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Abstract
Recent advancements have focused on directly
training high-performance spiking neural networks
(SNNs) by estimating the approximate gradients
of spiking activity through a continuous function
with constant sharpness, known as surrogate gra-
dient (SG) learning. However, as spikes propagate
within neurons and among layers, the distribution
of membrane potential dynamics (MPD) will de-
viate from the gradient-available interval of fixed
SG, hindering SNNs from searching the optimal
solution space. To maintain the stability of gradi-
ent flows, SG needs to align with evolving MPD.
Here, we propose a novel adaptive gradient learn-
ing for SNNs by exploiting MPD, namely MPD-
AGL. It fully accounts for the underlying factors
contributing to membrane potential shifts and es-
tablishes a dynamic association between SG and
MPD at different timesteps to relax gradient esti-
mation, which provides a new degree of freedom
for SG learning. Experimental results demonstrate
that our method achieves excellent performance at
low latency. Moreover, it increases the proportion
of neurons that fall into the gradient-available in-
terval compared to fixed SG, effectively mitigating
the gradient vanishing problem. Code is available
at https://github.com/jqjiang1999/MPD-AGL.

1 Introduction
As a new paradigm with biological plausibility and compu-
tational efficiency, spiking neural networks (SNNs) achieve
unique sparse coding and asynchronous information pro-
cessing by modeling the spike firing and temporal dy-
namics of biological neurons. Instead of artificial neu-
ral networks (ANNs) that work with continuous activa-
tion and multiply-and-accumulate (MAC) operations, SNNs
operate with threshold firing and accumulate (AC) oper-
ations, which allow low-latency inference and low-power
computation on neuromorphic hardware [Pei et al., 2019;
Ma et al., 2024]. Nowadays, with the development of
SNNs, it has exhibited high potential in many applications,

∗Corresponding author

such as event-based image classification [Yang et al., 2024;
Liang et al., 2024], object detection [Wang et al., 2025c;
Wang et al., 2025b], reinforcement learning [Qin et al., 2023;
Qin et al., 2025], etc. Backpropagation-based learning is a
favorable methodology for training high-performance SNNs
[Huh and Sejnowski, 2018; Dampfhoffer et al., 2024]. Nev-
ertheless, the discontinuous nature of spiking neurons hinders
the direct application of gradient descent in SNNs. To tackle
the non-differentiability of spike activity, surrogate gradient
(SG) methods employ a smooth curve to distribute the gradi-
ent of output signals into a group of analog items in tempo-
ral neighbors [Zhang and Li, 2020]. Unfortunately, as spikes
propagate in the spatio-temporal domain (STD), the distribu-
tion of membrane potential will shift and may not align with
the gradient-available interval of fixed SG, leading to gradient
vanishing or mismatch problems [Guo et al., 2022c].

In Fig. 1, the main reason for gradient vanishing or mis-
match problems is that the overlap area between the evolv-
ing membrane potential dynamics (MPD) and the gradient-
available interval of fixed SG becomes too narrow or too
wide. On the one hand, the limited overlap area causes many
membrane potentials to fall into the area with zero approx-
imate derivatives, leading to gradient propagation blockage.
On the other hand, when the overlap area saturates, neurons
contribute many inaccurate approximate gradients, enlarging
the error with true gradients. To match SG and MPD, two
groups of methods have been developed: (1) membrane po-
tential regulation and (2) SG optimization. Membrane poten-
tial regulation methods redistribute the membrane potential
before firing [Guo et al., 2022b] or define a distribution loss
to rectify it [Guo et al., 2022c; Wang et al., 2025a], aiming to
balance the distribution to minimize the undesired shifts, but
this increases the inference burden or requires more parame-
ters and computations. By contrast, SG optimization methods
update the SG by capturing the direction of accurate gradients
that can automatically calibrate the SG sharpness in response
to MPD for better gradient estimation [Guo et al., 2022a;
Wang et al., 2023; Wang et al., 2025a]. However, most of
these methods either focus only on regulating membrane po-
tentials or only on optimizing SG, ignoring their correlation,
which cannot effectively control their alignment across the
entire timestep. Moreover, the lack of comprehensive analy-
sis regarding the causes of membrane potential shifts leaves
room for improvement in these methods.
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Figure 1: The overall framework of MPD-AGL. Pre-spikes are passed through the convolutional and normalization layers and then injected
into spiking neurons to compute membrane potentials and fire spikes. The distribution of evolving MPD in forward propagation may not align
with the fixed SG, leading to gradient vanishing or mismatch problems in backward propagation. Instead, the proposed adaptive gradient rule
can synchronously adjust the width of SG to respond to evolving MPD during the entire timestep.

