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Abstract
Advanced deep spatio-temporal networks have be-
come the mainstream for traffic prediction, but the
widespread adoption of these models is impeded
by the prevalent scarcity of available data. Despite
cross-city transfer learning emerging as a common
strategy to address this issue, it overlooks the inher-
ent distribution imbalances within each city, which
could potentially hinder the generalization capabil-
ities of pre-trained models. To overcome this lim-
itation, we propose a Spatio-Temporal Balanced
Transfer Learning (STBaT) framework to enhance
existing spatio-temporal prediction networks, en-
suring both universality and precision in predic-
tions for new urban environments. A Regional Im-
balance Acquisition Module is designed to model
the regional imbalances of source cities. Besides,
to promote generalizable knowledge acquisition, a
Spatio-Temporal Balanced Learning Module is de-
vised to balance the predictive learning process.
Extensive experiments on real-world datasets val-
idate the efficacy of our proposed approach com-
pared with several state-of-the-art methods.

1 Introduction
Accurate prediction of urban spatio-temporal data is crucial
for smart city development, serving as an important topic in
the field of urban computing that supports various tasks [Lv
et al., 2014]. Although deep learning has significantly ad-
vanced spatio-temporal prediction tasks like predicting traffic
flow [Qu et al., 2023; Wang et al., 2024a] and taxi demand
[Geng et al., 2019], it faces challenges in scenarios where
training data is scarce due to privacy concerns and varying
urban developments [Wang et al., 2018]. These challenges
exist in many cities such as Hong Kong [HKGov, 2025] and
Liverpool [Kono, 2022], and they could potentially hindering
the developments of smart city.

Inspired by transfer learning, researchers have proposed
spatio-temporal transfer learning that aims to extract trans-
ferable knowledge from data-rich (source) domains to ad-
dress urban computing tasks in data-scarce (target) domains,

∗Corresponding author.
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Figure 1: Comparison of different cross-city prediction paradigms
in transferable knowledge learning

such as traffic prediction, air quality prediction [Wei et al.,
2016], point of interest (POI) recommendation [Ding et al.,
2020], and trajectory simulation [Wang et al., 2024b]. The
strategies of existing work on learning transferable knowl-
edge can be divided into two categories. (1) Source-target
joint pre-training: Utilizing data from both source and tar-
get cities in pre-training phase, managing to learn knowledge
beneficial to specific target by using some matching strategies
[Wang et al., 2021; Tang et al., 2022; Jin et al., 2022]. (2)
Source-only pre-training: Employing large-scale source data
to train a prediction model by decoupling target from pre-
training procedure, aiming to be used to any other city [Wang
et al., 2018; Yao et al., 2019; Lu et al., 2022; Liu et al., 2023;
Yuan et al., 2024].

An ideal cross-city prediction model should be widely ap-
plicable to numerous unseen cities (i.e., universality) while
also demonstrating high prediction accuracy in the specific
cities where it is applied (i.e., precision). Existing research
in this field often prioritizes either universality or precision in
model design, posing challenges when attempting to achieve
both simultaneously. Source-target joint pre-training meth-
ods tend to predict precisely on the single selected city due to
the introduction of specific distribution biases from that tar-
get during pre-training, but they struggle to generalize exten-
sively to other unselected cities and remain narrowly adapt-
ability, as shown in Figure 1(a). Source-only pre-training
methods often require multiple datasets and higher training
costs to exhibit universality of unseen domains, yet they ab-
sorb distribution biases of the source cities inevitably, which
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may lead to sub-optimal target performances even with fine-
tuning [Jin et al., 2022], as shown in Figure 1(b). Conse-
quently, how to reduce the impact of harmful distribution
biases from specific domains during pre-training, thereby
achieving both universality and precision in generalizing
to unseen cities, remains a challenging problem.

