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Abstract

Nighttime semantic segmentation is a critical yet
challenging task in autonomous driving. Most ex-
isting methods are designed for daytime scenar-
ios, resulting in poor nighttime performance due to
texture loss and decreased object visibility. Low-
light enhancement was applied before segmenta-
tion but failed to recover nighttime-specific details,
introducing noise or losing delicate structures. Re-
cent work shows that large-scale image-text pairs
can effectively leverage natural language priors
to guide visual representation, achieving remark-
able performance across various downstream vi-
sual tasks. However, effectively employing visual-
linguistic priors for nighttime semantic segmenta-
tion remains underexplored. To address these is-
sues, we propose Text-WaveletFormer, a novel end-
to-end framework that integrates text prompts and
wavelet-based texture enhancement. Specifically,
to compensate for the low recognizability of objects
in nighttime scenes, we design a Text-Image Fu-
sion Module (TIFM) to incorporate textual priors to
improve nighttime object recognition. In addition,
to alleviate the lack of texture details in nighttime
conditions, we introduce a Wavelet Guided Texture
Amplifier Module (WTAM) to fuse wavelet and
raw image features via cross-attention, restoring
low-light details. Finally, extensive experiments
on benchmarks including NightCity, NightCity-
fine, BDD100K, and CityScapes demonstrate our
method’s superior performance over existing ap-
proaches.

1 Introduction

In recent decades, autonomous driving has emerged as a
frontier in computer vision, intelligent transportation, and
robotics, attracting significant attention. Semantic segmen-
tation, a core technology for perceiving driving scenes [Li et
al., 2021; Schutera et al., 2020], is crucial for enabling au-
tonomous driving. However, existing segmentation methods
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Figure 1: Illustration of our motivation. (a) Conventional segmenta-
tion methods relying solely on visual information may fail to match
objects accurately under low light. (b) We use nighttime categories
as textual prompts to improve object recognition. (c) Wavelet trans-
form is applied to enhance texture details in low-light images.

[Chen et al., 2021; Yan et al., 2022] are designed mainly for
the day. In low-light environments, these methods fail to ad-
dress the unique challenges of nighttime settings effectively
due to insufficient illumination and the loss of fine details.
Although some studies have explored segmentation for night-
time scenes [Xie er al., 2023; Liu et al., 2024], they remain
hindered by issues such as detail loss and poor object dis-
tinguishability. Therefore, robust segmentation methods tai-
lored for nighttime scenarios are crucial to achieving reliable
autonomous driving throughout the day.

Let us rethink the challenges faced in nighttime semantic
segmentation: (1) Conventional segmentation methods typ-
ically use multi-scale visual features extracted by the back-
bone network as input for the segmentation decoder. How-
ever, in low-light or underexposed regions, relying solely on
visual features often leads to inaccurate object recognition (as
shown in Fig.1 (a), where low-light visual similarity can re-
sult in incorrect object matching). This limitation highlights
that visual feature extraction alone is insufficient to address
the complexity of object recognition. (2) Reduced ambient
light in nighttime environments significantly diminishes the
discernibility of textures and other details (as shown in Fig.1
(c), where the details of the target texture are difficult to iden-
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tify). This poses a challenge for networks to capture critical
visual elements. Without accurate texture information, it be-
comes difficult to perceive foreground objects with distinct
semantics in nighttime scenes effectively.

Conventional low-light segmentation methods rely on prior
assumptions, multi-stage training, and complex tuning pro-
cesses, making it challenging to comprehensively address the
complexity of nighttime scenes. For example, [Elmahdy et
al., 2024] combined a relighting model with a high-resolution
network to handle complex nighttime illumination condi-
tions. [Liu er al., 2024]focused on challenging categories
by employing a dual-stream network and adaptive probability
fusion mechanism. [Chen et al., 2023] designed an adaptive
weighted down-sampling layer and interference suppression
learning to mitigate the impact of low-light noise on features.
Although these methods alleviate some challenges in night-
time scene segmentation, they often require complex tuning
during training and struggle to achieve accurate object match-
ing in nighttime scenarios.

