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Mitigating Over-Smoothing in Graph Neural Networks via Separation Coefficient
Guided Adaptive Graph Structure Adjustment
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Abstract
As the number of layers in Graph Neural Net-
works (GNNs) increases, over-smoothing becomes
more severe, causing intra-class feature distances
to shrink, while heterogeneous representations tend
to converge. Most existing methods attempt to
address this issue by employing heuristic shortcut
mechanisms or optimizing objectives to constrain
inter-class feature differences. However, these ap-
proaches fail to establish a theoretical connection
between message passing and the variation in inter-
class feature differences, making it challenging to
design methods that target the key influencing fac-
tors. To address this gap, this paper first intro-
duces the concept of the separation coefficient,
which quantifies the contraction of feature dis-
tances between classes during multi-layer message
passing. Based on this theory, we propose a low-
complexity, pluggable, pseudo-label-based adap-
tive graph structure adjustment method. This ap-
proach effectively enhances the separation coeffi-
cient of inter-class features while maintaining intra-
class compactness, thereby alleviating the con-
vergence of heterogeneous representations caused
by multi-layer aggregation. Experimental results
demonstrate that the proposed method significantly
improves the discriminability of node representa-
tions and enhances node classification performance
across various datasets and foundational models.

1 Introduction
Graph Neural Networks (GNNs) are a class of deep learn-
ing models specifically designed to handle graph-structured
data. In recent years, they have achieved significant progress
in tasks such as node classification [Chen et al., 2023], link
prediction [Wang et al., 2019], and graph classification [Xu
et al., 2019]. The core idea of GNNs is to leverage a mes-
sage passing mechanism that enables each node to iteratively
aggregate the features of its neighboring nodes over mul-
tiple layers, thereby learning discriminative node or graph-
level representations. However, with the increase in network

∗Corresponding Author.

depth, GNNs face a common challenge in practical applica-
tions: over-smoothing. When the network becomes too deep,
node features become progressively indistinguishable due to
repeated aggregation, making it difficult to distinguish nodes
of different classes, and severely impairing classification or
clustering performance.

To alleviate over-smoothing, several strategies have been
proposed. These strategies mainly focus on either intro-
ducing specific mechanisms or adjusting the loss function
to limit the feature convergence that results from excessive
aggregation. For instance, GCNII [Chen et al., 2020], in-
troduces inter layer skip connections, effectively preserving
local node features, and enhancing class-level feature dif-
ferences during multi-layer information propagation, thereby
mitigating the over-smoothing issue. The DropEdge [Rong
et al., 2020] method randomly removes some edges in the
graph to limit the excessive aggregation of features from het-
erogeneous node classes during propagation, making the in-
formation flow more flexible. The Allen-Cahn method [Wang
et al., 2022] draws inspiration from the Allen-Cahn equation
in physics by introducing a smoothing term in the model’s
loss function, which controls the inter-class feature differ-
ences and mitigates excessive feature aggregation.

Although these methods help alleviate the over-smoothing
problem to some extent, they typically rely on empirical rules
or heuristic designs, failing to theoretically reveal the rela-
tionship between the message passing process and the varia-
tion in inter-class node feature differences. This lack of theo-
retical guidance makes it difficult to effectively optimize the
key factors that lead to over-smoothing, resulting in unsta-
ble performance on complex datasets and limiting their gen-
eralizability and scalability. Moreover, these methods often
have high computational complexity, especially in large-scale
graph data or high-dimensional feature cases, leading to sig-
nificant increases in computational cost and inefficiency in
practical applications.

To address these challenges, we first analyze the theoretical
causes of over-smoothing in GNNs. We introduce the concept
of separation coefficient and, through analyzing the changes
in the expected representation distance between classes, pro-
pose that the separation coefficient is a key factor in quantify-
ing the contraction of feature distances between classes dur-
ing multi-layer message propagation. Further analysis shows
that the separation coefficient is closely related to the graph
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structure, and specific graph structures can effectively am-
plify inter-class distances and improve intra-class compact-
ness, thereby fundamentally mitigating the phenomenon of
heterogeneous representations converging. Based on this the-
oretical insight, we propose a pseudo-label-based adaptive
graph structure adjustment method. First, we use a well-
trained GNN model to obtain node predicted pseudo-labels,
then selectively add or delete edges based on this pseudo-
label information, while fine-tuning the GNN parameters to
adaptively adjust the graph structure and mitigate the impact
of over-smoothing on model performance. Unlike some tra-
ditional methods that rely on end-to-end joint training, our
approach directly adjusts the graph structure based on inter-
pretable rules, avoiding additional loss function design and
large-scale training costs, while enhancing the interpretabil-
ity and usability of the method. Moreover, we conduct ex-
periments on multiple benchmark datasets, and our method
demonstrates its ability to maintain effective class separation
even under deep aggregation conditions, outperforming other
methods designed to alleviate over-smoothing.

