, we use two representative imputation
algorithms, Zero and SAITS, to fill in the missing data.

Results. Table 2 presents the experimental results of mul-
tivariate time series analysis methods for the short-term fore-
casting task. It can be observed that INTER clearly outper-
forms all baselines, exceeding the best-performing method
(i.e., OneFitsAll with SAITS) by an average of 2.90%,
demonstrating its strong capability in short-term forecasting
tasks.

Incomplete Time Series Classification
Setups. We adopt sequence-level classification to verify the

model’s capacity for high-level representation learning. We
use three public real-world time series datasets: two represen-
tative multivariate datasets from the UEA Time Series Clas-
sification Archive [Bagnall et al., 2018] (i.e., Heartbeat and
JapaneseVowels), and one public medical dataset (i.e., Phys-
ionet) [Goldberger et al., 2000]. We pre-process the datasets
following the descriptions in [Zerveas et al., 2021], where
subsets vary in sequence length.

Results. Table 3 presents a comparative analysis of clas-
sification performance across the three datasets. INTER
achieves the best performance in all cases, surpassing the best
baseline, OneFitsAll with BRITS, by an average of 3.56%
in accuracy. Compared with the analysis method incorporat-
ing built-in imputation, TriD-MAE, INTER achieves an aver-
age improvement of 14.91% in accuracy. Moreover, INTER
demonstrates the most stable classification accuracy, further
validating its effectiveness.

6 Conclusion
In this paper, we propose INTER, a novel end-to-end frame-
work for incomplete multivariate time series analysis that by-
passes traditional imputation methods by leveraging PLM to
directly learn the distribution of incomplete time series data.
We further provide a theoretical analysis showing that the
MPD strategy in INTER achieves lower sample variance for
time series with the same dropout rate compared to alterna-
tive dropping strategies, demonstrating its statistical advan-
tage. Extensive experiments conducted on 11 publicly avail-
able real-world time series datasets show that INTER greatly
beats the state-of-the-art methods in effectiveness.
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