Recently, with the emergence of large-scale image-text
pretraining models such as CLIP [Radford er al., 2021], the
semantic association capability between text-image pairs has
provided new solutions for dense prediction tasks (e.g., im-
age segmentation and object detection). [Rao er al., 2022]
extended CLIP’s image-text matching to pixel-text match-
ing, significantly improving the performance of segmentation
models. [Liu et al., 2025] combined linguistic information
with visual features, enabling models to identify arbitrary
target regions based on textual descriptions. These studies
demonstrate that introducing vision-language priorities can
significantly enhance the models’ ability to understand and
offer new perspectives for recognition in nighttime scenarios.

On the other hand, introducing frequency domain informa-
tion complements the representation of texture details. [Xie
et al., 2023] analyzed the differences in the frequency domain
distributions between daytime and nighttime images, pointing
out that the high-frequency information of nighttime images
is lost due to insufficient illumination. [Yang et al., 2024] uti-
lized Haar wavelet transform to decompose features into low-
frequency and high-frequency components, which were then
combined with spatial features to improve segmentation per-
formance for remote sensing images. These studies indicate
that frequency information can effectively compensate for de-
ficiencies in spatial features, offering insights for enhancing
texture details in low-light scenarios.

In summary, to address the challenges in semantic segmen-
tation tasks under nighttime scenarios, we propose a Text-
WaveletFormer, composed of the Text-Image Fusion Mod-
ule (TIFM), and the Wavelet-Guided Texture Amplifier Mod-
ule (WTAM). (1) For the TIFM, we leverage textual descrip-
tions of nighttime categories to provide semantic supplemen-
tation and localization support for image segmentation and
achieve accurate object matching in low-light environments.
It effectively enhances the model’s ability to understand tar-
get regions. (2) For the WTAM, to capture the weakened
texture detail information of the original image, we intro-
duce an attention mechanism to compute the weights for de-
tail enhancement. The local detail features extracted through
wavelet transforms are fused with the target features of the

original image, thereby amplifying subtle but critical visual
features in the original image. It enables the model to cap-
ture key information in the foreground more sensitively in
low-light conditions. By addressing accurate object recogni-
tion and texture detail enhancement, our approach effectively
analyzes and segments targets in nighttime scenes, achieving
promising results. Our contributions are summarized as fol-
lows:

* We propose a novel nighttime semantic segmentation
framework, Text-WaveletFormer, which overcomes the
limitations of relying solely on low-light image enhance-
ment before segmentation.

To address the challenge of low object discernibility
in nighttime scenes, we introduce the TIFM to inte-
grate textual prompts with visual information, leverag-
ing prior knowledge to enhance the model’s ability to
recognize objects in nighttime environments.

To alleviate the issue of texture detail loss under low-
light conditions, we design the WTAM to utilize wavelet
transforms and attention mechanisms to capture high-
frequency components of wavelet-transformed images,
thereby enhancing texture details in the image.

Extensive experiments on various challenging bench-
marks show that the proposed method outperforms state-
of-the-art nighttime semantic segmentation.

2 Related Works

Semantic segmentation is one of the core tasks in com-
puter vision, aiming to classify each pixel in an image for
precise visual understanding. Early models, such as FCN
[Long et al., 2015], U-Net [Ronneberger et al., 2015], and
SegNet [Badrinarayanan et al., 2017], introduced skip con-
nections and encoder-decoder architectures, significantly im-
proving segmentation accuracy. Later models, including
DeepLab [Chen et al., 2014; Chen et al., 2017] and Uper-
Net [Liu et al., 2020], employed dilated convolutions and
feature pyramids, further enhancing feature learning and con-
text aggregation capabilities. In recent years, Transformer-
based frameworks, such as MaskFormer[Li et al., 2022] and
Mask2Former [Cheng et al., 2022], shifted the focus from
pixel-level to mask classification, significantly improving in-
stance segmentation accuracy. However, semantic segmenta-
tion tasks still face challenges under low-light conditions.