The main contributions of this paper are as follows:

• We describe the causes of over-smoothing in GNNs from
the perspective of inter-class expected representations.
By introducing the concept of the separation coefficient,
we quantify the contraction of feature distances between
classes during multi-layer message propagation and re-
veal the close relationship between this contraction and
graph structure, providing a theoretical basis for opti-
mizing graph structures.

• Based on this theory, we propose a pseudo-label-based
adaptive graph structure adjustment method. This
method utilizes the predicted pseudo-labels from a well-
trained GNN to adaptively adjust the graph structure
while fine-tuning the GNN model parameters, effec-
tively alleviating the impact of over-smoothing on GNN
performance.

• We propose a low-complexity, plug-and-play graph
structure optimization algorithm to enhance inter-class
separation and intra-class compactness during message
passing. Experimental results demonstrate that our
method significantly improves node classification per-
formance on various benchmark datasets for both homo-
geneous and heterogeneous graphs.

2 Proposed Method
To address the over-smoothing problem in Graph Neural Net-
works (GNNs), we propose a pseudo-label-based adaptive
graph structure adjustment method. Our approach is based on
a theoretical analysis of the relationship between node rep-
resentation changes during message passing and the graph
structure, with the goal of optimizing the graph structure to
maintain intra-class feature compactness and enhance inter-
class feature separation, thereby alleviating the negative ef-
fects of over-smoothing.

In Section 2.1, we first present the problem statement,
clearly defining the research problem and objectives. Sec-
tion 2.2 provides an in-depth discussion of the causes of

over-smoothing in GNNs, introducing the separation coeffi-
cient as a key factor influencing the convergence of hetero-
geneous representations during message passing, and reveal-
ing the relationship between the separation coefficient and the
graph structure, which serves as a theoretical foundation for
graph structure optimization. Section 2.3 presents a detailed
description of our algorithm, which generates pseudo-labels
based on the non-uniformity of node label predictions and ad-
justs homogeneous and heterogeneous connections according
to the pseudo-label information, thereby optimizing the graph
structure and effectively mitigating the over-smoothing prob-
lem.

2.1 Problem Statement
In graph neural networks (GNNs), node classification perfor-
mance is fundamentally constrained by the underlying graph
structure and suffers from the over-smoothing problem where
node representations become increasingly similar as the net-
work depth increases. Let G = (V,E) be an undirected
graph, where each node v ∈ V is associated with a feature
vector xv ∈ Rl and a label yv ∈ Y . Given an L-layer
GNN model fθ : (G,X) → Y with parameters θ, where
X ∈ R|V |×l is the node feature matrix, the node representa-
tions h(L)

v tend to converge:

lim
L→∞

∥h(L)
i − h

(L)
j ∥2 → 0, ∀i, j ∈ V. (1)

Our goal is to optimize the graph structure while maintain-
ing its essential properties:

max
G′∈G(G)

Acc
(
fθ(G

′)
)

s.t. G′ = (V,E′), sim(G′, G) ≥ δ,

(2)
where G(G) represents possible graph structures and
sim(G′, G) ≥ δ ensures structural similarity between the
original and optimized graphs.

2.2 Theoretical Analysis
In this section, we first model the interactions between node
features, labels, and their neighbors based on Assumption 1.
Building on this, we derive the formula for calculating the ex-
pected class representation under a general message passing
mechanism. Next, we analyze the changes in the expected
inter-class feature distances before and after message passing
and introduce the separation coefficient to quantify the vari-
ation in inter-class feature distances. Finally, we propose the
conditions for enhancing the separation coefficient while en-
suring intra-class compactness.