The reason for the membrane potential shifts and how to
optimize SG to align with the evolving MPD in SNN learning
are our main concerns. In this work, we propose an adaptive
gradient learning algorithm for SNNs by exploiting MPD.
Specifically, we realized that the affine transformation in nor-
malization layers would force the pre-synaptic input to devi-
ate from the desired distribution, affecting the distribution of
MPD, which is the main cause of membrane potential shifts.
Considering the influence of affine transformation, we derive
the specific distribution of MPD at different timesteps dur-
ing forward propagation and accordingly design a correlation
function between SG and MPD to dynamically optimize SG,
capturing the evolving MPD. The overall framework of our
method is illustrated in Fig. 1. In summary, the main contri-
butions of this work can be summarized as follows:

• We provide a new perspective for understanding the
membrane potential shifts in SNN forward propagation
by analyzing the effect of learnable affine transformation
in the normalization layers on the distribution of MPD.

• We propose an adaptive gradient rule that synchronously
adjusts the gradient-available interval of SG in response
to the distribution of membrane potentials at different
timesteps, aligning with the evolving MPD.

• Extensive experiments on four datasets CIFAR10, CI-
FAR100, CIFAR10-DVS, and Tiny-ImageNet show that
our method overwhelmingly outperforms existing ad-
vanced SG optimization methods. Moreover, MPD-
AGL consumes only 5.2% energy of ANN for a single
inference at ultra-low latency T = 2.

2 Related Work
2.1 Direct Training of SNNs
With the introduction of spatio-temporal backpropagation
and approximate derivatives of spike activity [Wu et al., 2018;
Wu et al., 2019], direct training of SNNs has ushered in a new

opportunity. [Fang et al., 2021a; Hu et al., 2025] modified
the basic spiking ResNet to achieve identity mapping, effec-
tively mitigating the degradation problem of directly train-
ing SNNs and achieving very deep SNNs. [Yao et al., 2023;
Lee et al., 2025] incorporated the attention mechanism to es-
timate the saliency of different domains, helping SNNs focus
on important features. [Fang et al., 2021b; Yao et al., 2022]
developed neuronal variants to learn membrane parameters,
expanding the expressiveness of SNNs. [Deng et al., 2022;
Guo et al., 2022a] designed loss functions to regulate the dis-
tribution of spikes and membrane potentials along the tempo-
ral dimension to more accurately align the learning gradients.

2.2 Gradient Alignment
An essential component of SG learning is the suitable gra-
dient flow [Zenke and Vogels, 2021]. To alleviate the prob-
lem of fixed SG not aligned with evolving MPD, [Guo et al.,
2022b] designed a membrane potential rectifier to redistribute
potentials closer to the spikes. [Guo et al., 2022c] introduced
three regularization losses to penalize three undesired shifts
of MPD. [Wang et al., 2025a] quantified the inconsistency
between actual distributions and targets, which was integrated
into the overall network loss for joint optimization. Optimiz-
ing SG is another appealing approach. [Guo et al., 2022a]
approximated the gradient of spike activity by a differentiable
asymptotic function evolving continuously, bridging the gap
between pseudo and natural derivatives. [Che et al., 2022]
proposed a differentiable gradient search for parallel opti-
mization of local SG. [Lian et al., 2023] proposed a learn-
able SG to unlock the width limitation of SG. [Wang et al.,
2023] learned the accurate gradients of loss landscapes adap-
tively by fusing the learnable relaxation degree into a proto-
type network with random spike noise. [Wang et al., 2025a]
proposed a parametric SG strategy that can be iteratively up-
dated. Considering the lack of synergy between these meth-
ods in matching SG and MPD, this motivates us to explore
their correlations to maximize matching optimization.
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3 Preliminary
3.1 Spiking Neural Model
Based on the essential electrophysiological properties of bio-
logical neurons, the leaky integrate-and-fire (LIF) model sim-
ulates the electrical activity of neurons in a simplified math-
ematical form, widely used in SNNs as the basis unit. For
computational tractability, [Wu et al., 2019] used the Euler
formula to translate LIF into an iterative expression, the mem-
brane potential evolves according to

