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Abstract

Nowadays, numerous online platforms can be de-
scribed as multi-modal heterogeneous networks
(MMHNS), such as Douban’s movie networks and
Amazon’s product review networks. Accurately
categorizing nodes within these networks is crucial
for analyzing the corresponding entities, which re-
quires effective representation learning on nodes.
However, existing multi-modal fusion methods of-
ten adopt either early fusion strategies which may
lose the unique characteristics of individual modal-
ities, or late fusion approaches overlooking the
cross-modal guidance in GNN-based information
propagation. In this paper, we propose a novel
model for node classification in MMHNSs, named
Heterogeneous Graph Neural Network with Inter-
Modal Attention (HGNN-IMA). It learns node rep-
resentations by capturing the mutual influence of
multiple modalities during the information prop-
agation process, within the framework of hetero-
geneous graph transformer. Specifically, a nested
inter-modal attention mechanism is integrated into
the inter-node attention to achieve adaptive multi-
modal fusion, and modality alignment is also taken
into account to encourage the propagation among
nodes with consistent similarities across all modal-
ities. Moreover, an attention loss is augmented
to mitigate the impact of missing modalities. Ex-
tensive experiments validate the superiority of the
model in the node classification task, providing an
innovative view to handle multi-modal data, espe-
cially when accompanied with network structures.
The full version including Appendix is available at
http://arxiv.org/abs/2505.07895.

1 Introduction

In the real world, numerous online platforms can be char-
acterized as heterogeneous networks [Sun and Han, 2012],
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Figure 1: Motivating example of MMHNSs and mutual influence of
modalities in information propagation for node classification.

which encompass multiple types of nodes connected with var-
ious relations, such as movie networks in Douban and prod-
uct review networks in Amazon [Ni et al., 2019]. With the
rapid evolution of Internet, besides textual contents, nodes of
certain types also incorporate attributes from other modalities
(e.g., images). That enriches the node information and forms
multi-modal heterogeneous networks (MMHNS) [Wei et al.,
2023; Kim et al., 2023; Chen and Zhang, 2020; Jia ef al.,
2022], including multi-modal knowledge graphs (MMKGs)
[Kannan er al., 2020; Liang et al., 2022; Zhu erf al., 2024
Wang et al., 2023b; Sun et al., 2020; Pezeshkpour et al.,
2018]. As shown in Figure 1, a movie network comprises
movies, actors and directors, with the movie nodes possess-
ing both textual and visual attributes.

It is significant to classify these nodes in the network into
distinct categories to understand and analyze key entities,
leveraging their multi-modal attributes as well as the network
structure [Jangra et al., 2023]. Recently, more and more at-
tentions have been paid to integrate multi-modal features into
GNN-based representation learning methods. Some existing
studies adopt an early fusion strategy in the encoding process
aiming at initial features [Zhang et al., 2019], which may lose
the characteristics of individual modalities, while late fusion
models learn node embeddings separately for each modality
and blend them only at the last layer [Jia et al., 2022].
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For example in Figure 1, the two film nodes v; and vy be-
long to the same category “Comedy”, but their textual de-
scriptions differ greatly. Hence, when learning textual em-
beddings aggregated from neighbors, the similarity-based at-
tentive (2-hop) propagation between them would be limited,
potentially resulting in the assignments of them to different
categories. Nevertheless, noticing that the images of them are
very similar, if that can be acknowledged in determining the
propagation weights, the two nodes may eventually own sim-
ilar embeddings on both modalities and obtain the same label.
While, maybe in another scenario, textual similarity plays a
pivotal role in realizing a category-oriented aggregation.

Consequently, in order to harness the multi-modal informa-
tion more effectively in representation learning on MMHNSs,
it is essential to consider the mutual influence of modali-
ties during the information propagation process and learn
it in an adaptive way. This poses three main challenges:
Firstly, as the influence involves at least two modalities and
two nodes, we need to choose the appropriate granularity
to define and distinguish the cross-modal influence. Here,
a tradeoff among expressiveness, intuitive interpretability and
model complexity is supposed to be achieved. Secondly, in
real-world scenarios, certain types of nodes may have miss-
ing attributes for specific modalities (e.g., actors and direc-
tors lack images), so it is required to handle these incomplete
data to ensure a smooth feature propagation process for each
modality. Thirdly, even for nodes with attributes across all
modalities, some of these attributes may fail to accurately re-
flect node characteristics. This misalignment among modal-
ities would import undesired noise during propagation, caus-
ing the learned representations to deviate from correct labels.