In graph-structured data, node features typically originate
from some distribution, and node labels are often correlated
with the labels of their neighboring nodes. This relationship
is crucial for node classification tasks in GNNs. To effectively
model this dependency, it is generally assumed that node fea-
tures are independently sampled from a particular distribu-
tion. Additionally, the labels of neighboring nodes influence
the learning process of the target node. Therefore, modeling
the interactions between node features, node labels, and their
neighbors’ labels is key to the theoretical analysis of graph
learning.
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Given the above considerations, we assume the following
distribution for node features and labels in our framework:

Assumption 1. We consider a graph G, where each node i
has features xi ∈ Rl and label yi. The assumptions are as
follows:

(1) The feature vector xi of node i is sampled from the
feature distribution Fyi

.
(2) The dimensions of the feature vector xi are independent

of each other.
(3) All elements of the node feature matrix X are bounded

by a positive number B, i.e., maxi,j |X[i, j]| ≤ B.
(4) The feature of node i is independent of the labels of its

neighbors.
(5) The labels of node i’s neighbors are independently sam-

pled from the neighbor distribution Dyi
, with the sampling

process occurring deg(i) times, where deg(i) is the degree of
node i. During the sampling process, the proportion of nodes
belonging to the same class is p, and the proportion of nodes
belonging to different classes is 1−p

K−1 , where K is the total
number of classes.

Similar to [Ding et al., 2024][Liao et al., 2021], we model
node features as being sampled from label-specific distribu-
tions, reflecting the similarity of features among nodes of
the same class, while maintaining flexibility for intra-class
natural differences. Moreover, the independence of neigh-
bor labels aligns with the Markov property and conforms to
the local dependency assumptions of graph data [Bohde et
al., 2024]. Although the independence between features and
neighbor labels is a simplification, it does not affect practical
applications, as Graph Neural Networks (GNNs) can implic-
itly model these complex relationships during message pass-
ing. These assumptions provide a solid foundation for theo-
retical analysis while ensuring the generalizability and appli-
cability of the method.

Under Assumption 1, we perform a theoretical analysis of
the message passing mechanism. Specifically, the represen-
tation hi of node i after message passing can be expressed
as:

hi =
∑

j∈N (i)

1

deg(i)
Wxj ,

where N (i) is the set of neighbors of node i, deg(i) is the
degree of node i, W is the weight matrix, and xj is the orig-
inal feature of node j. Based on this formula, we can obtain
the representation of node i after message passing. Further-
more, in Lemma 1, we derive the formula for the expected
representation of class c, denoted as Ec[h].

Lemma 1. Under Assumption 1, the expected representation
h of class c can be expressed as:

Ec[h] = W(pEc[x] +
1− p

K − 1

∑
k∈Y,k ̸=c

Ek[x]),

where W(k) ∈ Rl×l is the transformation matrix, Y is the set
of classes, and Ek[x] is the expected feature of nodes in class
k.

Based on Lemma 1, our goal is to analyze the changes in
class representations during message passing using the ex-
pected class representation. We prove that message pass-
ing leads to the convergence of representations from different
classes. Moreover, in Theorem 1, we establish the distance
relationship between the expected representations of classes
c and d before and after message passing.

Theorem 1. Under Assumption 1, the distance between the
expected representations of different classes satisfies the fol-
lowing equation:

∥Ec[h]−Ed[h]∥2 ≥ σmin(W)
pK − 1

K − 1
∥Ec[x]−Ed[x]∥2,

∥Ec[h]−Ed[h]∥2 ≤ σmax(W)
pK − 1

K − 1
∥Ec[x]−Ed[x]∥2,

where Ec[h] and Ed[h] are the expected representations of
classes c and d, respectively, Ec[x] and Ed[x] are the ex-
pected features of nodes in classes c and d, and σmin(W)
is the smallest singular value of matrix W, σmax(W) is the
largest singular value of matrix W.

Proof. For the proof, please refer to Appendix.

Since σmax(W)pK−1
K−1 < 1, Theorem 1 demonstrates that

for graph neural networks satisfying Assumption 1, after mul-
tiple message passing iterations, the distance between the rep-
resentations of nodes from different classes will gradually
decrease. Specifically, when the proportion p of same-class
neighbors in the graph remains constant, and the maximum
and minimum singular values of the matrix W do not change
significantly, the degree of this distance contraction is pri-
marily related to the proportion p. As the number of mes-
sage passing iterations increases, the representations of nodes
from different classes will become increasingly similar, lead-
ing to a gradual loss of discriminability between node repre-
sentations, which may eventually result in the over-smoothing
problem. To more precisely describe this phenomenon, we
introduce the concept of the separation coefficient to quan-
tify the contraction process of the inter-class representation
distance.