Harmful distribution biases in specific cities arise from in-
herent disparities between them and unseen cities. The dis-
parities between cities are rooted in the unique characteristics
of each city [Yuan et al., 2024]. Accordingly, the adverse
effects of distribution biases stem from, and can be allevi-
ated by removing this uniqueness of the data source cities.
Despite the intricate factors contributing to city uniqueness,
the uneven distribution of regional traffic patterns, i.e., re-
gional imbalance, serves as its fundamental cause. For exam-
ple, Washington has more cultural centers than transportation
hubs, whereas Chicago is the opposite; New York exhibits a
higher proportion of areas with significantly high or low traf-
fic flow, in contrast to Chicago. Therefore, the key to build-
ing a predictive model that encapsulates universality and
precision lies in identifying and calibrating regional im-
balances for balanced source-only pre-training, capable of
achieving the effect of ”pre-train once, adapt everywhere”, as
illustrated in Figure 1(c).

To this end, this paper introduces STBaT, spatio-temporal
balanced transfer learning, for data-scarce urban flow predic-
tion. To quantify the regional imbalance of different cities,
we propose a novel Regional Imbalance Acquisition Mod-
ule (RIAM). It effectively obtains regional pattern density
and inter-regional pattern similarity, serving as indicative in-
formation for balanced pre-training. After that, we devise
a Spatio-Temporal Balanced Learning Module (STBLM) to
train the prediction network. It facilitates knowledge transfer
between similar regions and re-weights the intake of predic-
tive supervision information to enhance the model’s ability of
generalization. To achieve information flow between RIAM
and STBLM, we design a bidirectional complementary itera-
tive learning algorithm to pre-train our spatio-temporal pre-
diction module, promoting the reliable regional imbalance
awareness and balanced predictive learning. In summary, we
make the following contributions in this paper:

• Novel Study Perspective: To our knowledge, we are the
first to study balanced cross-city transfer learning, offer-
ing a new perspective to achieve universality and preci-
sion in data-scarce urban flow prediction.

• Advanced Methodology: We propose STBaT, a novel
spatial-temporal balanced transfer learning framework
for urban flow prediction. By linking a RIAM and a
STBLM through a bidirectional complementary iterative
learning algorithm, it identifies and corrects regional im-
balances, enabling the model’s generalization capabili-
ties to unseen cities.

• Strong empirical evidence: We conduct cross-city ex-
periments across a multitude of tasks on three real
world datasets. The results show the superiority of
STBaT in addressing the data scarcity of urban flow
prediction. The code is made publicly available at
https://github.com/ShaunHao/stbat.

2 Related Work
Deep learning-based traffic prediction techniques can extract
complex spatio-temporal relationships and accurately predict
various traffic data, such as urban flow [Zhang et al., 2017;
Gong et al., 2022; Chen et al., 2022; Liang et al., 2021;
Ji et al., 2023; Xia et al., 2023; Wen et al., 2023] and traf-
fic speed [Yu et al., 2017; Li et al., 2018; Guo et al., 2019;
Zheng et al., 2020; Song et al., 2020; Cirstea et al., 2022;
Jia et al., 2023], playing a crucial role in intelligent trans-
portation systems. However, a common issue is data scarcity,
leading to decreased accuracy in deep models. To address
this, cross-city transfer learning methods have been pro-
posed, encompassing two main categories: source-target joint
pre-training method and source-only pre-training method.
The former leverages sufficient source data along with a
small amount of target data for pre-training, using tech-
niques such as domain adaptation [Wang et al., 2021; Fang
et al., 2022], domain adversarial networks [Tang et al., 2022;
Ouyang et al., 2024], selective meta-learning [Jin et al., 2022]
and knowledge distillation [Jin et al., 2023] to alleviate data
scarcity of specific target city. In contrast, the latter pre-trains
models on rich data from source cities, employing strategies
such as region matching [Wang et al., 2018], meta-learning
[Yao et al., 2018; Lu et al., 2022], pattern bank construction
[Liu et al., 2023], parameter generation [Yuan et al., 2023]
and prompt learning [Yuan et al., 2024] to acquire knowledge
that enables the model to adapt to more cities.

However, these two types of work focus solely on perfor-
mance in specific city or generalization across a wide range
of cities, lacking a combination of both. This paper differs
from existing works by aiming to learn transferable knowl-
edge that is independent of the target cities while removing
distribution biases from the source cities, thereby achieving
universality and precision in predictions for unseen cities.