To address these issues, this paper proposes a novel model
named Heterogeneous Graph Neural Network with Inter-
Modal Attention (HGNN-IMA). It aims to learn node repre-
sentations in MMHNSs via capturing the mutual influence of
multiple modalities during the information propagation pro-
cess, thereby supporting the node classification task. Specif-
ically, after pre-processing to encode the attributes of each
modality, we devise a heterogeneous network propagation
module within the framework of heterogeneous graph trans-
former, to enrich the node features of each modality by aggre-
gating neighbor information. A key innovation is the nested
inter-modal attention mechanism integrated into the classi-
cal inter-node attention. When propagating neighbor em-
beddings to a current node for a specific modality, attention
scores are computed as the weighted sum of the similarity-
based attention in terms of each modality. The weights are
also determined in an attentive and thus adaptive manner,
which are further constrained by an attention loss to mitigate
the effect of missing modalities. Moreover, these attention
scores are necessarily modulated according to the similarity
consistency among modalities, amplifying the contribution of
modality-aligned nodes. Then, through a feature fusion mod-
ule, enriched features of all modalities are mixed to generate
the final node embeddings. Besides the cross-entropy loss on
the fused features, uni-modal features are also incorporated
to underline the respective effect of each modality.

In summary, this paper makes the following contributions:

* To the best of our knowledge, this is the first work to

adaptively learn and leverage the mutual influence of
multiple modalities for model fusion in GNN-based rep-
resentation learning on MMHN:Ss, tailored for the node
classification task.

A novel model, framed within the heterogeneous graph
transformer architecture, is proposed to fulfill the core
idea. It features a nested inter-modal attention mecha-
nism on the inter-node attention, plus a modulation term
based on similarity consistency to encourage modality
alignment, and an additional loss function tackling the
modality missing issue. This comprehensive approach
accommodates the intricate nature of cross-modal inter-
actions in heterogeneous networks and enhances the cat-
egory discriminability of node representations.

Extensive experiments on diverse real-world benchmark
datasets demonstrate the effectiveness and stability of
the model, achieving significant performance improve-
ments over existing approaches for node classification.

2 Related Work

Heterogeneous networks widely exist in the real world. In
the past decade, significant efforts have been devoted to
learn node representations with various attention mechanism
[Zhuo et al., 2023; Wang er al., 2023a; He er al., 2024,
Li et al., 2023b]. For heterogeneous networks with multi-
modal attributes, such as texts, images and audios, the fu-
sion of them is necessary. Most of existing models fall into
two types, early fusion and late fusion [Jangra et al., 2023;
Zhao et al., 2024; Wu et al., 2024; Huang et al., 2024].

Early fusion means the fusion is conducted just after the
feature extraction from multi-modal attributes [Wang et al.,
2020; Chen and Zhang, 2020]. Besides extending the typ-
ical heterogeneous network embedding methods mentioned
above by combining initial attributes, HetGNN [Zhang et al.,
2019] employs a Bi-LSTM model to encode the feature of
each modality and fuse them with mean pooling before intra-
type and inter-type aggregations. As this kind of fusion ap-
pears prior to information propagation, all modalities of a
specific node are merged into one feature, at the expense of
losing the characteristics of individual modalities, especially
neglecting their different roles in the aggregation process.