Definition 1 (Separation Coefficient). We define the separa-
tion coefficient as:

S =
∥Ec[h]− Ed[h]∥2
∥Ec[x]− Ed[x]∥2

, ∀c, d ∈ Y, c ̸= d,

where Ec[h] and Ed[h] are the expected representations of
classes c and d, respectively, Ec[x] and Ed[x] are the expected
features of nodes in classes c and d, and ∥ · ∥2 denotes the 2-
norm.

Based on Theorem 1 and the definition of the separation
coefficient, we derive a lower bound for the separation coef-
ficient in the general message passing mechanism of Graph
Neural Networks (GNNs). Specifically, the separation coeffi-
cient satisfies the following inequality:
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σmin(W)
pK − 1

K − 1
≤ S ≤ σmax(W)

pK − 1

K − 1
,

where σmin(W) is the smallest singular value of the weight
matrix W, σmax(W) is the largest singular value of matrix
W, p is the proportion of same-class neighbors, and K is the
total number of classes.

This inequality shows that, for fixed classes, the lower
bound of the separation coefficient is influenced by weight
matrix W and the proportion p of same-class neighbors.
When the maximum and minimum singular values of W
do not decrease, increasing the proportion p of neighboring
nodes from the same class will improve the lower bound of
the separation coefficient. This means that a graph structure
with a higher proportion of same-class neighbors helps en-
hance the class separability of node representations, thereby
better maintaining the inter-class differences during message
passing.

However, in the node classification task of GNNs, simply
enhancing class separability without considering intra-class
compactness may compromise classification accuracy while
mitigating over-smoothing. While increasing the separation
coefficient effectively improves inter-class discriminability, if
the representations of nodes within the same class are too
dispersed, intra-class compactness will be insufficient, po-
tentially harming classification performance. Especially in
high-dimensional feature spaces, if the inter-class represen-
tation differences increase but the representations of same-
class nodes lack compactness, the classifier may struggle to
distinguish same-class nodes accurately, thus reducing clas-
sification accuracy. Therefore, in Theorem 2, we provide the
conditions for ensuring intra-class compactness.
Theorem 2. For any t > 0, if node i belongs to class c,
the probability bound that the distance between the observed
feature aggregation hi and the expected feature aggregation
of class c, Ec[h], exceeds t is given by:

P (∥hi − Ec[h]∥2 ≥ t) ≤ 2l exp
(
− deg(i)t2

8pσ2
max(W)B2

)
+

2l exp
(
− deg(i)t2

8(1−p)σ2
max(W)B2

)
,

where σmax(W) denotes the largest singular value of the ma-
trix W, l is the feature dimensionality, and deg(i) is the de-
gree of node i. Additionally, p represents the proportion of
nodes in the graph that belong to the same class as node i, as
specified in Assumption 1.

Theorem 2 proves that, for GNNs satisfying Assumption 1,
the representations of nodes are close to their expected repre-
sentations with a certain probability. The probability of this
closeness is influenced by the node degree, the largest sin-
gular value of the weight matrix W, and the proportion p of
same-class neighbors. Specifically, as long as the number of
same-class neighbors and the largest singular value of W do
not decrease, increasing the proportion p of same-class neigh-
bors will lead to a higher probability that the node represen-
tation is close to its expected class representation.

By combining Theorem 1 and Theorem 2, we can con-
clude that, when the maximum and minimum singular val-
ues of the weight matrix do not decrease, both the intra-class

Figure 1: The figure illustrates the distribution of node representa-
tions from two classes in the feature space. The upper part shows
the current distribution of node representations, where the two cir-
cles are centered at Ec[h] and Ed[h], with a radius of t, as shown
in Theorem 2. The lower part depicts the expected changes in node
representations after applying our method: the representations of
the two classes become more concentrated within their respective
circles, and the distance between the centers of the two circles in-
creases, thereby enhancing the separability between the classes.

compactness and inter-class separability of the node represen-
tations after message passing are closely related to the graph
structure. Specifically, we need to increase the proportion
p of same-class neighbors while ensuring that the number
of same-class neighbors does not decrease, i.e., by enhanc-
ing homogeneous connections and removing heterogeneous
connections between nodes in the graph structure. This ap-
proach not only fosters greater intra-class compactness but
also improves the separation coefficient, thereby enhancing
the discriminability of the node representations. Through
such structural adjustments, we aim to achieve the effects
shown in Figure 1.