Ini (t) =

l(n−1)∑
j=1

wn
ijS

n−1
j (t), (1)

V n
i (t) = τV n

i (t− 1)(1− Sn
i (t− 1)) + Ini (t), (2)

Sn
i (t) = Θ(V n

i (t)) =

{
1, V n

i (t) ≥ Vth

0, otherwise
(3)

where the superscript n, subscripts i and t denote the n-th
layer, the i-th neuron and the t-th timestep, respectively. l(n−
1) denotes the number of neurons in the (n − 1)-th layer.
wn

ij denotes the synapse weight from the j-th neuron in the
(n− 1)-th layer to the i-th neuron in the n-th layer. I , V , and
S denote the pre-synaptic input, the membrane potential, and
the binary spiking output of neurons, respectively. τ is the
decay factor. Vth is the firing threshold.

3.2 Surrogate Gradient of SNNs
In Eq. 3, the activation function Θ(·) of SNNs is a Heavi-
side step function. The derivative of output signals ∂S

∂V tends
to infinity at the firing threshold Vth and zeros otherwise, i.e.
Dirac function. SG learning allows gradient information to be
backpropagated layer-wise along STD, which lays the foun-
dation for developing general SNNs. In this work, we employ
the rectangular SG [Wu et al., 2018], which is defined as

∂Sn
i (t)

∂V n
i (t)

na ≈ h(V n
i (t)) =

1

κ
sign(|V n

i (t)−Vth| <
κ

2
), (4)

where hyperparameter κ controls the width of h(·) to ensure
it integrates to 1, normally set to 1 [Wu et al., 2018; Wu et
al., 2019]. The gradient 1

κ is available when the membrane
potential V n

i (t) falls within the interval [Vth − κ
2 , Vth + κ

2 ].

3.3 Threshold-dependent Batch Normalization
There are some drawbacks to directly applying BN tech-
niques in SNNs due to the inherent temporal dynamics of
spiking neurons [Wu et al., 2019]. To retain the advantages
of BN in the channel dimension and capture the temporal di-
mension of SNN, [Zheng et al., 2021] proposed threshold-
dependent BN (tdBN), which normalized the pre-synaptic in-
put I to the distribution of N(0, (αVth)

2) instead of N(0, 1).
Let Itc represent the c-th channel feature maps of I(t), then
Ic = (I1c , I

2
c , ..., I

T
c ) will be normalized as

Îc =
αVth(Ic − E[Ic])√

VAR[Ic] + ϵ
, // normalize (5)

Īc = γcÎc + βc, // scale and shift (6)

where E[Ic] and VAR[Ic] denote the expectation and vari-
ance of Ic, which are computed over the Mini-Batch. ϵ is a
tiny constant. The hyperparameter α is to prevent overfire or
underfire, normally set to 1 [Zheng et al., 2021]. The pair
of learnable parameters γc and βc are initial to 1 and 0, for
scaling and shifting the normalized Îc.

