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Abstract
Cross-modal alignment is an effective approach to
improving visual classification. Existing studies
typically enforce a one-step mapping that uses deep
neural networks to project the visual features to
mimic the distribution of textual features. How-
ever, they typically face difficulties in finding such
a projection due to the two modalities in both the
distribution of class-wise samples and the range
of their feature values. To address this issue, this
paper proposes a novel Semantic-Space-Intervened
Diffusive Alignment method, termed SeDA, mod-
els a semantic space as a bridge in the visual-to-
textual projection, considering both types of fea-
tures share the same class-level information in clas-
sification. More importantly, a bi-stage diffusion
framework is developed to enable the progressive
alignment between the two modalities. Specifi-
cally, SeDA first employs a Diffusion-Controlled
Semantic Learner to model the semantic features
space of visual features by constraining the inter-
active features of the diffusion model and the cat-
egory centers of visual features. In the later stage
of SeDA, the Diffusion-Controlled Semantic Trans-
lator focuses on learning the distribution of tex-
tual features from the semantic space. Meanwhile,
the Progressive Feature Interaction Network intro-
duces stepwise feature interactions at each align-
ment step, progressively integrating textual infor-
mation into mapped features. Experimental results
show that SeDA achieves stronger cross-modal fea-
ture alignment, leading to superior performance
over existing methods across multiple scenarios.

1 Introduction
Cross-modal alignment aims to integrate information from
different modalities to capture semantic relationships within
complex data [Baltrušaitis et al., 2019; Dang et al., 2024b].
It utilizes more discriminative textual representations to
enhance visual classification, effectively mitigating biases
caused by the diversity of visual data, lighting conditions,

∗Corresponding author

Figure 1: Common feature alignment methods and the proposed
SeDA alignment framework. In (a), traditional feature alignment
processes fail to capture the underlying distribution of textual fea-
tures, resulting in persistent inter-class confusion. In (b), SeDA
employs a semantic-space-intervened diffusive alignment method,
transferring visual features to the textual features space step by step
through a bi-stage learning process.

and background noise [Dang et al., 2025; Dang et al., 2023;
Dang et al., 2024c]. Although cross-modal alignment gen-
erally outperforms single-modal learning, its effectiveness
can decline due to semantic ambiguities between modalities
[Meng et al., 2019; Dang et al., 2024a]. This is primarily
due to substantial differences in semantics, structures, or rep-
resentational forms across modalities, which pose significant
challenges for cross-modal alignment in handling high het-
erogeneity.

To alleviate modality heterogeneity, existing methods can
be broadly divided into two groups: distance metric-based
alignment methods and knowledge distillation-based align-
ment methods. The former approach uses techniques like
Maximum Mean Discrepancy (MMD) [Gretton et al., 2012],
Correlation Alignment (CORAL) [Sun et al., 2016], and the
Wasserstein Distance [Lee et al., 2019; Deng et al., 2025] to
explicitly minimize the differences in feature distributions or
representations between modalities [Fu et al., 2025]. The lat-
ter approach leverages [Huo et al., 2024; Aslam et al., 2023;
Xu et al., 2024] to transfer knowledge from the teacher
modality to the student modality, enabling different modal-
ities to generate similar feature representations. However,
as shown in Figure 1(a), due to the significant differences in
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class-wise sample distributions and feature value ranges be-
tween modalities, directly applying a one-step mapping often
fails to find an effective projection, failing to capture the un-
derlying distribution of textual features fully. Furthermore,
the complex relationships between modalities make it chal-
lenging for one-step alignment methods to adequately address
modality-specific distributions that are highly correlated with
each modality’s intrinsic discriminability. Consequently, se-
mantic ambiguity remains, leading to significant inter-class
confusion in the aligned features.