2.3 Method for Node Classification
In the previous section, we demonstrate that, while keeping
the maximum and minimum singular values of the weight
matrix invariant, adjusting the graph structure by increas-
ing homophilic connections and reducing heterophilic con-
nections can enhance intra-class node representation com-
pactness and improve inter-class representation separability.
Building on this theoretical insight, in this section, we pro-
pose an adaptive graph structure adjustment method based on
pseudo-labels [Wang et al., 2025], aimed at further optimiz-
ing the graph structure and improving downstream task per-
formance.

This method consists of three core steps: (1) generating
pseudo-labels based on label non-uniformity; (2) optimizing
the graph structure according to the pseudo-labels, by in-
creasing homophilic connections and removing heterophilic
connections; (3) incorporating the optimized graph structure
into the GNN training process, and performing singular value
checks on the weight matrix during training. The overall
framework of the algorithm is illustrated in the Figure 2.
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Figure 2: The figure illustrates The overall framework of our
method. The upper part (black dashed box) shows the trained
GNN model predicting the labels by selecting the category with
the highest probability. The lower part (blue dashed box) out-
lines the subsequent steps of the pseudo-label-based adaptive graph
structure optimization: (1) pseudo-labels are assigned based on
node non-uniformity; (2) the graph structure is adjusted by adding
homogeneous connections and removing heterogeneous ones; (3)
during training, the weight matrix is adjusted as W′ = W ×
max

(
σmin(W)
σmin(W

′) ,
σmax(W)
σmax(W′)

)
.

x y 真偏差 负偏差
10 0.987 0.006 0.001
15 0.99 0.001 0.003
20 0.983 0.002 0.0005
25 0.972 0.002 0.002
30 0.966 0.003 0.003
35 0.957 0.003 0.002
40 0.946 0.004 0.001
45 0.937 0.002 0.002
50 0.925 0.003 0.002
55 0.916 0.002 0.002
60 0.908 0.002 0.003
65 0.892 0.003 0.002
70 0.878 0.002 0.003
75 0.862 0.003 0.002
80 0.848 0.002 0.002
85 0.83 0.003 0.003
90 0.813 0.004 0.004
95 0.795 0.004 0.004

100 0.774 0.003 0.003

Figure 3: After the model training is completed, we sort the nodes
based on their non-uniformity. Then, a subset V ′ ⊂ V is selected
from all nodes, with a size of λ |V |, where λ is a predefined propor-
tion parameter. The figure illustrates the model prediction accuracy
of the subset V ′ under different settings of λ.

By focusing on topological optimization in the post-training
phase, our method aligns closely with the principles of Data-
Centric AI (DCAI), emphasizing data-driven optimization to
enhance downstream task performance.

To effectively generate pseudo-labels, we focus on the dif-
ferent dimensions of each node’s predicted probability distri-
bution and utilize label prediction non-uniformity to filter out
nodes that are far from the class boundaries in classification
tasks. Next, we introduce node prediction non-uniformity in
Definition 2.

Definition 2 (Node Prediction Non-Uniformity). Let µv =
(µv(y1), µv(y2), . . . , µv(y|Y|)) be the predicted probability
distribution vector of the base model trained on classifier
C(·), with µv(yi) ∈ [0, 1] for each yi ∈ Y and each v ∈ V .
Moreover, Y is a finite set of labels, and

∑|Y|
j=1 µv(yj) = 1.

Therefore, µv(yj) can be interpreted as the probability weight
of node v having label yj . Following [Ji et al., 2023], the la-

Algorithm 1 Graph Optimization with Pseudo-labeling
Input: Graph G = (V,E,X), Weight matrix W trained on
G, θ1
Output: Optimized graph structure G′ = (V,E′), Updated
weight matrix W ′

1: for each node v ∈ V do
2: uv = GNN(X(v))

3: w(v) =
∑|Y|

j=1

∣∣∣µv(yj)− 1
|Y|

∣∣∣
4: end for
5: Sort nodes by w(v) and select the top θ1 nodes to form

V ′

6: for each node v′ ∈ V ′ do
7: Mark the pseudo-label of node v′ as the category with

the largest value in uv

8: end for
9: for each pair of nodes (v, v′) ∈ V ′ × V ′ do

10: if the pseudo-labels of v and v′ are the same then
11: Set E′(v, v′) = 1
12: else
13: Set E′(v, v′) = 0
14: end if
15: end for
16: Retrain GNN with the optimized graph G′ = (V,E′)
17: Stretch the weight matrix W ′ as follows:
18: W ′ = W ′ ×max