3 Preliminaries
Definition 1 (Region). We divide city 𝑐 into a grid map of size
𝑊𝑐 × 𝐻𝑐 based on latitude and longitude, which contains𝑊𝑐
rows and 𝐻𝑐 columns. Each grid is defined as a cell region
𝑟𝑐, and all the grids form a set of cell regions 𝑅𝑐.
Definition 2 (Spatio-temporal Urban Flow Series). In
city 𝑐, we represent the time range as a set 𝑇𝑐 =

{𝑡𝑐 − |𝑇𝑐 | + 1, . . . , 𝑡𝑐}, consisting of |𝑇𝑐 | evenly split non-
overlapping time intervals, where 𝑡𝑐 represents the latest
timestamp of city 𝑐. Then, the spatio-temporal urban flow
series in city 𝑐 is represented as 𝑋𝑐 =

{
𝑥
(𝑡 )
𝑟𝑐 |𝑟𝑐 ∈ 𝑅𝑐, 𝑡 ∈ 𝑇𝑐

}
,

where 𝑥 (𝑡 )𝑟𝑐 denotes the flow data of region 𝑟𝑐 at time 𝑡, e.g.,
the number of taxi pickups or drop-offs.
Definition 3 (Few-Shot Urban Flow Prediction). Given the
urban flow series data 𝑋𝑆1 , 𝑋𝑆2 , . . . , 𝑋𝑆𝑁 from source cities
𝑆1, 𝑆2, . . . , 𝑆𝑁 and 𝑋𝑇 from a data-scarce target city 𝑇 , our
goal is to train a prediction model, such that it can minimize
the prediction error on the test data 𝑋 ′

𝑇
of 𝑇 .

Definition 4 (Zero-Shot Urban Flow Prediction). Given
𝑋𝑆1 , 𝑋𝑆2 , . . . , 𝑋𝑆𝑁 from 𝑆1, 𝑆2, . . . , 𝑆𝑁 , our goal is to train
a prediction model that minimizes the prediction error on the
unseen target city test data, even with no training data of it.
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4 Methodology
In this section, we provide a detailed explanation of our
proposed method, STBaT, and how it addresses the prob-
lem of spatio-temporal balanced transfer learning. The over-
all method, as shown in Figure 2, consists of two major
components: the Regional Imbalance Acquisition Module
(RIAM), and the Spatio-Temporal Balanced Learning Mod-
ule (STBLM). First, we introduce our novel RIAM and ex-
plain how it comprehensively captures the regional imbal-
ance characteristics of source cities from both functionality
and flow perspectives. Next, we present our newly designed
STBLM and describe how it assists the learning process of
the spatio-temporal prediction network to acquire balanced
and generalizable prediction knowledge. Finally, we outline
the training algorithm for the above two components, which
ensures the reliability of the acquired regional imbalance and
the generalization of the learned balanced knowledge through
a bidirectional complementary iterative learning algorithm.

4.1 Regional Imbalance Acquisition Module
Capturing the imbalance inherent in regional traffic patterns is
a prerequisite for eliminating distribution biases in cities. In
diverse urban environments, traffic patterns are influenced by
regional functionality and traffic flow factors, thus display-
ing distinctive imbalances. To concretize these imbalances,
an intuitive approach involves modeling and accessing the
distribution information of the regional traffic patterns. To
implement the above intuitions, a Regional Imbalance Ac-
quisition Module (RIAM) is proposed. RIAM utilizes a re-
gional pattern autoencoder to extract region embeddings of
source cities, representing their regional traffic patterns. A
density estimator and a similarity measure are used to obtain
regional pattern density and inter-regional pattern similarity,
which then serve as imbalance indicators.