To address this, nighttime semantic segmentation has be-
come a critical research direction. Early studies primarily fo-
cused on unsupervised domain adaptation [Wu et al., 2021;
Gao et al., 2022; Liu et al., 2023] to bridge the gap between
daytime and nighttime data. With the introduction of the
NightCity [Tan et al., 2021] dataset, research attention has
gradually shifted towards fully supervised learning [Liu et al.,
2024; Wei et al., 2023]. Despite these advancements, most
existing methods still rely on enhancing the visual quality of
nighttime images (e.g., illumination adjustment) before ap-
plying general segmentation architectures, which do not fully
address the inherent challenges of nighttime scenes. There-
fore, this paper proposes a novel semantic segmentation net-
work that leverages category-level text prompts to enhance
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Figure 2: The architecture of the proposed Text-WaveletFormer
framework, including a TIFM for accurate target recognition and
localization, and a WTAM for enhancing texture details.Where TE,
IE, and WE represent the Text Encoder, Image Encoder, and Wavelet
Image Encoder, respectively, and ID represents the Image Decoder.

object recognition under low-light conditions, while also im-
proving target texture details to tackle the challenges of night-
time semantic segmentation effectively.

3 Method

3.1 Overview

As illustrated in Fig.2, we propose a novel nighttime semantic
segmentation framework, Text-WaveletFormer, which over-
comes the limitations of traditional low-light image segmen-
tation through TIFM and WTAM. TIFM aligns category-level
text embeddings with multi-scale image features, thereby en-
abling text semantics-guided segmentation. WTAM lever-
ages multi-scale and wavelet texture features, enhancing im-
age detail reconstruction through multi-head attention.

3.2 Text-Image Fusion

Recent studies [Rao et al., 2022; Zhou et al., 2022a] show that
textual information can improve the understanding of images
by the model. However, directly transferring CLIP’s knowl-
edge to segmentation tasks in nighttime scenarios is prone
to environmental noise, resulting in inaccurate segmentation.
To address this, we propose the TIFM, as shown in Fig.3, to
better leverage language priors and improve segmentation re-
liability under nighttime conditions.

Given the high-level features Fy € R7+*xWaxCa extracted
from the fourth stage of the backbone, where Hy, Wy, and
C, represent the height, width, and number of channels of
the feature map, the TIFM first applies global average pool-
ing to obtain the global feature Fy € R'*%4. This global
feature is then concatenated with F; along the channel dimen-

sion to form [Fy, Fy], which is subsequently passed through
an MHSA layer for processing, producing the output [Z, Z],
where Z € R'*% and Z € RH+*WaxCa,

We construct text prompts for K nighttime semantic seg-
mentation classes. Drawing from DenseCLIP [Rao et al.,
2022] and CoOplZhou et al., 2022b], we introduce learnable
text contexts to enhance category prompts. Backpropagation-
driven context optimization improves downstream task trans-
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Figure 3: The structure of proposed TIFM. It enhances model’s abil-
ity to comprehend target regions in nighttime scenarios by facilitat-
ing interaction between textual prompts and visual information.

ferability, thus modifying text encoder input as follows:
[pex], 1<k<K ey

where p € RNxC represents the learnable text context, and
er € RC denotes the embedding of K-th class name. The
category-specific text features are then extracted using the
CLIP text encoder.