To address the above challenges, we propose a Semantic-
Space-Intervened Diffusive Alignment (SeDA) method, as
illustrated in Figure 1(b). SeDA leverages the Markov re-
verse process of diffusion models to smoothly learn distribu-
tions over multiple steps, focusing on the semantic consis-
tency of multimodal features. This approach alleviates the
semantic ambiguity caused by the heterogeneity of textual
and visual features, which arises from direct one-step map-
ping. SeDA consists of three key modules: the Diffusion-
controlled Semantic Learner (DSL), the Diffusion-controlled
Semantic Translator (DST), and the Progressive Feature In-
teraction Network (PFIN). Specifically, we propose a Bi-
stage optimization framework that models a modality-shared
semantic space as an intermediary to enable a three-stage pro-
jection: from visual space to semantic space and then to tex-
tual space. In the early stage of the diffusion process, the
DSL module progressively removes irrelevant low-level vi-
sual information by regularizing the distance between the fea-
tures learned from the PFIN module and the category cen-
ter of the original visual features, thereby modeling semantic
space from visual representations. In the later stage, the DST
module guides the transformation of semantic space to the
textual representation space by measuring the distributional
differences between semantic and textual features. Addition-
ally, the PFIN module designs a diffusion network based on
a cross-attention mechanism for multimodal feature fusion,
ensuring the gradual introduction of textual information into
mapped features through interaction at each diffusion step.
SeDA not only ensures similarity between the mapped fea-
ture distribution and the textual distribution but also consid-
ers modality-independent semantic information in both visual
and textual representations.

Extensive experiments are conducted on the general dataset
NUS-WIDE, the domain-specific dataset VIREO Food-172,
and the video dataset MSRVTT, including performance com-
parisons, ablation studies, in-depth analysis, and case studies.
The experimental results show that SeDA models a semantic
space as a bridge for the visual-to-textual projection, alleviat-
ing modality heterogeneity and achieving the transformation
from visual features to textual features. The contributions of
this paper are as follows:

• A novel framework SeDA is proposed to enable the
alignment between visual and textual features by mod-
eling a diffusion process. To the best of our knowledge,
SeDA is the first work to use diffusion models for cross-
modal alignment in classification.

• The developed diffusion process improves the visual-to-
textual feature projection by modeling a semantic space,

which may capture higher-level semantic relationships
between visual and textual representations, serving as an
“intermediary layer” that effectively reduces the hetero-
geneity between different modalities.

• SeDA is a model-agnostic framework that can integrate
into various visual backbones. It effectively learns the
underlying distribution of textual features, providing a
feasible approach for future research.

2 Related Work
2.1 Cross-Modal Alignment
Distance Metrics-based Alignment Methods focus on min-
imizing or maximizing metrics to bring data from different
modalities into a common feature or decision space. Com-
mon metrics include Euclidean distance, cosine similarity,
and covariance differences. For instance, Coral [Sun et al.,
2016] aligns source and target features by minimizing the
Frobenius norm of their feature differences. Deep Coral [Sun
and Saenko, 2016] extends this by incorporating decision-
level information and utilizing covariance matrices as a new
alignment metric. Similarly, CLIP [Radford et al., 2021],
ECRL [Wang et al., 2024], and TEAM [Xie et al., 2022] en-
hance cross-modal alignment by computing cosine similarity
between visual and textual representations, effectively bridg-
ing the gap between modalities in the shared space.
Knowledge Distillation-based Alignment Methods trans-
fer knowledge from one modality to another by employing
a pre-trained teacher model to guide a student model. This
ensures that both modalities generate similar representations
in a shared alignment space. For example, C2KD [Huo et al.,
2024] utilizes bidirectional distillation and dynamically filters
samples with misaligned soft labels to improve alignment.
MM-PKD [Aslam et al., 2023] employs a multimodal teacher
network to guide an unimodal student network through joint
cross-attention fusion. Furthermore, PKDOT [Aslam et al.,
2024] leverages entropy-regularized optimal transport to dis-
till structural knowledge, enhancing stability and robustness
in the multimodal distillation process.