Regional Pattern Autoencoder
As aforementioned, the traffic pattern is influenced by both
functional and flow-related factors. To simultaneously cap-
ture these two factors, a regional pattern autoencoder consist-
ing of a regional pattern encoder and a decoder has been de-
veloped. Given normalized POI distributional tensor 𝑃𝑝𝑜𝑖 ={
𝑝𝑟𝑠 | 𝑟𝑠 ∈ 𝑅𝑠

}
∈ R |𝑅𝑠 |×𝐾 with 𝐾 categories of a city 𝑠, the

encoder takes it into a feed-forward network to obtain the re-
gion embedding tensor Φ𝑠 =

{
𝜙𝑟𝑠 | 𝑟𝑠 ∈ 𝑅𝑠

}
∈ R |𝑅𝑠 |×𝐷 that

reflect traffic patterns, in which embedding of each region as

𝜙𝑟𝑠 = 𝑓enc (𝑝𝑟𝑠 ; 𝜃enc) = 𝐹𝐶 (𝑅𝑒𝐿𝑈 (𝐹𝐶 (𝑝𝑟𝑠 ))), (1)

where 𝜃enc denotes the learnable parameters of encoder,
𝐹𝐶 (·) denotes a fully connected layer, and 𝑅𝑒𝐿𝑈 (·) denotes
a ReLU activation layer. Then, 𝜙𝑟𝑠 is parallelly fed into a POI
classifier and a spatio-temporal feature distribution predictor,
which jointly form the decoder. The POI classifier outputs the
prediction of 𝑝𝑟𝑠 as 𝑝𝑟𝑠 ∈ R𝐾 , which is optimized through
cross-entropy loss, aiming at encoding regional functionality
into 𝜙𝑟𝑠 . The spatio-temporal feature distribution predictor
predicts the mean 𝜇̂𝑟𝑠 ∈ R𝐽 and standard deviation 𝜎̂𝑟𝑠 ∈ R𝐽

of the 𝐽-dimensional regional flow features, which are refined
through Kullback-Leibler Divergence loss LKLD to align with
the actual feature statistics 𝜇𝑟𝑠 and 𝜎𝑟𝑠 , thereby integrating

flow pattern into 𝜙𝑟𝑠 . The details of 𝜇𝑟𝑠 and 𝜎𝑟𝑠 are intro-
duced in Section 4.2. Formally, the decoder can be defined
as

𝑝𝑟𝑠 , 𝜇̂𝑟𝑠 , 𝜎̂𝑟𝑠 = 𝑓dec (𝜙𝑟𝑠 ; 𝜃dec), (2)

𝑝𝑟𝑠 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝐹𝐶 (𝑅𝑒𝐿𝑈 (𝐹𝐶 (𝜙𝑟𝑠 )))), (3)

𝜇̂𝑟𝑠 = 𝐹𝐶 (𝑅𝑒𝐿𝑈 (𝐹𝐶 (𝜙𝑟𝑠 ))), 𝜎̂𝑟𝑠 = 𝐹𝐶 (𝑅𝑒𝐿𝑈 (𝐹𝐶 (𝜙𝑟𝑠 ))),
(4)

where 𝜃dec denotes the learnable parameters. The total loss
for the regional pattern autoencoder can be expressed as

Lemb = −
𝐾∑︁
𝑘

(
𝑝
(𝑘 )
𝑟𝑠 log 𝑝 (𝑘 )𝑟𝑠

)
+ 𝛽LKLD, (5)

where LKLD =
∑𝐽
𝑗

(
log 𝜎

( 𝑗)
𝑟𝑠

𝜎̂
( 𝑗)
𝑟𝑠

+ ( 𝜎̂ ( 𝑗)
𝑟𝑠 )2+( 𝜇̂ ( 𝑗)

𝑟𝑠 −𝜇 ( 𝑗)
𝑟𝑠 )2

2(𝜎 ( 𝑗)
𝑟𝑠 )2

− 1
2

)
, and

𝛽 is a balancing hyper-parameter.

Density Estimator
As a fundamental imbalance indicator, it is essential to ob-
tain the density of regional traffic patterns of the source cities.
The density estimator derives the density of the traffic pattern
distribution of a city 𝑠 based on its region embeddings 𝜙𝑟𝑠
extracted from the regional pattern autoencoder.