Next, text descriptions provide semantic and localization
support for image segmentation, while visual context en-
hances the accuracy of text representations. Through the
cross-attention mechanism in the Transformer decoder, we
explore the interaction between vision and language. By in-
troducing a language-guided query selection mechanism, we
precisely localize visual objects based on input text, select-
ing the most relevant visual information as decoder queries.
Specifically, given image features X; € RV7*4 and text fea-
tures X7 € RN7*4 the Top%, operation is applied along the
last dimension to select the most relevant features:

Ing = Topd, (Max™' (X;X7)) 2)
The selected feature information is then combined with the

visual and textual features and fed into the decoder, where the
cross-attention mechanism refines the visual cues:

Upost = TransDecoder (Ing, t, [Z, Z]) 3)

Furthermore, after identifying the visual cues most relevant
to the textual features, the textual features are updated via
residual connections:

t<—t+7"upost 4)

where v € R is a learnable parameter that controls the
scaling of the residuals. -y is initialized with a very small
value(e.g., 10%) to preserve the linguistic priors in the tex-
tual features as much as possible. Finally, the compati-
bility score between pixels and text is computed using the
language-compatible visual features Z and the updated tex-
tual features ¢: 4

score = Z - 1 (®)]

where Z and ¢ are the L2-norm normalized results of the vi-
sual features Z and textual features ¢ along the channel di-
mension. The score describes the degree of pixel-text match-
ing and can be regarded as a weakly supervised segmentation



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Wavelet-Guided Texture Amplified

P — Fs F R

e | .
Texture Amplified Layer
Wavelet-Guided Multi-head Cross-Attention
—PF L oad :
Q f
f fC e l
=|—a95 “ e
L

F fc 1

Figure 4: The proposed WTAM is specifically designed to enhance
weakened texture details in low-light environments.

result at a low resolution. Therefore, it can be used to cal-
culate an auxiliary segmentation loss. Additionally, the score
map can be concatenated with the final feature map to explic-
itly integrate visual-linguistic priors.

3.3 Wavelet-Guided Texture Amplifier

Since complex details such as edges and textures can be cap-
tured through wavelet transform, particularly in low-light or
complex background conditions, we design the WTAM to en-
hance the suppressed texture details in pixel-level features at
different resolution scales, as shown in Fig. 4. Specifically,
during the image preprocessing stage, given a nighttime im-
age x € REXWX3 3 two-dimensional discrete wavelet trans-
form (DWT) is performed on each channel ¢ € {R, G, B}:

(A, (H¢, V., D.)) = DWT(x..) ©6)

where H., V., and D, represent the horizontal, vertical,
and diagonal high-frequency components, respectively, cap-
turing details in different directions. To enhance texture, the
low-frequency components Ag, Ag, and Ap from the three
channels are averaged to form a new low-frequency compo-
nent A,, scaled by a weight . Simultaneously, for each
channel’s high-frequency components, a weight p amplifies
their contributions:

Arp+ Ag+ Ap
3
H, /“LHu V/:,uVCa D::,uDC (8)

c c

Aavg =X )

So far, the weighted low-frequency and high-frequency
components are combined, and an inverse wavelet transform
is performed to reconstruct the image for each channel:

xl, = DWT ! (Aaves (He, Ve, De)) )

The reconstructed results of the three channels are then
combined to produce the final processed image z’ €
RI*WX3 The reconstructed image is subsequently fed into
a lightweight encoder to extract texture features f.

To obtain fine-grained target information with richer
texture details, we first extract multi-scale features
from the backbone network at different resolution lev-
els {Fy,Fy, F3,F,}, along with the texture features

f- Subsequently, the WTAM is applied at each resolu-
tion level to enhance the suppressed texture details in
the pixel-level features. Inspired by the complementar-
ity of frequency and spatial features[Xie er al, 2023;
Yang et al., 2024], we explore the potential of wavelet
transform to amplify texture details for nighttime image
segmentation. Given image features F' € R *"X% from
the backbone network and texture features f € R¢s*hxw
from the lightweight encoder, we introduce an attention
mechanism to compute enhancement weights, fusing
wavelet-derived local details with the original image features
to restore degraded details in low-exposure conditions better.
First, two convolutional layers map F' and f to the same
dimension c, then reshape them into F, and f. for attention
input. The query comes from reshaped texture features f.,
while the key and value are derived from the reshaped image
features F.. Formally:

RQ=Wq-fo, K=Wg-I,

where F., f. € R"*%X¢ are the reshaped versions of the in-
puts, and Wq, Wg, and Wy, € Re*4, n the typical attention
mechanism, the attention score between the query and the key
is computed using a dot product, and the attention weights are
obtained through softmax:

V=Wy-F (10)

T

Attention(Q, K') = softmax (Q\/Ig ) (11)

Unlike standard attention mechanisms that capture limited

textural details, we design a wavelet-guided attention mech-

anism that more finely integrates wavelet textures into target

features, effectively amplifying subtle yet crucial visual char-
acteristics of the original image.

d / !
Attention(Q, K) = > (W) (12)

where ', K/ € RhwXhwxe are the repeated and expanded
versions of ) and K along the second and first dimensions,
respectively. Finally, the customized attention weights are
applied to the values V, and the result is reshaped to obtain
the amplified output:

J' = reshape (Attention(Q, K) - V) (13)

c=1

The wavelet-guided texture amplification process is per-
formed on features at different scales and resolutions. Tex-
tures are transferred across resolution scales through upsam-
pling and skip connections until the final high-resolution fea-
ture F'y is obtained. The texture information derived from the
wavelet transform can extract weakened detail information in
nighttime scenes more effectively, enabling the segmentation
model to flexibly and coherently interpret low-light images.
In this way, the WTAM can capture texture information from
coarse to fine, facilitating accurate delineation of objects and
regions with varying levels of complexity.

3.4 Training and Inference

For training, we follow the configuration of previous work
[Cheng et al., 2022], using cross-entropy loss to constrain
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Method Backbone Parameters NightCity NightCity-fine
NightCity[Tan ef al., 2021] ResNet101 84.6M 51.8 55.9
PSPNet[Zhao et al., 2017] ResNet101 88.3M 46.3 49.5
DeepLabV3+[Chen et al., 2018] ResNet101 60.1M 54.7 58.8
DANEet[Fu et al., 2019] ResNet101 76.3M 56.0 59.3
NightLab[Deng et al., 2022] ResNet101 98.5M 559 62.3
Mask2former[Cheng er al., 2022]  ResNet101 63.7M 58.9 61.5
DTP[Wei et al., 2023] ResNet101 63.9M 57.6 60.4
ours ResNet101 95.2M 60.9 (+2.0) 63.3 (+1.8)
UPerNet[Liu et al., 2020] Swin-Base 102.5M 57.7 60.5
UPer-Swinl[Liu et al., 2021] Swin-Base 119.9M 58.4 61.1
NightLab[Deng er al., 2022] Swin-Base 242.4M 59.8 62.3
Mask2former[Cheng er al., 2022]  Swin-Base 107.8M 61.0 63.6
DTP[Wei et al., 2023] Swin-Base 122.5M 61.2 64.2
ours Swin-Base  167.6M  62.8 (+1.6)  65.4 (+1.2)

Table 1: Comparison of methods on NightCity and NightCity-fine datasets. Improvements over previous methods highlighted.

(a) Image (b) Ground Truth

(c) Mask2former

(d) DTP (e) Ours

Figure 5: Qualitative comparison of our Text-WaveletFormer and other methods on the NightCity-fine dataset.

the instance classification scores, and a linear combination of
binary cross-entropy loss and Dice loss to constrain the mask
predictions. Additionally, the text-image matching score can
be considered as weakly supervised segmentation results at
low resolution, and during training, cross-entropy loss is used
to compute the loss between it with the segmentation labels.
This auxiliary segmentation loss is computed only during the
training phase.