Conversely, late fusion refers to the fusion after the node
representations in terms of each modality have been obtained,
so the information propagation of each modality is separately
executed [Weli et al., 2019; Tao et al., 2020; Cai et al., 2024;
Cao et al., 2022]. As representatives, MHGAT [Jia et
al., 2022] performs dual-level aggregations within individ-
ual modalities, followed by feature fusion using the modality-
level attention mechanism, and FHIANE [Yang et al., 2023al
adds an early fusion module, taking advantage of the consis-
tency and complementarity of multi-modal information. Al-
though these models allow each modality to propagate in-
dependently, preserving its original properties, they fail to
leverage the information from other modalities when com-
puting the similarity-based attention for accurate aggregation
weights. As a result, the learned embeddings may be incon-
sistent with category labels.
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In addition to the two manners of multi-modal fusion
above, XGEA [Xu et al., 2023] considers the influence be-
tween two modalities during the propagation process, but the
role of the current modality itself is neglected and the char-
acteristics of each node in the propagation cannot be distin-
guished. In contrast, our model explores to adaptively learn
and combine the mutual influence among modalities for each
node, through a novel nested attention mechanism to enable
flexible aggregations.

Beyond that, IDKG [Li et al., 2023a] regards the knowl-
edge graph as another modality. Its translation-based embed-
dings, along with visual and textual features, are fused into a
unified representation, so is able to solve the node classifica-
tion problem with a different usage of network structure.

3 Problem Formulation

Definition 1 (Multi-Modal Heterogeneous Networks). A
Multi-Modal Heterogeneous Network (MMHN) is defined as
G = (V,E,M), where V, £ and M respectively denote the
set of nodes, edges and multi-modal attributes (e.g., texts,
images and audios). There are also a node type mapping
Sunction Y(v) : V — O and an edge type mapping function
o(e) : € = R, where O and R denote the set of pre-defined
types of nodes and edges respectively, with |O] + |R| > 2.

Notice that although each node in 'V can contain multiple
types of attribute information from different modalities in M.,
some modalities are not available for certain node types. For
example, reviews in Amazon are probably not associated with
an image. Thus, we define a mapping function f(o) : O —
2M to indicate the subset of modalities that each node type
possesses. In this context, for each node v; € V), its attribute
of each modality m € f(1(v;)) is denoted as xI".

It is reasonable to assume there is only one target node type
0* € O required to be categorized, such as films in movie
networks and items in product review networks. Given a pre-
defined set of categories C, the node classification task on
MMHNs aims to assign a category label y; € C to each target
node v; in a semi-supervised setting.

4 Proposed Model HGNN-IMA

In this section, we at first present the framework of the pro-
posed model, and then elaborate on the key modules.

4.1 Framework

HGNN-IMA is structured into three modules: pre-processing
module, heterogeneous network propagation module, and
feature fusion module. Since most of real-world MMHNs
have only text and vision attributes, we illustrate our model
in Figure 2 with these two modalities, i.e., M = {T, V}.

As pre-processing, the feature for each modality of each
node is extracted through a corresponding pre-trained en-
coder. Then, the core propagation module is designed to learn
enriched representations of nodes in the framework of hetero-
geneous graph transformer (HGT) [Hu er al., 2020]. To cap-
ture synergetic effect of multi-modal attributes, we primarily
innovate with a Cross-modal Influence Unit, which nests
the inter-modal attention into modal-specific inter-node atten-
tions, allowing the aggregation weights to be determined by

all modalities together. Besides, an additional loss for inter-
modal attention and a modulation on inter-node attention are
employed during propagation to mitigate the impact of nodes
with missing and misaligned modalities respectively.

At last, the feature fusion module incorporates the repre-
sentations from different modalities also in an attentive man-
ner. For semi-supervised training, the cross-entropy loss on
both multi-modal and uni-modal features, as well as the at-
tention loss are combined with equal proportions.

4.2 Heterogeneous Network Propagation Module

In order to aggregate the embeddings of heterogeneous neigh-
bors for the semantic enrichment of each node, we adopt HGT
as the base architecture instead of dual-level ones [Hu et al.,
2019; Wang et al., 2019] to uniformly handle various types of
nodes and edges with the help of multiple type-dependent fea-
ture projection functions. That facilitates the characterization
of complicated interactions among heterogeneous entities and
their multi-modal attributes.