(
σmin(W )
σmin(W ′) ,

σmax(W )
σmax(W ′)

)

bel non-uniformity at v is defined by

w(v) =

|Y|∑
j=1

∣∣∣∣µv(yj)−
1

|Y|

∣∣∣∣ .
The paper [Ji et al., 2023] points out that there exists a pos-

itive correlation between the prediction label non-uniformity
of nodes and classification accuracy. When the prediction la-
bel non-uniformity of nodes is high, the probability of cor-
rect classification increases significantly, as shown in Figure
3. Therefore, we assign pseudo-labels to those nodes with
high prediction label non-uniformity, forming a set of nodes
with pseudo-labels, denoted as V ′. Based on Theorem 1 and
Theorem 2, within V ′, we use pseudo-labels to increase ho-
mophilic connections and remove heterophilic connections
between nodes, resulting in an optimized graph structure E′.
Subsequently, we retrain the GNN using E′ and apply a sim-
ple singular value stretching method to ensure that the maxi-
mum and minimum singular values of the weight matrix W′

after retraining are no less than σmax(W) and σmin(W), re-
spectively. The proposed pseudo-label-based adaptive graph
structure adjustment algorithm is shown in Algorithm 1.

3 Experiments
In this section, we conduct experiments on several publicly
available datasets, including both homogeneous and hetero-
geneous graphs, to evaluate the effectiveness of our pro-
posed pseudo-label-based adaptive graph structure optimiza-
tion method in semi-supervised node classification tasks. We
apply this algorithmic framework to several classic graph
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neural network models and compare it with multiple base-
line methods to validate the relative superiority of our ap-
proach. The proposed model is named the Separation Co-
efficient Optimization Graph Neural Network (SCA-GNN),
and the framework enhances node classification performance
through simple topological structure adjustments. Specifi-
cally, when using Graph Convolution Networks (GCN) as the
base model, the framework is referred to as SCA-GCN. The
experimental design is aimed at addressing the following re-
search questions:

• How much performance improvement can the proposed
method achieve in semi-supervised node classification
tasks compared to current mainstream baseline meth-
ods?

• What are the significant efficiency advantages of the
proposed method in terms of computational complexity
compared to existing methods?

• How does the proposed method effectively alleviate the
over-smoothing problem caused by the increase in net-
work depth, as observed in GNN classification perfor-
mance across different network depths?

• To what extent can the proposed method improve the
classification performance of different types of nodes on
heterogeneous graph datasets?

3.1 Experimental Settings
Baselines
We select seven methods as baselines to evaluate the effec-
tiveness of our proposed framework. We combine our frame-
work with four classic base models: GCN (ICLR 2017) [Kipf
and Welling, 2017], GAT (ICLR 2018) [Velickovic et al.,
2018], GraphCON (ICML 2022) [Rusch et al., 2023], and
MaskGAE (KDD 2023) [Li et al., 2022], to verify whether
our method can enhance the performance of these base mod-
els. Additionally, we compare our approach with three graph
structure learning methods that also optimize the graph struc-
ture: Pro-GNN (KDD 2020) [Jin et al., 2020], GEN (WWW
2021) [Wang et al., 2021], and PRI-GSL (AAAI 2023) [Sun
et al., 2023], to demonstrate the advantages of our method in
terms of both computational efficiency and accuracy.

Datasets
We evaluate the performance of our method on four pub-
licly available homogeneous graph datasets (Cora, Citeseer,
Pubmed, and OGBN-Arxiv) and four heterogeneous graph
datasets (Texas, Chameleon, Actor and Squirrel). Notably,
OGBN-Arxiv is a large-scale dataset containing 169,343
nodes and 1,166,243 edges. Detailed information about the
datasets can be found in Appendix. To ensure fairness in the
experiments, we use the same standard dataset splits as those
in [Ji et al., 2023].