Train on NightCity & CityScapes

Method Backben® NightCity CityScapes
NightCity[Tan ef al., 2021] ResNet101 53.9 76.9
DeepLabV3+[Chen et al., 2018] ResNet101 59.0 73.6
Mask2former[Cheng et al., 2022] ~ ResNet101 59.7 79.9
DTP[Wei et al., 2023] ResNet101 59.9 75.2
ours ResNetl01  61.9 (+2.0) 81.2 (+1.3)
UPer-Swin|Liu et al., 2021] Swin-Base 59.7 76.0
NightLab[Deng ez al., 2022] Swin-Base 60.2 771
Mask2former[Cheng et al., 2022] ~ Swin-Base 62.3 83.3
DTP[Wei et al., 2023] Swin-Base 63.3 78.3
ours Swin-Base  64.1 (+0.8) 84.3 (+1.0)

Table 2: Comparison of results on the NightCity and CityScapes
datasets. Note that the training process (NightCity and CityScapes)
refers to the use of both training sets.

4 Experiments
4.1 Dataset

Following previous practices[Deng er al., 2022; Wei et al.,
2023; Cheng et al., 2022], we evaluate the nighttime semantic
segmentation performance of our method on four datasets:
NightCity, NightCity-fine, CityScapes, and BDD100K.

NightCity [Tan et al., 2021], the largest nighttime seman-
tic segmentation dataset, contains 4,297 real nighttime im-
ages, with 2,998 for training and 1,299 for validation. All
images are 1024 x 512 in resolution, with 19 categories con-
sistent with CityScapes. It provides valuable annotations for
nighttime scene research.

NightCity-fine [Wei er al., 2023] is an improved version
of NightCity, correcting annotation errors in both the training
and validation sets, with human annotator assistance, result-
ing in more accurate labels and better evaluation.

CityScapes [Cordts er al., 2016], an autonomous driving
dataset, contains daytime images from 50 cities, with 2,975
training and 500 validation images, all at 2048 x 1024 reso-
lution. Following previous setups, as shown in Tab.2, we use
only the training set to assist in the training process, serving
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BDD100K-night

Method Backbone Train on B-N  Train on B-N & B-D
NightCity[Tan er al., 2021] ResNet101 28.4 39.7
DeepLabV3+[Chen et al., 20181+ ResNet101 30.1 43.4
NightLab[Deng et al., 20221 ResNet101 31.3 45.1
Mask2former[Cheng et al., 2022] ResNet101 31.7 50.2
DTP[Wei et al., 2023] ResNet101 31.4 47.5
Learning Nightime[Liu ef al., 2024] ~ ResNet101 31.3 -
ours ResNet101 33.6 (+1.9) 53.1 (+2.9)
UPer-Swin[Liu et al., 2021] Swin-Base 31.7 48.0
NightLab[Deng e al., 2022] Swin-Base 354 50.4
Mask2former[Cheng et al., 2022] Swin-Base 34.5 55.1
DTP[Wei et al., 2023] Swin-Base 36.9 53.1
Learning Nightime[Liu ef al., 2024] ~ Swin-Base 36.6 -
ours Swin-Base 38.6 (+1.7) 57.5 (+2.4)

Table 3: Comparison of results under different training processes on
the BDD100K dataset. B-N denotes the BDD100K-night training
set, while B-N & B-D represents the entire BDD100K training set.

as a reference for the effectiveness of our method.

BDD100K [Yu et al., 2020] is a large-scale driving dataset
with various weather conditions, including nighttime (B-N)
and daytime (B-D) scenes. We use a subset, BDD100K-night,
for supplementary experiments, with 314 nighttime images
for training and 31 for validation. The complementary dataset
is BDD100K-day.

4.2 Implementation Details

To ensure a fair comparison of model performance, we adopt
the commonly used evaluation metric in image segmentation
tasks—mean Intersection over Union (mIoU). Our model is
implemented using the MMSegmentation framework. During
training, we apply the recommended preprocessing methods
from MMSegmentation, including mean normalization, ran-
dom scaling, and flipping, on the NightCity, NightCity-fine,
and CityScapes datasets. We use the default CityScapes 90k
training configuration with a batch size of 16. For wavelet
image reconstruction, A = 0.1 and p = 10, with their effects
on segmentation accuracy tested in the ablation experiments.
To handle size variations during inference, we use input im-
age versions rescaled by factors of [0.5, 0.75, 1.0, 1.25, 1.5,
1.75]. Additionally, we apply horizontal flipping and average
the predictions from all augmented versions.