2.2 Diffusion Models
Diffusion models are inspired by non-equilibrium thermo-
dynamics. DDPM [Ho et al., 2020] gradually adds noise
to the data distribution and trains a neural network to learn
the reverse diffusion process, thereby denoising images cor-
rupted by Gaussian noise. Most diffusion model studies fo-
cus on generative tasks, such as image generation [Wang et
al., 2023], 3D content generation [Li et al., 2024], and video
generation [Ho et al., 2022]. Recently, some work has applied
diffusion models to discriminative tasks [Yang et al., 2025].
For example, DiffusionDet [Chen et al., 2023] formulates ob-
ject detection as a diffusion denoising process, progressively
refining noisy bounding boxes into object boxes. Diffusion-
Ret [Jin et al., 2023] models the correlation between text and
video as their joint probability and approaches retrieval as a
gradual generation of this joint distribution from noise. Dif-
fuMask [Wu et al., 2023] uses text-guided cross-attention in-
formation to locate class- or word-specific regions, resulting
in semantic masks for synthesized images.
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Figure 2: Illustration of the proposed SeDA. SeDA takes visual-textual data pairs as input, which are processed by dedicated neural networks
for vision and text to extract global features xv and xs. The PFIN module progressively integrates textual information, while the DSL and
DST modules work together to align visual and textual features effectively.

3 Problem Formulation
The goal of this research is to improve the classification per-
formance of cross-modal alignment networks by leveraging
learning using privileged information (LUPI), where textual
data is available only during the training phase. The dataset
is composed of paired visual data V and textual data T ,
with the rare but informative textual data T serving as priv-
ileged information to enhance the representation of visual
data V . Specifically, the training set consists of N visual-
textual pairs DN = (v1, t1), (v2, t2), ..., (vn, tn), while the
test set contains only M visual samples DM = v1, v2, ..., vm.
A visual encoder Ev is employed to extract visual features
xv = Ev(V ), while a textual encoder Et processes the tex-
tual data to extract features xt = Et(T ). The extracted visual
and textual representations are aligned in subsequent mod-
ules. Finally, the aligned features are fed into a classifier to
produce the prediction Ĉ, with model performance evaluated
using specific metrics.

4 Method
This study proposes a Semantic-Space-Intervened Diffusive
Alignment method (SeDA), which utilizes a modality-shared
semantic space as an intermediary to enable the mapping
from visual representations to textual representations, thereby
effectively mitigating the heterogeneity between different
modalities, as shown in Figure 2. SeDA consists of three pri-
mary modules: the Progressive Feature Interaction Network
(PFIN), the Diffusion-controlled Semantic Learner (DSL),
and the Diffusion-controlled Semantic Translator (DST). The
DSL module operates in the early stage of the diffusion
model, learning modality-independent semantic space from
the original visual distribution. The DST module works in

the later stage, projecting the semantic space to the textual
features space. The PFIN module progressively introduces
textual information by redesigning the diffusion model’s net-
work structure. Details of these modules are described below.

4.1 Progressive Feature Interaction Network
(PFIN)

In the Progressive Feature Interaction Network module, we
use cross-attention mechanisms and multimodal feature fu-
sion to enable deep interaction between visual and textual in-
formation. This ensures effective integration and alignment
of visual and textual features, enhancing cross-modal repre-
sentation.

Unlike vanilla diffusion models [Ho et al., 2020], which
predict ϵ = ϵθ (xi, i) using a UNet, We design the Fea-
ture Interaction and Reconstruction Network to predict x̃r =
Xθ(x

i
s, i, xv) during the training phase of SeDA.