Considering the discrepancy among node types, for each
node v; and its feature on a modality m, we initially make a
linear function dependent on node type to get the embedding

hgo),m at the 0-th layer, as the starting point of aggregation.
0),m = (0),m
B = By () (M)
where BEO)’m is the output of the m-encoder in the pre-

processing phase. Then, each node v; expects to receive in-
formation from its neighbor set, denoted as N; C V.

Cross-modal Influence Unit
Like previous work of multi-modal fusion in GNNs, the prop-
agation here is still executed for each modality m (e.g., text
or vision) separately, but as exemplified in Figure 1, other
modalities should also take effect in deciding the importance
(weights) of neighbors. Thus, we need to compute these
weights from the perspective of each influencing modality
based on the similarity of the features on that modality, and
unequally combine them in an adaptive way.

Specifically, for each influencing modality m’ € M, given
a current node v; and one of its neighbors v; € N, the im-
portance of v; for v; at the k-th layer can be calculated as the
similarity of the two nodes on this modality, and realized by
a bilinear transformation following HGT [Hu et al., 2020]:

(hgk—l),7n )

2
where [X and [Q are two linear functions dependent on the
node type similar to !, and WNOPE ig a learnable matrix de-
pendent on the edge type. Then, the inter-node attention score
between v; and its neighbor v; at the k-th layer on the modal-
(k)7m/
ij

k),m’ k—1),m’
(k),m" _ K )(h(v ) ) - NODE).lg

9ij P(v;) 1y é(v;,0; (v2)

and computed as follows:

o (o)

(k),m’
j7en: €XP ( g;5

ity m’ is denoted as

k),m’ k),m’

3)
Here, a single attention head is used for simplicity, and is easy
to be extended to multiple heads similar to HGT.
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Figure 2: Framework of HGNN-IMA comprising of three modules, compared with existing modal fusion strategies on the bottom right.

With these attention scores on each modality, it is crucial to
determine which modalities are suited to play more important
roles. That naturally depends on the features of the two nodes
v; and v;, so should be learned adaptively. To this end, we
design a nested attention mechanism. At first, the inter-modal
attention score for the modality m/’ is calculated in two steps:

(k)7 _ lK

k—1),m’
sty " = U (05T WP 13

é(vj,vi) (i)

exp( (k),m )

) - (k).m”
> mrem €XP (Sij )
&)
Notice that we use the same features of the two nodes as the
inter-node attention o, but different parameters WMOPAL to
characterize their correlations from the perspective of cross-
modal influence, instead of similarity.

(")
)

(k),m

ij

)\l(.k)’m = softmax (
J vm'eM

"™ in Equa-
(k),m
ij
Equation 3, and obtain the combined inter-node attention ﬂ( )
reconciling the features and effects of all modalities:

M
(k) _ (k),m’ | (k),m
o =smae 30 (K e™) )@

m’/=1

Next, we apply the inter-modal attention )\(I-C)

tion 5 on the modal-specific inter-node attention «; in

It is worth noting that this attention is independent of the
current (influenced) modality m. In other words, for a spe-
cific node, the features of all modalities are propagated ac-
cording to unique weights from its neighbors. Although com-

promising the expressiveness to some extent, this simplifica-
tion is reasonable to maintain a moderate number of parame-
ters and highlight the essential idea of the cross-modal influ-
ence, which is certified via ablation study in Section 5.5.

In view of the complexity of multi-modal data, there exist
the phenomenons of modality misalignment and even miss-
ing. Therefore, the inter-modal attention and the inter-node
attention need to be adjusted accordingly to fulfill a smooth
and category-oriented propagation.

Attention Loss for Missing Modalities

As formulated in Section 3, there exist some types of nodes
not possessing all modalities originally, and their features on
the missing modalities have to be completed in some way,
so they should not take much effect compared to modalities
with real attributes. To address this issue, we specially design
a loss function to constrain the inter-modal attention scores
computed by Equation 5 in such cases are not too large:

L D D DED DD DNV
| | v, €V v;EN; 1<k<K m!'éf(¥(v;))
(7

where K is the number of propagation layers.