Since the region embedding space is a continuous space,
each region’s pattern is not independent of others. The
more neighboring embeddings a region has in the embedding
space, the higher the density of regional traffic patterns corre-
sponding to it. Based on this intuition, the density estimator
employs kernel density estimation [Rosenblatt, 1956; Parzen,
1962] to estimate the regional pattern density smoothly. It
takes into account each 𝜙𝑟𝑠 and uses a specific kernel as a
weight to infer the probability density function of the traffic
pattern. For any given region 𝑟𝑠 ∈ 𝑅𝑠 , its regional pattern
density can be inferred as

𝜌𝑟𝑠 =
1

ℎ|𝑅𝑠 |
∑︁
𝑖∈𝑅𝑠

𝐾

(
𝜙𝑟𝑠 − 𝜙𝑖

ℎ

)
, (6)

where 𝐾 (·) is the normal kernel function, and ℎ is the band-
width parameter. The 𝜌𝑟𝑠 will further support balanced
learning of the STBLM. For specific implementation details,
please refer to Section 4.2.

Similarity Measure
Considering the continuous nature of traffic patterns 𝜙𝑟𝑠 ,
proximity and distance concepts are essential characteris-
tics. Explicitly measuring inter-regional pattern similarity
enhances the understanding of shared knowledge among re-
gions, empowering balanced learning within the subsequent
STBLM. The similarity measure calculates how close any
two region embeddings are to obtain the inter-regional pat-
tern similarity. Given any two regions 𝑖, 𝑗 ∈ 𝑅𝑠 , the similarity
measure obtains the similarity of their traffic patterns as

𝛿(𝜙𝑖 , 𝜙 𝑗 ) = 𝑠𝑖𝑚(𝜙𝑖 , 𝜙 𝑗 ), (7)

where 𝑠𝑖𝑚(·) denotes the cosine similarity metric. For further
details on how 𝛿(𝜙𝑖 , 𝜙 𝑗 ) is used in STBLM, please refer to
Section 4.2.
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Figure 2: The overview of our Spatio-Temporal Balanced Transfer Learning framework

4.2 Spatio-Temporal Balanced Learning Module
Under the influence of distribution biases, training on unbal-
anced source data absorbs detrimental knowledge for gen-
eralizing to unseen cities. For instance, imbalanced learn-
ing may lead to a skewed distribution of extracted spatio-
temporal features in regions with lower traffic pattern density,
impacting the efficacy of predictive knowledge acquisition
in these areas. To address these challenges, we introduce a
Spatio-Temporal Balanced Learning Module (STBLM) with
two functions: facilitating knowledge transfer among simi-
lar regions to rectify imbalances in feature extraction and re-
weighting label information to promote balanced predictive
learning.

Spatio-Temporal Prediction Network
The spatio-temporal prediction network, comprising a spatio-
temporal feature extractor and a feedforward predictor, can be
formally expressed as

𝑧𝑟𝑠 = 𝑓feat ( [𝑥 (𝑡−𝜏 )𝑟𝑠 , . . . , 𝑥
(𝑡−1)
𝑟𝑠 ]; 𝜃feat), (8)

𝑥
(𝑡 )
𝑟𝑠 = 𝑓pred (𝑧𝑟𝑠 ; 𝜃pred) = 𝐹𝐶 (𝑅𝑒𝐿𝑈 (𝐹𝐶 (𝑧𝑟𝑠 ))), (9)

where 𝑧𝑟𝑠 is the extracted spatio-temporal feature, 𝑥 (𝑡 )𝑟𝑠 is the
future traffic prediction, 𝜃feat, 𝜃pred denotes the learnable pa-
rameters of spatio-temporal feature extractor and feedforward
predictor. Notice that STBaT has no specific structural as-
sumptions on the spatio-temporal feature extractor, as long as
it does not alter the spatial dimensions of the input data. Thus,
various advanced spatio-temporal prediction models can be
compatible with STBaT.

Balanced Learning for Spatio-Temporal Feature
Extraction
Regions with similar traffic patterns share common knowl-
edge, which should be learned by the spatio-temporal feature
extractor. By adjusting regional feature distributions based on
inter-regional pattern similarity, knowledge can be transferred
between similar regions, thus calibrating feature learning in
low-density regions.