Specifically, given the visual features xv ∈ RB×dk and the
textual features xs ∈ RB×dk , where B represents the batch
size and dk denotes the feature dimension. In the forward
process, Gaussian noise is added step-by-step to the data xs,
following a Markov process with a predefined variance sched-
ule {βi}Ti=1:

q
(
xi
s | x0

s

)
= N

(
xi
s;
√
ᾱix

0
s, (1− ᾱi) I

)
(1)

where x0
s ∼ q(x), N (.) means a Gaussian distribution. αi =

1− βi and ᾱi =
∏i

j=0 αj ,
According to Equation 1, the noisy textual feature at step i

in the forward process is defined as xi
s =

√
ᾱixs+

√
1− ᾱiϵ,

where ϵ ∼ N (0, I) is the added Gaussian noise. As i → +∞,
xi
s undergoes a gradual convergence towards the standard

Gaussian distribution.
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The fused feature representation Ft is generated through
the cross-attention mechanism, and the process can be repre-
sented as:

Ft = softmax
(
QKT

√
dk

)
V (2)

where xi
s are used as the Query(Q), and the visual features xv

are used as the Key(K) and Value(V).
SinusoidalPosEmb(t) (sinusoidal position embedding

function) is used to embed the time step t, obtaining the time
feature vector et ∈ RB×dk :

et = ϕ(W2 · ϕ(W1 · SinusoidalPosEmb(t))) (3)

where W1 and W2 are weight matrices, and ϕ is the activa-
tion function.

Subsequently, we concatenate the output Ft from the at-
tention module with the encoded diffusion time feature et as
the input to the denoising decoder:

h0 = [Ft; et] (4)

The denoising decoder is a multi-layer perceptron (MLP),
which contains an intermediate layer with linear transforma-
tions and activation functions to encode the features, as well
as a linear layer to compute the output distribution.

4.2 Diffusion-Controlled Semantic Learner (DSL)
Due to the heterogeneity between the visual and textual
modalities, directly mapping from the visual modality to the
textual modality poses challenges. To address this, we pro-
pose a bi-stage alignment strategy. In this module, we first
map the visual features space to the semantic space by con-
straining the category centers of the visual features.

During this process, we construct the representation of x̃r

by calculating the structural consistency loss between the in-
teractive feature x̃r and the original input visual feature xv .

The center of the visual features for category c is denoted
as µc, and similarly, the center of the interactive features µc

can be computed as:

µc =
1

|xc
v|

∑
xv∈xc

v

xv, µ̂c =
1

|x̃c
r|

∑
x̃r∈x̃c

r

x̃r (5)

Next, the structural consistency loss is defined as:

LSC = ∥µ̂c − µc∥2 +
∑

xv∈xv
c ,x̃r∈x̃r

c

∥x̃r − xv∥1 (6)

where the first term ensures the constraint of the feature cen-
ters, and the second term measures the offset between fea-
tures.

Building upon cross-modal matching alignment, to en-
hance the model’s performance in downstream visual clas-
sification tasks, we introduce a constraint cross entropy LCE

that combines visual prediction results ŷ = softmax(x̂0
r)

with real labels y:

LCE = −
N∑
i=1

yi log(ŷi) (7)

The overall structural consistency constraint loss can be de-
fined as:

LSCC = α1LSC + βLCE (8)
where α1 and β are hyperparameters used to control the con-
tributions of the classification loss and others, respectively.

4.3 Diffusion-Controlled Semantic Translator
(DST)

In the later stage of the diffusion model, the DST module
focuses on learning the underlying distribution of textual fea-
tures while preserving semantic information. It facilitates the
transformation from the semantic space to the textual features
space.

To optimize the underlying data generation distribution,
which is typically achieved by minimizing the variational
lower bound (VLB) of the negative log-likelihood, We fol-
low the DDPM [Ho et al., 2020] setup and minimize the KL
divergence between the two distributions q(xi

r|xi−1
r , x0

r) and
pθ(x

i−1
r |xi

r):

Lvlb = DKL(q(x
i
r|xi−1

r , x0
r)||pθ(xi−1

r |xi
r)) (9)

To simplify the optimization process, we reformulate it into a
Mean-Squared Error (MSE) loss function as follows:

LMSE = Exs,xi
s,xv

[||xs −Xθ(x
i
s, i, xv)||2] (10)

Similar to the DSCC module, we introduce the cross-
entropy constraint to assist in the training of the DCT module:

LCT = α2LMSE + γLCE (11)
where α2 and γ are hyperparameters used to control the con-
tributions of the MSE loss and the classification loss, respec-
tively. The LCE has been given in Equation7.