4 Method
In this section, we introduce the MPD-AGL algorithm in de-
tail and the overall training procedure.

4.1 Rethinking Pre-synaptic Input Distribution
To maintain the representation capacity of the layer, BN lay-
ers will normally perform a learnable affine transformation of
the normalized pre-activations (Eq. 6). As shown in Fig. 2,
the learnable parameters γc and βc will evolve, and their dis-
crepancy grows more pronounced during training. Thus, the
pre-synaptic input normalized by tdBN [Zheng et al., 2021]
may not satisfy I ≁ N(0, (Vth)

2), which has not been con-
sidered in many previous studies. When SG uses the fixed
gradient-available interval, unpredictable shifts in the mem-
brane potential will naturally deviate from the optimal areas
for gradient matching, resulting in performance limitations.
As the membrane potential is directly computed from the pre-
synaptic input, clarifying the distribution of pre-synaptic in-
put helps to analyze the membrane potential shifts. For this
respect, we propose Theorem 1 to rethink the specific distri-
bution of pre-synaptic input.
Theorem 1. With the iterative LIF model and tdBN method,
assuming normalized pre-synaptic input I ∼ N(0, (Vth)

2),
we have Ī ∼ N(β̄, (γ̄Vth)

2) after affine transformation,
where β̄ = 1

C

∑C
c=1 βc and γ̄ = 1

C

∑C
c=1 γc, C is the chan-

nel size of tdBN layer.

Proof. The proof of Theorem 1 is presented in Supplemen-
tary A of the Extended version1.

Theorem 1 proves that the distribution of pre-synaptic in-
put normalized by tdBN is not only governed by threshold
Vth, but also by the parameters γc and βc of affine transfor-
mations. As the foundation of our work, it provides a new
insight into the distribution of pre-synaptic input.

4.2 Adaptive Gradient Rule
To optimize SNN learning, we need to synchronously modify
the gradient-available interval of SG to better align with the
evolving MPD. Thus, it is essential to analyze the detailed
dynamics of membrane potentials. [Zheng et al., 2021] de-
rived a high degree of similarity between the distribution of
pre-synaptic input and membrane potential in neurons. [Lian
et al., 2023] extended this reasoning that for a given pre-
synaptic input I ∼ N(0, (Vth)

2), then the distribution of
membrane potential is only determined by decay factor τ and
satisfies V ∼ N(0, (1 + τ2)(Vth)

2). Based on the analysis
in Section 4.1, it is known that the pre-synaptic input will de-
viate from the desired distribution after tdBN normalization.
To this end, we further propose Theorem 2 to express the re-
lation between the pre-synaptic input, the decay factor, and
the membrane potential at different timesteps.
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Figure 2: The affine transformation of tdBN in an 8-layer vanilla
SNN. Top line is the variation curves of parameters γ and β for the
average of all channels in each layer. Bottom line is the variation
curves of parameters γ and β for all channels in the first layer.

Theorem 2. Consider an SNN with T timesteps, the pre-
synaptic input of neurons injected into the tdBN layer
with affine transformation is normalized to satisfy Ī ∼
N(β̄, (γ̄Vth)

2), we have the membrane potential V̄ ∼
N(β̄, (γ̄Vth)

2) when t = 1, and V̄ ∼ N((1 + τ)β̄, (1 +
τ2)(γ̄Vth)

2) when t > 1, where t ∈ T .

Proof. The proof of Theorem 2 is also presented in Supple-
mentary A of the Extended version1.

Theorem 2 describes the dynamic distribution of mem-
brane potential at different timesteps. [Lian et al., 2023] ob-
served a correlation between SG width κ and neuron decay
factor τ and manually designed a proportional function (e.g.
κ = f(τ)) to describe it. As the decay factor also affects the
membrane potential (Eq. 2), the proportional function can
link SG width to MPD. From that view, we can avoid gradi-
ent information loss or redundancy by dynamically adjusting
the SG width to control the alignment between the gradient-
available interval and the evolving MPD. Then, we will con-
centrate on how to design the correlation function.

For a well-formed f(·), the key is to control the propor-
tion of MPD in SG within a reasonable level. The variance
reflects the dispersion of a distribution. An increase in vari-
ance indicates a more dispersed MPD, so the width needs to
be enlarged to increase the proportion of neurons in SG to
avoid gradient information loss. Conversely, a decrease in
variance requires narrowing the width to reduce the propor-
tion. Thus, a positive correlation arises between SG width
and MPD. Here, we empirically set κ as 2 times the square
root of VAR when Vth = 0.5 in our work, which ensures the
initial width satisfies the standard rectangular SG setting (i.e.
k ≈ 1). Moreover, as PLIF neurons [Fang et al., 2021b] can
hierarchically learn the decay factor in SNNs, we also employ