Implementation Details
We first train the base graph neural network (GNN) models
on the datasets and use the trained models to generate the
predicted label yv , label non-uniformity w(v), and the max-
imum singular value σmax(W) and minimum singular value
σmin(W) of the weight matrix W for each node v. Next,

Dataset Cora Citeseer Pubmed OGBN-Arxiv
GCN 80.65 ± 0.49 71.23 ± 0.66 79.03 ± 0.38 71.74 ± 0.29

SCA-GCN 83.53 ± 0.78 72.17 ± 0.55 80.11 ± 0.91 73.16 ± 2.64
GAT 81.91 ± 0.48 70.21 ± 0.52 78.91 ± 0.42 73.65 ± 0.11

SCA-GAT 83.54 ± 1.07 71.98 ± 0.87 80.27 ± 1.42 74.41 ± 1.04
MaskGAE 82.03 ± 0.76 70.10 ± 1.37 80.11 ± 0.51 70.67 ± 0.22

SCA-MaskGAE 83.59 ± 0.75 72.61 ± 0.98 81.44 ± 0.95 72.48 ± 0.83
GraphCON 82.36 ± 0.84 70.80 ± 1.40 79.11 ± 1.78 72.52 ± 1.74

SCA-GraphCON 84.19 ± 1.74 72.71 ± 1.34 79.88 ± 1.25 73.46 ± 1.77

Table 1: Comparison of node classification accuracy (mean ± stan-
dard deviation) between baseline models and their SCA-enhanced
versions across four homogeneous datasets: Cora, Citeseer, Pubmed
and OGBN-Arxiv. The bold values indicate the best performance
for each dataset.

we sort the nodes based on label non-uniformity and select
the largest portion, consisting of θ1 × |V | nodes, and as-
sign their pseudo-labels as their predicted labels. To ensure
the accuracy of the pseudo-labels, we fix the hyperparame-
ter θ1 to 0.02, consistent across all datasets. Then, based
on the pseudo-labels of the nodes, we establish edges be-
tween same-class nodes and remove edges between different-
class nodes to generate the edge set E′. Finally, we re-
train the base model on the new graph structure and adjust
the weight matrix W during training as follows: W′ =

W ×max
(

σmin(W)
σmin(W′) ,

σmax(W)
σmax(W′)

)
to ensure the stability and

effectiveness of the new graph structure during training. Our
framework is implemented using PyTorch, and all experi-
ments are conducted on an NVIDIA RTX 3090 GPU.

3.2 Experimental Evaluation
Performance Improvement of Our Method in
Semi-supervised Node Classification (Q1)
We apply the proposed method to the base models on four
homogeneous graph datasets, and the experimental results
are presented in Table 1. Across all datasets, our method
consistently improves the performance of the base models
on the test set. The experimental results demonstrate that
our pseudo-label-based adaptive graph structure optimization
method significantly and stably enhances the performance of
the base models in semi-supervised node classification tasks.
Furthermore, our method shows good generalizability and
can be easily integrated into most base models, further en-
hancing their performance.

Computational Complexity Advantage of Our Method
(Q2)
We select three commonly used graph structure learning
methods and compare their computational complexity with
that of our method. The experimental results are shown in
Table 2. Since our method adaptively adjusts the graph struc-
ture based on interpretable rules, it does not introduce ad-
ditional training steps or parameters, thus effectively sav-
ing computational resources and training time. Compared to
other more complex graph structure learning methods, our
approach demonstrates significant advantages on large-scale
graph datasets. The experimental results indicate that, while
maintaining low complexity, our method can significantly im-
prove node classification accuracy.
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Dataset Time Complexity Cora Citeseer Pubmed OGBN-Arxiv
GEN O(τ1nd ∗ (n2d+ nk log k) ∗ I) 82.00 ± 0.35 71.92 ± 0.44 79.08 ± 0.45 OOM

Pro-GCN O(τ2I ∗ (n3d+ n2)) 80.72 ± 0.75 71.22 ± 0.26 79.18 ± 0.34 OOM
PRI-GSL O(τ3nd ∗ (2n2d+ nk log k)) 81.70 ± 0.85 70.08 ± 0.90 79.43 ± 0.68 OOM
TR-GCN O(nd+ n log n+ n2 + d3) 83.53 ± 0.78 72.17 ± 0.55 80.11 ± 0.91 73.16 ± 2.64

Table 2: Node classification performance and time complexity comparison for our method and graph structure learning methods. OOM
indicates Out Of Memory during training with 3090 24G GPU memory.