Finally, the diffusion model training process for this bi-
stage can be expressed as follows:

L =
T∑

i=0

{
α1LSC + βLCE, if i ≤ t,

α2LMSE + γLCE, if i > t.
(12)

where T represents the diffusion model time step and t repre-
sents the staged step.

4.4 Inference Phase of SeDA
In the inference process, the goal is to iteratively reconstruct
the original data by optimizing the likelihood pθ(x

0
r). The

reverse process is defined by:

pθ
(
xi−1
r | xi

r

)
= N

(
xi−1
r ;µθ

(
xi
r, x̃r

)
, β̃iI

)
(13)

where µθ is the predicted mean, and β̃i = 1−ᾱi−1

1−ᾱi
βi is the

variance term.
According to [Song et al., 2020], µθ can be calculated us-

ing the predicted feature x̃r from the FIRN module:

µθ(x
i
r, x̃r) =

√
ᾱi−1βt

1− ᾱi
x̃r +

√
αi(1− ᾱi−1)

1− ᾱi
xi
r (14)

By performing a step-by-step reverse denoising operation:

x̂T
r

pθ(x̂
T−1
r |x̂T

r )−−−−−−−−→ x̂T−1
r

...−→ x̂1
r

pθ(x̂
0
r|x̂

1
r)−−−−−−→ x̂0

r (15)
the aligned feature x̂0

r is finally obtained.
Subsequently, the aligned feature x̂0

r is fed into a fully con-
nected classifier to compute the predicted logits for the final
classification.
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Method Model VIREO Food-172 NUS-WIDE MSRVTT
Acc-1 Acc-5 Pre-1 Pre-5 Rec-1 Rec-5 Acc-1 Acc-5

Visual
Modal

Backbone

ResNet-50 (CVPR’16) 81.58 95.02 78.56 39.12 44.04 86.42 51.37 79.03
RepVGG (CVPR’21) 83.47 96.03 79.71 39.44 44.82 85.58 50.96 77.12

RepMLPNet (CVPR’22) 83.36 96.22 80.10 40.53 44.82 87.69 51.07 77.16
ViT-B/16 (ICLR’20) 85.37 97.29 80.46 40.57 45.50 87.96 53.25 81.85
VanillaNet (NIPS’24) 84.51 96.04 80.12 39.46 45.65 85.73 52.47 80.02

Alignment
Framework

ATNet (MM’19) 85.67 96.81 80.78 39.89 45.59 86.55 54.45 82.68
CLIP (PMLR’21) 85.56 96.98 81.64 40.87 46.25 88.78 52.89 81.66
TEAM (MM’22) 87.70 97.85 81.98 40.80 46.48 88.54 55.08 84.12
ITA (CVPR’22) 87.82 97.89 82.65 41.40 46.99 89.13 55.05 84.05

SDM (CVPR’23) 87.63 97.78 82.64 41.20 47.03 89.31 54.82 84.28
MM-PKD (CVPR’23) 87.89 96.96 81.76 41.31 47.24 89.11 54.77 82.45

C2KD (CVPR’24) 87.83 98.06 82.77 41.25 47.20 89.35 55.15 82.21
MGCC (AAAI’24) 87.80 97.87 82.09 41.05 46.69 89.14 54.88 83.67
MoMKE (MM’24) 87.97 97.09 81.72 41.11 46.50 89.14 54.57 82.72

SeDARN50 86.01 96.97 81.60 40.52 46.25 87.96 54.68 81.84
SeDAV iT16 89.19 98.07 83.46 41.60 47.72 90.21 57.09 83.91

Table 1: Performance comparison of algorithms on VIREO Food-172, NUS-WIDE and MSRVTT datasets. Metrics are Top-1/Top-5 Accuracy
(Acc), Precision (Pre), and Recall (Rec). The best performance of each indicator has been highlighted in bold

5 Experiment
5.1 Experiment Setting
Datasets
To assess the effectiveness and generality of SeDA, we con-
ducted experiments on image and video classification tasks
across three datasets. Details are provided below.