Attention Modulation toward Modality Alignment

Even for those nodes possessing all modalities, the attributes
of some modalities may not represent the correct meaning of
nodes due to the irregularity of Internet. If a node suffering
such misalignment propagates too much information to the
current node, it is inevitable to import noises in the aggre-
gation. Since the similarity of two nodes on each modality
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has been computed in Equation 2, we can utilize the consis-
tency of these scores to imply the modality alignment degree
of each neighbor, and thus get a new inter-node attention 3
for the aggregation weights as follows.

alk) _ (k),ma (k),ma
By = sggtér]l\gx Z 195 =9 (3)
my,maEM

Then, through mixing the two inter-node attentions from

different views into final aggregation weights ﬂ( ), the em-
bedding of each modality m at the k-th layer is computed as:

Bi(j = softmax(ﬁff) Bl(f)) )
R = 37 g M

JEN;
where M is the fourth function dependent on node type and
WMSG s the third learnable matrix dependent on edge type.

At last, to avoid over-smoothing, we introduce a residual
connection to get the final output at the k-th layer, with the
sigmoid function and another type-dependent function I*:

b = 1, (o0 + 0T A

by (T IS (10)

4.3 Feature Fusion Module

Although the computation of embeddings for each modality
has already taken cross-modal influence into accounts, they
are still required to be fused to get final representations. We
use standard modality-level attention to learn adaptive impor-
tance of each modality for classification at the last layer:

w™ = wq - tanh(wy - h(K)’ )+ bo (12)
- exp(w!™)
Y omren exp(W™)

The final embedding Z; of node v; is then Calculated, and the
probability distribution O; of v; for each category is obtained:

0;" = softmax(w;"

13)

Zi= Y om-nlom (14)
meM
O, = softmax(W; - Z;) (15)

4.4 Training Objective
For semi-supervised classification, the cross-entropy loss is
used. To embody the effect of each modality, we incorporate
the losses of individual modalities into the fused one:
1
Lcro = Z yT IOg
1+ |M| v; EV meMv; V)

(16)
where V' is the labeled target node set, and y; is the one-hot
label vector for v;. O}" is the embedding for each modality
m, computed similar to O; in Equation 15, but replacing Z;
by hEK)’m. Then, the whole loss function is expressed as the
equal-weight sum of the two losses:

L= Lcro + Latt (17)

It can be inferred that the total computational complexity is
O(|V]2 - |IM|?), which demonstrates the scalability of the
model when handling large graphs and multiple modalities.
To save space, the detailed analysis is put in Appendix.

+ Y Yy log(07Y)

Dataset Nodes  Edges Edgetypes Categories
DOUBAN 6627 15032 4 2
IMDB 11616 34212 4 3
AMAZON 13189 174154 3 3
AMAZON-1 58088 632238 4 12
AMAZON-2 58088 632238 4 12

Table 1: Dataset statistics.

S Experiments

In this section, we first introduce the datasets, baselines, and
experimental settings. Subsequently, we demonstrate the su-
periority of our model over baselines on node classification,
followed by ablation study and hyper-parameter analysis.

The experiments were performed on NVIDIA Tesla V100
32 GPUs, and implemented in Python 3.9 with PyTorch.!

5.1 Datasets

We evaluate our model on five diversified real-world bench-
mark datasets. The statistics of them are shown in Table 1.

» DOUBAN? and IMDB® collect data from two online
movie websites respectively. Movies (M), actors (A) and
directors (D) compose the heterogeneous network with
edge types AM, MA, MD and DM. Besides textual de-
scriptions, each movie possesses a poster image, and can
be categorized into “Action”, “Comedy” and ‘“Drama”
(“Drama” only exists in IMDB).

+ AMAZON* contains items (I) and user reviews (U) in
Amazon, with three types of relations: UI, IU and II.
Each item (product) has a text and an image. Three sub-
categories of appliances are used for classification.

* AMAZON-1 and AMAZON-2 are self-constructed larger
datasets under the Electronics category in the AMAZON
dataset’. Four types of relation between items are se-
lected: also_buy, also_viewed, buy_after_viewing, and
bought_together. In AMAZON-2, the price of items is
added as the third modality.