1Extended version: https://arxiv.org/abs/2505.11863

them to cooperate with the learnable affine transformation to
control the evolving MPD together. It does not destroy the
correlation function for scaling the SG width in response to
MPD, but also enhances the expressiveness of SNNs. Finally,
the correlation function f(·) can be formulated as

κ = f(τn) =

{
2× (γ̄nVth), t = 1

2×
√

1 + (τn)2(γ̄nVth), t > 1
(7)

τn = sigmoid(ρn) =
1

1 + e−ρn , (8)

where learnable ρn is a layer-wise factor to ensure τn ∈
(0, 1). τn is initialized to 0.2 for all layers, which is ad-
justed when ρn is updated based on gradients (Eq. 11). In
this way, SG can accurately capture the membrane potential
shift and promptly update the gradient-available interval, ef-
fectively optimizing the loss landscape of SNNs.

4.3 The Overall Training Procedure
Employing the iterative LIF neurons in SNN has temporal
dynamics in the spatial domain, which can well apply the
spatio-temporal backpropagation algorithm (STBP) [Wu et
al., 2018] to update synapse weights. In the readout layer, we
also only accumulate the membrane potential of output neu-
rons without leakage and firing, as did in recent works [Rathi
and Roy, 2023; Deng et al., 2022], which can be described by

oNi =
1

T

T∑
t=1

l(N−1)∑
j=1

wN
ijS

N−1
j (t), (9)

where N and T denote the number of layers and timesteps,
respectively. Then, the gradient of synaptic weights wn

ij and
learnable ρn can be derived by the chain rule:

∂L

∂wn
ij

=
T∑

t=1

∂L

∂V n
i (t)

∂V n
i (t)

∂Ini (t)

∂Ini (t)

∂wn
ij

=

T∑
t=1

∂L

∂V n
i (t)

l(n−1)∑
j=1

Sn−1
j (t). (10)

∂L

∂ρn
=

T∑
t=1

∂L

∂V n
i (t)

∂V n
i (t)

∂τn
∂τn

∂ρn

=
T∑

t=1

∂L

∂V n
i (t)

∂V n
i (t)

∂τn
τn(1− τn). (11)

As V n
i (t) not only contributes to the Sn

i (t) but also governs
the V n

i (t+ 1), it can be derived by
∂L

∂V n
i (t)

=
∂L

∂Sn
i (t)

∂Sn
i (t)

∂V n
i (t)

+
∂L

∂V n
i (t+ 1)

∂V n
i (t+ 1)

∂V n
i (t)

,

(12)

∂L

∂Sn
i (t)

=

l(n+1)∑
j=1

∂L

∂V n+1
j (t)

∂V n+1
j (t)

∂Sn
j (t)

+
∂L

∂V n
i (t+ 1)

∂V n
i (t+ 1)

∂Sn
i (t)

. (13)

Moreover, the pseudocode of the overall training procedure is
briefed in Algorithm 1.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Algorithm 1 The overall training procedure of SNNs with
MPD-AGL algorithm in one iteration
Input: Timestep: T ; Threshold: Vth; Initial layer-wise de-
cay: τn; input: S(t), t ∈ T ; true-label vector: Y .
Output: updated the weight wn

ij and learnable ρnof SNNs.
Forward:

1: for n = 1 to N do
2: if n < N then
3: Compute In = wnSn−1 // (1)
4: Īn ← tdBN(In) // (4) and (5)
5: for t = 1 to T do
6: Compute V̄ n(t), Sn(t) // (2) and (3)
7: Compute the width of SG κ // (7) and (8)
8: end for
9: else

10: oN = 1
T

∑T
t=1(w

NSN−1(t)) // (9)
11: end if
12: end for
13: L← CrossEntropy(oN , Y )

Backward:
14: for n = 1 to N do
15: for t = 1 to T do
16: ∂L

∂V n(t) ← Grad( ∂L
∂Sn(t) ,

∂L
∂V n(t+1) ) // (12)

17: ∂L
∂Sn(t) ← Grad( ∂L

∂V n+1(t) ,
∂L

∂V n(t+1) ) // (13)
18: end for
19: end for
20: Update the parameters wn

ij and ρn. // (10) and (11)

5 Experiment

In this section, we evaluate SNN with MPD-AGL for classifi-
cation tasks on static CIFAR10/100, Tiny-ImageNet datasets,
and the neuromorphic CIFAR10-DVS dataset.