• VIREO Food-172[Chen and Ngo, 2016]: A single-
label dataset with 110,241 food images in 172 categories
and an average of three text descriptions per image. It
includes 66,071 training and 33,154 test images.

• NUS-WIDE[Chua et al., 2009]: A multi-label dataset
of 203,598 images (after filtering) in 81 categories,
with textual tags from a 1000-word vocabulary. It has
121,962 training and 81,636 test images.

• MSRVTT[Xu et al., 2016]: A video dataset with 10,000
YouTube clips and 200,000 captions. We used 7,010
videos for training and 2,990 for testing.

Evaluation Metric
For the VIREO Food-172 and MSRVTT datasets of the
single-class prediction task, we use the accuracy of Top-1 and
-5 following [Meng et al., 2019]. For the multi-label dataset
NUS-WIDE, we calculate Top-1 and -5 overall precision and
recall following [Wang et al., 2017; Gong et al., 2013].

Implementation Details
In this experiment, we chose Adam as the optimizer for the
model, with a weight decay of 1e-4. The learning rate for all
neural networks was set between 1e-4 and 5e-5. The learning
rate decayed to half of its original value every four training
epochs. For the loss weights mentioned in the training strat-
egy, we selected α1 and α2 between 0.1 and 2.0, the time
step T between 900 and 1500, the staged step t between 0

and 500, while β and γ were chosen from [0.5, 1.0, 1.5, 2.0].
Our experiments were conducted on a single NVIDIA Tesla
V100 GPU, using PyTorch 1.10.2, and the batch size is 64.

5.2 Performance Comparison
We conducted a comprehensive comparison involving 5 vi-
sual modal backbones and 9 alignment frameworks, with re-
sults summarized in Table 1. The visual modal backbones
were implemented based on the methods outlined in their
respective papers, including ResNet-50 [He et al., 2016],
RepVGG [Ding et al., 2021], RepMLPNet [Ding et al.,
2022], ViT-B/16 [Dosovitskiy et al., 2020], and VanillaNet
[Chen et al., 2024]. For the alignment framework, ViT-B/16
was used to encode the visual channel, while BERT [Devlin,
2018] was employed for the textual channel. In addition, we
validated the effectiveness of our method on ResNet-50. The
cross-modal alignment methods were adapted from their orig-
inal designs to fit the LUPI task, including ATNet [Meng et
al., 2019], CLIP [Radford et al., 2021], TEAM [Xie et al.,
2022], ITA [Wang et al., 2022], SDM [Jiang and Ye, 2023],
MM-PKD [Aslam et al., 2023], C2KD [Huo et al., 2024],
MGCC [Wu et al., 2024], and MoMKE [Xu et al., 2024]. A
fully connected single-layer network served as the classifier.

• The proposed method, SeDA, outperforms other al-
gorithms across three datasets. This is attributed to
our method’s ability to learn the underlying distribution
of textual features, helping alleviate semantic confusion
between categories.

• SeDA is a general framework that can combine var-
ious visual backbones, such as ViT-B/16 and ResNet-
50, to bring them performance gains, which showcases
its model-agnostic capability.