5.2 Baselines

For baselines, we choose representative models of the three
manners regarding modalities: (1) typical heterogeneous
graph neural networks without handling multi-modal at-
tributes (HAN [Wang er al, 2019], SHGP [Yang et al.,
2022], SeHGNN [Yang et al., 2023b], HERO [Mo et al.,
2024]) and HGT [Hu et al., 20201, for which we employ both
early fusion and late fusion strategies; (2) special heteroge-
neous graph neural networks tackling multi-modal attributes
(HetGNN [Zhang et al., 2019] by early fusion , MHGAT [Jia
et al., 2022] by late fusion with two versions of inter-node
aggregation, and XGEA [Xu er al., 2023] considering fixed

'The code is available at https://github.com/Jiafan-ucas/
HGNN-IMA
*https://github.com/jiaxiangen/MHGAT/tree/main/douban
*https://github.com/Jhy1993/HAN/tree/master/data/imdb
“https://github.com/jiaxiangen/MHGAT/tree/main/amazon
Shttps://nijianmo.github.io/amazon/index.html
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Datasets DOUBAN IMDB AMAZON AMAZON-1 AMAZON-2

Metrics | Micro-F1 ~ Macro-F1 | Micro-F1 ~ Macro-F1 | Micro-F1 =~ Macro-F1 | Micro-F1 ~ Macro-F1 | Micro-F1 =~ Macro-F1

HAN early 0.8707 0.8666 0.7267 0.7262 0.8594 0.8015 0.8532 0.6866 0.8542 0.6927

late 0.8737 0.8699 0.7300 0.7286 0.8337 0.7737 0.8250 0.6157 0.8208 0.5936

SHGP early 0.8319 0.8288 0.5488 0.5447 0.7483 0.6344 0.5989 0.3311 0.5678 0.3038

late 0.8224 0.8256 0.5320 0.5180 0.7748 0.6920 0.5911 0.3205 0.5844 0.3255

SeHGNN early 0.8667 0.8652 0.7496 0.7478 0.8726 0.8289 0.8554 0.7323 0.8522 0.7561

late 0.8677 0.8624 0.7453 0.7438 0.8550 0.8122 0.8571 0.7638 0.8554 0.7660

HERO early 0.8533 0.8493 0.6517 0.6102 0.8295 0.7699 0.8023 0.6755 0.8058 0.6546

late 0.8283 0.8252 0.6936 0.6848 0.8207 0.7547 0.8136 0.6862 0.8012 0.6723

HGT early 0.8508 0.8483 0.7407 0.7381 0.8773 0.8302 0.8883 0.7682 0.8882 0.7807

late 0.8654 0.8629 0.7419 0.7407 0.8703 0.8212 0.8931 0.7990 0.8871 0.7799

HetGNN (early) ‘ 0.8366 0.8332 ‘ 0.5068 0.4906 0.8328 0.7636 ‘ 0.7012 0.5187 ‘ 0.7129 0.4977

MHGAT (late) max 0.8629 0.8574 0.7364 0.7249 0.8638 0.8084 0.8011 0.6729 0.8003 0.6486

) 1 sum 0.8545 0.8468 0.7220 0.7127 0.7963 0.6734 0.7975 0.5929 0.7873 0.5433

IDKG ‘ 0.8462 0.8451 ‘ 0.7410 0.7387 0.8752 0.8276 ‘ 0.8504 0.5164 ‘ 0.8604 0.5268

XGEA ‘ 0.8765 0.8728 ‘ 0.7126 0.7047 0.8596 0.8001 ‘ 0.8847 0.7226 ‘ 0.8872 0.7301

HGNN-IMA ‘ 0.8778 0.8758 ‘ 0.7578 0.7560 0.8870 0.8427 ‘ 0.8946 0.8233 ‘ 0.8905 0.8182

Table 2: Overall results of HGNN-IMA and baselines on five datasets by two metrics. The best scores are in bold and the second in italic.

influence between modalities); (3) translation-based methods
treating the network structure a new modality (IDKG [Li et
al., 2023al). The details are provided in Appendix.