Dataset Cora Citeseer Pubmed
Layer1 54.6 ± 14.23 39.7 ± 12.48 52.8 ± 19.14

SCA-GCN 58.74 ± 13.33 43.58 ± 11.95 56.87 ± 14.43
Layer2 80.65 ± 0.49 71.23 ± 0.66 79.03 ± 0.38

SCA-GCN 83.53 ± 0.78 72.17 ± 0.55 80.11 ± 0.91
Layer3 79.0 ± 1.28 65.9 ± 1.64 76.25 ± 0.65

SCA-GCN 80.77 ± 1.34 67.74± 2.03 75.95 ± 1.06
Layer4 70.87 ± 12.47 55.62 ± 11.98 67.34 ± 11.81

SCA-GCN 72.67 ± 7.47 61.79 ± 4.77 69.81 ± 8.54
Layer5 46.92 ± 9.76 35.87 ± 9.94 55.11 ± 9.34

SCA-GCN 49.36 ± 8.97 47.58 ± 7.88 58.75 ± 9.92
Layer6 36.25 ± 9.41 28.9 ± 8.08 49.5 ± 9.13

SCA-GCN 39.42 ± 10.54 37.68 ± 8.94 53.12 ± 10.23

Table 3: Comparison of node classification accuracy (mean ± stan-
dard deviation) for different layers of the GCN model and its SCA-
enhanced version across three datasets: Cora, Citeseer and Pubmed.
The bold values indicate the best performance for each layer and
dataset.

Performance of Our Method in Multi-layer GNNs (Q3)
Through pseudo-label-based adaptive graph structure op-
timization, our method maintains intra-class compactness
while enhancing the separability of heterogeneous repre-
sentations, effectively alleviating the over-smoothing phe-
nomenon that occurs in graph neural networks (GNNs) dur-
ing multiple message passing iterations. To validate the ef-
fectiveness of our method in mitigating the over-smoothing
problem in GNN models with different depths, we conducted
semi-supervised node classification experiments with GCN
models containing 1 to 6 layers on the Cora, Citeseer and
PubMed datasets, comparing the performance before and af-
ter applying our method. The experimental results, shown in
Table 3, indicate that although the accuracy of our method
decreases as the number of GNN layers increases, it still sig-
nificantly alleviates the over-smoothing problem compared to
the GCN models without our method.

Performance of Our Method on Heterogeneous Graph
Datasets (Q4)
Semi-supervised node classification on heterogeneous graph
datasets has long been a challenging problem in graph neural
networks (GNNs). Studies have shown that due to the pres-
ence of many heterogeneous connections in these datasets,
models tend to experience significant over-smoothing even at
shallow layers. To verify the effectiveness of our method on
heterogeneous graph datasets, we applied it to base models on
four heterogeneous graph datasets, and the results are shown
in Table 4. The experimental results demonstrate that our
method significantly improves node classification accuracy
on all baseline models across heterogeneous graph datasets.

Dataset Texas Chameleon Actor Squirrel
GCN 54.60 ± 6.47 63.62 ± 3.14 38.64 ± 0.97 44.23 ± 0.31

SCA-GCN 61.83 ± 7.21 65.88 ± 4.64 39.87 ± 2.71 46.77 ± 3.68
GAT 52.70 ± 8.38 64.25 ± 3.41 35.98 ± 0.23 42.73 ± 0.33

SCA-GAT 60.82 ± 6.45 66.44 ± 3.48 39.24 ± 1.75 43.54 ± 1.44
MaskGAE 63.51 ± 5.02 57.85 ± 2.43 36.71 ± 2.47 43.29 ± 1.77

SCA-MaskGAE 64.11 ± 4.56 58.92 ± 3.68 38.68 ± 1.94 44.17 ± 2.57
GraphCON 80.81 ± 4.12 50.77 ± 2.35 39.33 ± 0.88 43.64 ± 0.52

SCA-GraphCON 81.51 ± 5.64 55.84 ± 3.67 40.36 ± 5.09 44.91 ± 3.64

Table 4: Comparison of node classification accuracy (mean ± stan-
dard deviation) between baseline models and their SCA-enhanced
versions across four heterogeneous datasets: Texas, Chameleon, Ac-
tor and Squirrel. The bold values indicate the best performance for
each dataset.

4 Conclusion
In this paper, we propose a pseudo-label-based adaptive graph
structure optimization method aimed at addressing the over-
smoothing problem in graph neural networks (GNNs). By an-
alyzing the changes in inter-class representation distances, we
introduce the concept of the separation coefficient to quantify
the feature contraction process and design a low-complexity
graph structure adjustment method. This method enhances
the separability of inter-class features while maintaining the
compactness of intra-class features. Experimental results
demonstrate that our approach significantly improves node
classification accuracy across multiple benchmark datasets
and outperforms existing methods in terms of computational
efficiency. Our research provides an effective solution to alle-
viate the over-smoothing problem in GNNs and offers strong
support for graph structure optimization and the application
of GNNs on large-scale datasets.
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