4.3 Main Results

Quantitative Evaluations. Our method demonstrated supe-
rior performance across multiple benchmark datasets, achiev-
ing state-of-the-art results on NightCity, NightCity-fine, and
BDDI100K-night. As shown in Tab.1, using the ResNet101
backbone, our method achieved mloU scores of 60.9 and 63.3
on the NightCity and NightCity-fine datasets, respectively,
improving over existing methods by 2.0 and 1.8%. With
the Swin-Base backbone, performance further improves to
62.8 and 65.4. Additionally, as shown in Tab.2, when trained
jointly on the NightCity and CityScapes datasets, our method
achieved 64.1 mloU on NightCity and 84.3 on CityScapes,
improving by 0.8 and 1.0% over existing methods. These re-
sults highlighted our model’s ability to generalize across dif-
ferent lighting conditions, effectively integrating knowledge
from both day and night images to enhance segmentation per-
formance. Finally, as shown in Tab.3, on the BDD100K-night
dataset, our method obtained 38.6 mloU when trained only
on nighttime data (B-N), improving by 1.7 percentage points

Components Train on B-N & B-D  Train on NightCity
WTAM TIFM
X X 55.1 61.0
v X 56.9 (+1.8) 62.1 (+1.1)
X v 56.3 (+1.2) 62.2 (+1.2)
v v 57.5 (+2.4) 62.8 (+1.8)

Table 4: Ablation of main components on NightCity and BDD100k-
night.

Text Prompt  NightCity-fine
CLIP 64.8
CLIP+ours 65.4 (+0.6)
BLIP 63.9
BLIP+ours 65.0 (+1.1)

Table 5: Ablation study on the effectiveness of our text prompt strat-
egy.

over existing methods and 57.5 mloU when trained on the full
BDD100K dataset (B-N & B-D), outperforming other meth-
ods by 2.4%. These results highlighted the robustness and
generalization of our approach in handling complex night-
time segmentation tasks and its ability to generalize across
different lighting conditions.

Qualitative Results. As shown in Fig. 5, our method exhib-
ited strong segmentation performance across various night-
time scenes. Specifically, the proposed Text-WaveletFormer
performed well in most cases, especially in low-light areas,
where subtle objects like “traffic signs” and “traffic lights”
were still accurately detected. In the first row of Fig. 5, other
methods misclassified the window next to the pole as a traffic
light, while our method correctly identified it. In the sec-
ond row of Fig. 5, other methods struggled to maintain the
integrity of the “traffic sign” area, whereas our method suc-
ceeded.

4.4 Ablation Study

Study on the WTAM. To assess the contribution of Wavelet
Enhancement, we conducted experiments on BDD100K-
night and NightCity datasets. As shown in Tab.4, without the
WTAM, the baseline performance was 55.1 on BDD100K-
night and 61.0 on NightCity. After applying the WTAM, the
scores increased to 56.9 (11.8) and 62.2 (11.2), respectively,
demonstrating its effectiveness in improving performance on
low-light datasets and enhancing segmentation accuracy in
complex environments.

Contribution of the TIFM. We further analyzed the contri-
bution of the TIFM module to overall performance. As shown
in Tab.4, experiments with and without the TIFM, combined
with the WTAM, highlighted its impact. Without the TIFM,
the performance improvement was limited, even with the
WTAM: on BDD100K-night, the score is 56.9 (11.8), and
on NightCity, it is 62.1 (11.1). With TIFM, performance im-
proves further: on BDD100K-night, the score rises to 57.5
(12.4), and on NightCity, to 62.8 (11.8). These results un-
derscored the significant contribution of the TIFM module.
When combined with the WTAM, the TIFM led to substan-
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Figure 6: Selection and sensitivity analysis of hyperparameters A and p in wavelet transform image reconstruction.