5.3 Experimental Settings

As to AMAZON, IMDB and DOUBAN datasets, we directly use
the encoded features provided by MHGAT [Jia et al., 2022].
For self-constructed datasets AMAZON-1 and AMAZON-2,
texts and images are encoded using CLIP [Radford et al.,
2021], while price is embedded through an FFENN. For miss-
ing visual attributes, we complete them with the text features
after encoding, as the only available information.

We divide each dataset into the training set (20%), the vali-
dation set (10%), and the test set (70%). The model is trained
using the Adam optimizer with a learning rate of 0.001, in-
corporating 3 layers of propagation (K = 3) and setting the
maximum number of iterations as 300. Each layer’s output is
subjected to a dropout with a rate of 0.6, and the dimension d
of all embeddings is standardized to 64. During propagation,
we employ multi-head attention with the number of heads set
to 8. To further prevent over-fitting, we employ an early stop-
ping mechanism with a patience of 50, which activates when
the validation loss exceeds any previously recorded values
and its accuracy dips below the highest recorded one. Both
Micro-F1 and Macro-F1 are used for evaluation. We report
the average results of five executions with different seeds.

5.4 Overall Results

Table 2 shows the overall results on five datasets. It can be
seen that our model consistently outperforms all the baselines
across all datasets. For the first three datasets, there are 1.2%,
1.6%, and 0.3% gains in Macro-F1 compared to the strongest
baseline. While, for the two larger datasets with more cate-
gories, the Macro-F1 value is promoted by around 2.5%. That

indicates the model is able to achieve a more balanced perfor-
mance improvement across all categories on larger datasets.

Specifically, HGNN-IMA is superior to typical HGNNs
such as HAN, SHGP, HERO and SeHGNN to a great extent,
no matter early pre-processing or late post-processing for
multiple modalities, so the special treatment on multi-modal
attributes in MMHNSs is necessary to understand the cate-
gories of entities and thereby worth studying. The second-
best performances of HGT on most datasets are attributed
to its use of type-dependent parameters to capture hetero-
geneous attentions over each edge from a global view. Our
model further enhances HGT via effectively handling modal-
ities.

Compared to HetGNN with explicit early concatenation of
multi-modal attributes, as well as MHGAT employing late
modality-level attention mechanism, the notable promotion
of our model can naturally give credit to the innovative nested
attention mechanism. It adaptively learns the cross-modal in-
fluence and determines the aggregation weights of each node
to attain expected information propagation, rather than just
blending multi-modal features before or after the propaga-
tion. Although XGEA considers the influence of another
modality in propagation, it assumes a fixed influence relation
and neglects the role of the current modality itself, so fails to
identify the complicated synergy of modalities on category-
oriented propagation for each node. Also, the advantage over
IDKG implies GNN-based propagation is essential to learn
discriminative node embeddings through incorporating high-
order correlations, especially facing multi-modal attributes.

Besides, we calculate the standard deviation (STD) of our
model and sub-optimal HGT, and conduct a two-sample t-
test between them, presented in Table 3. The results confirm
the stability of our model. Additionally, the p-value is less
than 0.05 in all datasets, indicating a significant difference be-
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Metrics DOUBAN IMDB AMAZON AMAZON-1 AMAZON-2 Variants DOUBAN IMDB AMAZON AMAZON-1 AMAZON-2
Ours (STD) 0.0015 0.0031 0.0019 0.0021 0.0033 -cross  0.8661 0.7344 0.8173 0.8125 0.8067
HGT (STD) 0.1261 0.0035 0.0072 0.0106 0.0076 -adapt  0.8594 0.7360 0.8397 0.8044 0.7696

t-value 3.01 4.18 4.09 4.36 6.14 +inf 0.8614 0.7319 0.8332 0.8101 0.7798

p-value 0.039 0.014 0.015 0.012 0.004 -nei 0.8599 0.7256 0.8241 0.8082 0.7921

-align 0.8562 0.7487 0.8389 0.8056 0.8095
Table 3: Standard deviation and t-test for HGNN-IMA and HGT.
-Latt 0.8467 0.7436 0.8334 \
-Lina  0.8602 0.7469 0.8392 0.8218 0.8270
tween HGNN-IMA and baseline models. The intuitive com- Ours 0.8758 0.7560 0.8427 0.8233 0.8182

parison on learned embeddings is displayed in Appendix.