5.1 Comparisons with Other Methods

As listed in Table 1, we compare the classification accuracy of
the proposed method with other advanced methods. For CI-
FAR10 dataset, MPD-AGL with ResNet-19 achieves 96.54%
accuracy in 6 timesteps, significantly outperforming other
methods. Notably, at ultra-low latency (T = 2), our method
even slightly improves over all compared methods. For CI-
FAR100 dataset, MPD-AGL still performs well and achieves
the best accuracy of 80.49% in only 6 timesteps. Further-
more, our method outperforms LSG by an overwhelming
margin of 2.52%, 2.87%, and 3.36%, respectively. The main
reason is that LSG neglects the effect of affine transformation
on the pre-synaptic input and membrane potential. As a re-
sult, the LSG-designed learnable SG cannot accurately cap-
ture the evolving MPD. For CIFAR10-DVS dataset, MPD-
AGL with VGGSNN in 10 timesteps can reach an accuracy
of 84.10% by using the TET loss [Deng et al., 2022]. It even
achieves the 82.50% accuracy w/o it, which is a greater im-
provement over other methods. For Tiny-ImageNet dataset,
MPD-AGL with VGG-13 achieves the accuracy of 58.14% in
4 timesteps, outperforming ASGL by 1.57%.

5.2 Proportion of Gradient Available
To investigate whether the proposed method can effectively
alleviate the gradient vanishing problem, we conducted ex-
periments using ResNet-19 on the CIFAR10 dataset with
2 timesteps. MPD-AGL rethinks the distribution of pre-
synaptic input in the tdBN method [Zheng et al., 2021] and,
inspired by LSG [Lian et al., 2023], designs the correlation
function to dynamically adjust SG. Therefore, we take STBP-
tdBN and LSG as the benchmark algorithms. In Fig. 5(a)
and Fig. 5(b), we compare the training loss and test accu-
racy of these three methods, where MPD-AGL can optimize
the training loss to lower smooth values that have better gen-
eralization ability. Then we visualize the gradient-available
proportion curve for layer 7 (Fig. 5(c)). The fixed width
of SG in STBP-tdBN cannot effectively match the evolv-
ing MPD, which causes many neurons to fall outside the
gradient-available interval and slow weight updates. Com-
pared with STBP-tdBN, LSG can slightly alleviate this situ-
ation, but cannot respond to MPD timely. Specifically, LSG
takes more epochs to make the proportion of neurons fall into
the gradient-available interval to an appropriate level. Obvi-
ously, MPD-AGL can quickly capture the shifts in membrane
potential and respond promptly. To reveal how our method
helps SNNs for gradient propagation, we display the width of
SG and the proportion of neurons that fall into the gradient-
available interval in each layer. As illustrated in Fig. 5(d-e),
the SG width in MPD-AGL is distributed mostly around 1.26,
whereas LSG is 1.12. It means that MPD-AGL makes more
neurons in deep layers have gradients, alleviating the gradi-
ent vanishing. Consequently, active neurons in all layers of
MPD-AGL are higher than STBN-tdBN and LSG (Fig. 5(f)).