Enhancing Strategies NightCity-fine

Fourier 64.2
Canny 64.0
HFC 63.9
Sobel 64.4
Wavelet 65.4

Table 6: Ablation study of different enhancement strategies in the
texture enlargement module on the Nightcity-fine dataset.

tial performance gains, demonstrating strong synergy on both
datasets.

5 Discussion

Does the TIFM better utilize language priors? Previous
experiments have demonstrated the effectiveness of our pro-
posed Text-Image Fusion module. However, since Dense-
CLIP has successfully applied language priors from text en-
coders to general segmentation tasks, it is important to as-
sess whether this method’s applicability is restricted in spe-
cific domains, such as nighttime scenes. Specifically, we in-
vestigate whether DenseCLIP’s direct transfer to nighttime
scenes is sufficient and whether the TIFM module better
leverages language priors in such scenarios. To answer this,
we conducted experiments comparing different models’ per-
formance on the NightCity-fine dataset, as shown in Tab.5.
We incorporated text encoder knowledge from the base mod-
els of CLIP and BLIP and optimized them with the TIFM.
Results show that the mloU score of the CLIP base model
improved from 64.8 to 65.4 (+0.6) after adding OURS, while
the BLIP base model’s mloU score increased from 63.9 to
65.0 (+1.1). These results indicate that the Text-Image Fusion
module better utilizes language priors to nighttime scenes,
significantly enhancing model performance. This further val-
idates the effectiveness and applicability of our approach.

Is the WTAM the only effective method for amplifying
texture detail information? To assess whether wavelet
enhancement was the sole effective method for texture de-
tail amplification, we comparatively analyzed various en-
hancement strategies on the NightCity-fine dataset, as de-
picted in Tab.6. Fourier, Canny, and HFC (Gaussian filter-

ing) methods demonstrated comparable performance, yield-
ing mloU values of 64.2, 64.0, and 63.9, respectively. So-
bel marginally improved performance, achieving 64.4. The
wavelet method significantly outperformed alternative strate-
gies, scoring 65.4, thereby validating WTAM’s efficacy in
capturing multi-scale texture details, rendering it particularly
well-suited for complex nighttime scenarios.

Analysis of hyperparameters. When selecting A and p, we
hypothesized the importance of high-frequency information
(u > 1) while reducing the contribution of low-frequency
information (A < 1), as low-frequency information is some-
what redundant but not entirely negligible. Consequently, we
empirically chose the values 0.1 and 10. In preliminary exper-
iments, we attempted to set A and p as learnable parameters,
but this increased computational overhead without significant
performance improvements. Further analysis, as illustrated
in Fig. 6, indicates that the combination of hyperparameters
that aligns with our assumptions performs better, and minor
deviations of A and p within the assumed range typically do
not substantially impact model performance, demonstrating
a lack of sensitivity to hyperparameter selection, consistent
with our initial hypothesis.

6 Conclusion

In this work, we proposed a novel nighttime semantic seg-
mentation method, Text-WaveletFormer, which integrated
text prompts and wavelet transforms to enhance segmenta-
tion performance in low-light environments. The TIFM en-
abled the model to better understand target regions in night-
time scenes, while the WTAM enhanced high-frequency tex-
ture details, thereby improving the quality of visual infor-
mation. Extensive experimental results demonstrated that
Text-WaveletFormer outperformed existing methods in night-
time semantic segmentation tasks, highlighting the potential
of text prompts for improving scene understanding in low-
light conditions. We hope that Text-WaveletFormer will in-
spire further research in the field of nighttime semantic seg-
mentation. Future work may involve extending our meth-
ods to broader visual degradation scenarios, such as haze or
other extreme weather conditions. Explore how language pri-
ors can enhance the model’s understanding and perception of
complex visual environments.
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