5.5 Ablation Study

Here, we design hierarchical variants of HGNN-IMA to in-
spect the importance of the key components in the model.
Other ablative models are analyzed in Appendix.

* Removing or changing the Cross-modal Influence Unit

— HGNN-IMA —cross: It eliminates this unit and di-

rectly uses inter-node attention agf)’m to replace

(k). . .
B;; in Equation 6 for the aggregation.
— HGNN-IMA —adapt: It utilizes the mean of ag-c)’m

on each modality to serve as Bl(f ) in Equation 6,
losing weight adaptability.

— HGNN-IMA+inf: It distinguishes the influenced
modality m when computing the inter-modal atten-

tion to form )\Z(.f)’m "™ in Equation 5.

— HGNN-IMA—nei: It neglects the distinction
among the neighbors v; when computing the inter-

)\(k),m'

modal attention to form in Equation 5.

* Removing attention modulation for modality alignment
— HGNN-IMA—align: It directly uses inter-node at-
tention BZ(J]C ) to replace ijk )in Equation 10.
* Removing some part of loss functions

— HGNN-IMA—L,;;: It removes the attention loss to
disregard the modality missing issue.

— HGNN-IMA—L;,q: It removes the individual
modality part from the cross-entropy loss.

Table 4 proves that the Cross-modal Influence Unit is ben-
eficial, and the weights of influence should be adaptively
learned rather than pre-defined. We also find compared to the
traditional attention score al(’-c)’m, our nested one Bl(]k ) aligns
more closely with node categories, which is visualized in Ap-
pendix. Regarding the specific design of the nested inter-
modal attention, when altering the granularity such as adding
the influenced modality or removing the influencing node, the
performance declines in varying degrees. Hence, while the
core idea is simple, the tradeoff between expressiveness and
complexity in defining the cross-modal influence is nuanced.

Then, when removing the modulation term, the model ex-
hibits decreased performance for all datasets. That certi-
fies the unconstrained propagation according to the cross-
modal influence is susceptible to noises imported by inaccu-
rate modality attributes. The modulation based on similarity

Table 4: Macro-F1 of ablative models. The best scores are marked
in bold and second in italic. \” means inapplicable due to full data.

o

07l . —— DOUBAN
—— IMDB
+— AMAZON
AMAZON-1
AMAZON-2

1 2 3 a4
Number of Layers

Figure 3: Macro-F1 values with varied layer numbers

consistency just weakens this awkward impact through focus-
ing more on those nodes which realize modality alignment.
At last, the ablation for loss functions highlights their
respective roles within the model. An exception appears
when the single-modality loss is removed in the AMAZON-2
dataset. That can be explained as the introduction of the new
modality, so it should be cautious to consider the contribution
of individual modalities, which may bring a negative impact.

5.6 Hyper-parameter Analysis - Layer Number

We change the layer number K from O to 4, as shown in Fig-
ure 3. It can be observed that the trend of Macro-F1 scores is
similar across all datasets and arrives an optimal value when
K = 3. That is because adopting fewer than 3 layers pre-
vents sufficient information exchange, whereas the continual
increase of layers would lead to over-smoothing.

6 Conclusion

This paper delves into the intricate problem of node rep-
resentation learning within multi-modal heterogeneous net-
works, characterized with complicated interactions of modal-
ities and node/edge types. To overcome the limitations as-
sociated with early or late fusion of multi-modal features,
we put the fusion inside the GNN-based propagation process,
thereby prompting node representations to align closely with
category labels. Notably, the innovative inter-modal attention
acting on the modal-specific inter-node attention is proposed
to enable adaptive modal fusion, based on the heterogeneous
graph transformer framework. Moreover, another two critical
factors in multi-modal data, modality alignment and missing,
are also integrated into the model in a straightforward way to
achieve significant improvements on node classification.

Future work will extend this method to more tasks demand-
ing node representation learning with network structures.
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