• Models in the Alignment Framework generally out-
perform the Visual Modal Backbone. This can be at-
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Method VIREO Food-172 NUS-WIDE
Acc-1 Acc-5 Pre-1 Pre-5 Rec-1 Rec-5

Base 85.37 97.29 80.46 40.57 45.50 87.96
+T 88.70 96.93 82.63 41.23 47.19 89.37

+T+I 89.12 97.01 82.74 41.20 47.26 89.48
+T+I+L 89.19 98.07 83.46 41.60 47.72 90.21

Table 2: Results of ablation study. The evaluation indexes are the
same as those in Table 1. The best performance is marked in bold.

tributed to the incorporation of more discriminative tex-
tual information, which effectively optimizes the visual
representation.

• SeDA shows a more significant improvement in Top-
1 accuracy than in Top-5. This is mainly because it
focuses on learning the distribution of textual features,
aiming to accurately provide the most discriminative
first label rather than focusing on improving the preci-
sion in retrieval ranking.

5.3 Ablation Study
This section examines the performance of different modules
based on ViT-B/16 in SeDA, with the results presented in Ta-
ble 2.

• On the VIREO Food-172 dataset, Diffusion-
controlled Semantic Translator (+T) module played
a key role in improving Acc-1, achieving a 3.7%
increase compared to the baseline method. However,
there was a slight decrease in Acc-5.

• Adding the Progressive Feature Interaction Net-
work (+I) module led to improvements across both
datasets. This indicates that it (+I) further enhances fea-
ture interaction capabilities.

• Diffusion-controlled Semantic Learner (+L) module
ensured a certain improvement in the Top-1 met-
ric while achieving a more significant enhancement
in the Top-5 metric. Notably, on the NUS-WIDE
dataset, Rec-5 improved by 2.6% compared to the base-
line method.

5.4 In-depth Analysis
Robustness of SeDA on Hyperparameters
This section evaluates the robustness of SeDA in differ-
ent hyperparameters. We select the weight parameter
γ, time step T and stages step t from {0.5,1.0,1.5,2.0},
{900,1200,1500,1800} and {0,300,500}. SeDA is largely
insensitive to changes in hyperparameters, demonstrating
strong robustness in hyperparameter selection. For γ, the
model performs best when γ = 1.5 This is because lower γ
values tend to rely overly on specific features at the expense
of class-level information, whereas higher γ values place ex-
cessive emphasis on class information, disrupting the learn-
ing of the feature distribution space. Furthermore, the model
achieves its best performance when the diffusion model time
step T is set to 1500, as smaller T fails to fully learn use-
ful information for transferring the visual modality to the text

Figure 3: The impact of hyperparameters on performance. The
weight parameter γ, the time step T and the staged step t are
turned from {0.5,1.0,1.5,2.0}, {900,1200,1500,1800}, {0,300,500}
on VIREO Food-172, respectively.

modality, while larger T may introduce additional noise. No-
tably, two-stage learning is beneficial, but excessively long
staged step t in the second stage may damage the struc-
tural information of the original features, leading to a
slight drop in performance.

The Effect of Different Methods in Each Module
To further investigate the impact of different methods in the
DSL, DST, and PFIN modules on model performance, we
used ViT-B/16 as the baseline and conducted experiments on
the VIREO Food-172 dataset, as shown in Tabel 3. Four as-
pects were analyzed: training strategies, diffusion model net-
work structures, modal interaction methods, and stage train-
ing methods. Fixing text features limits flexibility, while joint
optimization improves cross-modal understanding. UNet is
better suited for pixel-level learning, while MLP, which out-
performs UNet, is more effective for feature-level optimiza-
tion. Cross Attention proved superior for modal interaction,
effectively capturing correlations. Bi-stage framework effec-
tively integrates semantic information from visual and text
features, enhancing alignment and classification capabilities.