5.3 Effectiveness on SG Functions
To clarify the effectiveness of our method on other SG func-
tions, we conducted experiments using ResNet-19 on the CI-
FAR100 dataset with 2 timesteps. Here, we choose three
other widely used SG functions, i.e., triangular [Bellec et al.,
2018], sigmoid [Zenke and Vogels, 2021], and aTan [Fang
et al., 2021b]. Considering that optimal sharpness varies
among different SGs, we scaled κ proportionally. As shown
in Fig. 3, MPD-AGL achieves 76.43% accuracy with trian-
gular SG, outperforming STBP-tdBN and LSG by 2.68% and
1.74%, respectively. While MPD-AGL still performs better
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Figure 3: The effectiveness of other SG functions.
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Dataset Method SG optimization Architecture Timestep Accuarcy(%)

CIFAR10

TAB [Jiang et al., 2024] ResNet-19 6 / 4 / 2 94.81 / 94.76 / 94.73
ShortcutBP [Guo et al., 2024] ResNet-19 2 95.19
STAtten + [Lee et al., 2025] SpikingReformer-6-384 4 95.26

TCJA [Zhu et al., 2025] MS-ResNet-18 4 95.60
PSG [Wang et al., 2025a] ResNet-19 6 / 4 95.00 / 95.12
LSG [Lian et al., 2023] ResNet-19 6 / 4 / 2 95.52 / 95.17 / 94.41

DeepTAGE [Liu et al., 2025] ResNet-18 4 95.86
Ours ResNet-19 6 / 4 / 2 96.54 / 96.35 / 96.18

CIFAR100

TAB [Jiang et al., 2024] ResNet-19 6 / 4 / 2 76.82 / 76.81 / 76.31
IM-LIF [Lian et al., 2024] ResNet-19 6 / 3 77.42 / 77.21
TCJA [Zhu et al., 2025] MS-ResNet-18 4 77.72

STAtten + [Lee et al., 2025] SpikingReformer-6-384 4 77.90
PSG [Wang et al., 2025a] ResNet-19 4 75.72
LSG [Lian et al., 2023] ResNet-19 6 / 4 / 2 77.13 / 76.85 / 76.32

ASGL [Wang et al., 2023] ResNet-18 4 / 2 77.74 / 76.59
Ours ResNet-19 6 / 4 / 2 80.49 / 79.72 / 78.84

CIFAR10-DVS

IM-LIF [Lian et al., 2024] VGGSNN 10 80.50
IMPD-AGL [Jiang et al., 2025] VGGSNN 10 77.20

TET [Deng et al., 2022] VGGSNN 10 77.33 / 83.17∗
STAtten + [Lee et al., 2025] SpikingReformer-4-384 16 80.60

PSG [Wang et al., 2025a] ResNet-19 7 76.00
LSG [Lian et al., 2023] VGGSNN 10 77.90

DeepTAGE[Liu et al., 2025] VGG-11 10 81.23
Ours VGGSNN 10 82.50 / 84.10∗

Tiny-ImageNet

Offline LTL [Yang et al., 2022] VGG-13 16 55.37
S3NN [Suetake et al., 2023] ResNet-18 1 55.49
IM-LIF [Lian et al., 2024] ResNet-19 6 / 3 55.37 / 54.82

AT [Ozdenizci and Legenstein, 2024] VGG-11 8 57.21
ASGL [Wang et al., 2023] VGG-13 8 / 4 56.81 / 56.57

Ours VGG-13 4 58.14

Table 1: The comparison of classification performance on four benchmark datasets. ∗ denotes using the Adam optimizer with lr = 1e − 3
and TET loss.

than STBP-tdBN and LSG on sigmoid and aTan SG func-
tions, it does not perform as well as rectangular and triangu-
lar SG. This may be due to simply adjusting the sharpness of
these asymptotic SG functions based on the evolving MPD,
which leads to large oscillations in the gradient information.
Instead, linear SG functions have a relatively smooth gradient
estimation characteristic and thus exhibit stronger robustness.

5.4 Energy Efficiency
To validate the efficiency of SNNs in energy consumption,
we conducted experiments using ResNet-19 on the CIFAR10
dataset. The theoretical energy consumption of SNNs can
be estimated from the synaptic operations (SOPs) [Zhou et
al., 2023]. Due to the binarized and sparse nature of spikes,
SNNs operate low-power AC operations only when neurons
fire, and its required SOP varies with spike sparsity. In our
model, real-valued images are directly fed into SNNs for en-
coding, and membrane potentials in the readout layer are used
for prediction, so the SOPs contain AC operations and a few
MAC operations. For the number of addition operations, we
calculate it by rn×T×Nn

AC , where r is the average firing rate
of n-th layer and Nn

AC is the number of addition operations
in n-th layer of an iso-architecture ANN. For the number of
multiplication operations, it equals the number of multiplica-
tion operations at encoding and readout layers and scales by
T [Yao et al., 2023]. [Rathi and Roy, 2023] measured in 45
nm CMOS technology that an addition operation costs 0.9pJ
and a MAC operation costs 4.6pJ .
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Figure 4: The average firing rate of each layer on CIFAR10 dataset.