5.5 Case Study

Performance of Visual to Textual Feature Distribution
Transformation
We randomly selected a category to compare the textual and
visual features of the ViT-B/16, features aligned using tra-
ditional L2-norm alignment (as shown in Figure 4(a)), and
features reconstructed by our method during the diffusion
model sampling process across different time steps (Figure 4
(b)). The feature distribution produced by traditional align-
ment methods demonstrates minimal changes, with signif-
icant discrepancies still evident between the aligned visual
and textual features. This suggests that traditional methods
fail to bridge the gap between the two modalities fully. In
contrast, the features reconstructed using our method initially
capture the semantic characteristics of visual features, grad-
ually moving toward textual features as the sampling process
progresses. This dynamic migration process ensures that vi-
sual features are effectively transformed into a semantic space
consistent with textual features. Furthermore, our method not
only achieves accurate mapping between the two modalities
but also enhances the expressiveness of the textual features
by preserving and utilizing semantic information.
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Strategy Method Acc-1 Acc-5
Base ViT-B/16 85.37 97.29

Different
Training Strategies

Freezing the visual and the textual backbone model 87.27 93.45
Training the visual backbone, freezing the textual backbone 88.67 94.84

Training the visual and the textual backbone model 88.70 96.93
Different Diffusion Model

Network Structures
Using UNet as the diffusion model network 86.98 92.22
Using MLP as the diffusion model network 87.27 93.45

Different Modal
Interaction Methods

Using Concat for modal interaction 88.70 96.93
Using Self Attention for modal interaction 88.21 96.46

Using Multimodal Transformer for modal interaction 87.62 95.44
Using Cross Attention for modal interaction 89.12 97.01

Different Stage
Training Methods

Using a single-stage method with only the DSL module 88.97 98.13
Using a single-stage method with only the DST module 89.12 97.01

Bi-stage method with DSL module first and DST module second 89.19 98.07

Table 3: Results from the combined experiment using different strategies and constraint functions on the VIREO Food-172 dataset.

Figure 4: T-SNE visualization of data distribution before and after
alignment for a randomly selected category.

Effectiveness of Semantic Disambiguation
We selected five categories with severe confusion in the Base-
line model, as shown in Figure 5(a). The corresponding con-
fusion matrix for SeDA is shown in Figure 5(b). The results
clearly demonstrate that confusion between semantically sim-
ilar categories is significantly reduced, leading to an effec-
tive improvement in classification performance. Additionally,
Figure 5(c) presents a detailed analysis of the prediction re-
sults for specific samples. For example, in the case of the
”deep fried chicken wings” sample, the model accurately pre-
dicted the correct category with high confidence after incor-
porating textual information. This indicates that our method
effectively leverages semantic-related information to enhance
the distinction between easily confused categories. On the
other hand, for samples with substantial background noise
(e.g., ”Braised beef with brown sauce”), the Baseline model
tends to misclassify them into irrelevant categories such as
”noodles” or ”garlic” due to noise factors like ”chopsticks”
and ”onion” in the original image. However, SeDA suc-
cessfully extracts critical features, accurately narrowing the
predicted category to the semantic domain related to ”beef,”

Figure 5: Comparison of ViT-B/16 and SeDA on confusion ma-
trix and randomly selected samples with Top-5 confidence scores.
Red boxes represent baseline results, green boxes represent SeDA
results, and ground-truth labels are highlighted in bold.

thereby significantly mitigating classification errors caused
by semantic ambiguity.

6 Conclusion
To address the heterogeneity between modalities, this pa-
per transfers the multi-step denoising process of diffusion
models to the cross-modal alignment of visual representa-
tions, proposing a semantic-space-intervened diffusive align-
ment method (SeDA). Using semantic space as an interme-
diary, a bi-stage diffusion model alignment is designed: the
DSL module first captures the semantic information of vi-
sual features, and the DST module gradually translates se-
mantic features to textual features. This method effectively
projects from visual representations to textual representa-
tions. Despite SeDA alleviating the heterogeneity between
different modalities, there remains room for improvement in
fine-grained alignment. Future work will explore fine-grained
modeling with diffusion to further improve alignment accu-
racy, especially in complex scenarios and datasets.
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