Method T #Add. #Multi. Energy
ANN - 2285.35M 2285.35M 10.51mJ

STBP-tdBN 2 890.20M 7.08M 0.83mJ
LSG 2 677.72M 7.08M 0.64mJ

MPD-AGL
2
4
6

579.33M
1004.70M
1303.21M

7.08M
14.16M
21.25M

0.55mJ
0.96mJ
1.25mJ

Table 2: The energy consumption on the CIFAR10 dataset.

As shown in Fig. 4, the average firing rate of each layer
in spiking ResNet-19 does not exceed 34% (14% on average)
when T = 2. In Table 2, we estimate the energy consump-
tion during inference in different timesteps, and the proposed
MPD-AGL is 19× lower compared to ANN in 2 timesteps.
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Figure 5: The comparison of different methods on the CIFAR10 dataset. (a) and (b) are the train loss and test accuracy, respectively. (c) and
(f) are the proportion of neurons falling into the gradient-available interval in layer 7 and each layer of ResNet-19, respectively. (d) and (e)
are the width of SG in each layer of MPD-AGL and LSG, respectively.
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Figure 6: The proof of Theorem1 on CIFAR10-DVS dataset.

Method Accuracy (%)
CIFAR10 CIFAR100

Vanilla 92.38 73.87
w/ trainable decay 93.15 74.12
w/ LSG [Lian et al., 2023] 94.41 76.32
w/ AGR 95.93 78.47
w/ MPD-AGL 96.18 78.84

Table 3: The ablation study on CIFAR10/100 dataset. w/ AGR de-
notes using the proposed adaptive gradient rule.

5.5 Ablation Study
As shown in Fig. 6, the true mean and variance of pre-
synaptic input are close to the estimated values reasoned from
Theorem 1 during training, proving the correctness of Theo-
rem 1. It also indicates that the affine transformation of nor-
malization layers is the reason for the membrane potential
shifts, limiting the performance of SG learning. As for The-
orem 2, which follows [Zheng et al., 2021; Lian et al., 2023]

by employing the factors of affine transformation, please re-
fer to Supplementary A of the Extended version for detailed
proofs. To evaluate the effectiveness of MPD-AGL algo-
rithm, we also conducted experiments using ResNet-19 on
the CIFAR10/100 datasets with 2 timesteps. In Table 3, ap-
plying the proposed adaptive gradient rule (AGR) achieves
an accuracy of 95.93%/78.47% on the CIFAR10/100 datasets,
surpassing the vanilla and LSG methods by 3.55%/4.60% and
1.52%/2.15%, respectively. When combined with AGR and
PLIF neurons, it even reaches 96.18%/78.84%, which means
that the trainable decay can indeed combine with the adaptive
gradient rule to enhance SNN learning.

6 Conclusion
In this work, we present a new perspective on understand-
ing the gradient vanishing or mismatch problems in directly
training SNNs with SG learning. We identify that these is-
sues primarily arise as the failure of fixed SG and evolving
MPD to align, which is caused by the affine transformation
in normalization layers. Here, we propose the MPD-AGL al-
gorithm, which adaptively relaxes SG in a temporal-aligned
manner to more accurately capture the evolving MPD at dif-
ferent timesteps. Experimental results and theoretical anal-
ysis on four datasets demonstrate the effectiveness and su-
periority of our approach. MPD-AGL unlocks the limitation
of SG width and provides more flexible gradient estimation
for SNNs. Importantly, it can naturally integrate into existing
SNN architectures to further enhance performance without
additional inference costs, hopefully promoting the applica-
tion of SNNs in more complex tasks and wider scenarios.
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