First, STBLM computes the mean 𝜇𝑟𝑠 and standard devia-
tion 𝜎𝑟𝑠 of the spatio-temporal features 𝑧𝑟𝑠 of region 𝑟𝑠 , serv-
ing as regional spatio-temporal feature statistics

𝜇𝑟𝑠 =
1
𝐵

𝐵∑︁
𝑖=1

𝑧𝑟𝑠 , 𝜎𝑟𝑠 =

√︄∑𝐵
𝑖=1 (𝑧𝑟𝑠 − 𝜇𝑟𝑠 )2

𝐵 − 1
(10)

where 𝐵 is number of samples in a training batch.
Then, a feedforward projector is utilized to fuse the 𝜇𝑟𝑠

and 𝜎𝑟𝑠 and extract the representation of the regional feature
distribution 𝑑𝑟𝑠 , formalized as

𝑑𝑟𝑠 = 𝑓proj(𝜇𝑟𝑠 | |𝜎𝑟𝑠 ; 𝜃proj) (11)
= 𝐹𝐶 (𝑅𝑒𝐿𝑈 (𝐹𝐶 (𝜇𝑟𝑠 | |𝜎𝑟𝑠 ))), (12)

where 𝜃proj denotes the learnable parameters of feedforward
predictor, and | | is the concatenation operation.

Next, a newly developed Similarity-aware Distribution
Contrastive Learning (SimDCL) is employed to adjust re-
gional feature distributions based on inter-regional pattern
similarity, thereby optimizing the spatio-temporal feature ex-
tractor. The core idea is, the feature distributions 𝑑𝑖 and 𝑑 𝑗
of two regions 𝑖 and 𝑗 should be closer when there is a higher
similarity 𝛿(𝑖, 𝑗) between them. For a city 𝑠 with region set
𝑅𝑠 , the SimDCL loss can be defined as

Ldcl =
1

|𝑅𝑠 | ( |𝑅𝑠 | − 1)

|𝑅𝑠 |∑︁
𝑖

|𝑅𝑠 |∑︁
𝑘

𝟙𝑘≠𝑖L (𝑖,𝑘 )
dcl , (13)

where L (𝑖,𝑘 )
dcl = − log

exp(𝑠𝑖𝑚(𝑑𝑖 , 𝑑𝑘)/𝜏dcl)∑ |𝑅𝑠 |
𝑗

𝟙 𝑗≠𝑖, 𝛿 (𝜙𝑖 ,𝜙𝑘 )≥ 𝛿 (𝜙𝑖 ,𝜙 𝑗 ) exp(𝑠𝑖𝑚(𝑑𝑖 , 𝑑 𝑗 )/𝜏dcl)
,

𝜏dcl is the temperature hyper-parameter, and 𝟙· is the indicator
function.

Recalling from Section 4.1, the feature statistics are also
utilized to optimize the decoder, in order to encode the re-
gional flow patterns into 𝜙𝑟𝑠 . Thus, we feed the 𝜇𝑟𝑠 and 𝜎𝑟𝑠
obtained from Eq.10 into the RIAM to optimize Eq.5, pro-
moting RIAM’s comprehensive modeling of regional imbal-
ances.
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Balanced Learning for Spatio-Temporal Traffic
Prediction
In existing work, the equal weighting of prediction losses
across regions results in an imbalance in the model’s atten-
tion to various traffic patterns, leading to a greater focus on
accurately predicting high-density traffic patterns rather than
low-density ones. By assigning equal weights to each traffic
pattern within the loss function, rather than to each region,
a more balanced focus can be achieved across diverse traffic
patterns.

To balance the influence of regions with varying densities
on the overall prediction loss while ensuring numerical sta-
bility, STBLM calculate the multiplicative inverse of the re-
gional pattern density 𝜌𝑟𝑠 and scale it to transform it into the
regional weight

𝜔𝑟𝑠 =
|𝑅𝑠 |∑ |𝑅𝑠 |
𝑟𝑠

1
𝜌𝑟𝑠

1
𝜌𝑟𝑠

. (14)

Next, the 𝜔𝑟𝑠 is utilized to reweight the prediction loss, re-
sulting in a density-aware weighted prediction loss, defined
as

L̃pred =
∑︁
𝑟𝑠∈𝑅𝑠

∑︁
𝑡∈𝑇𝑠

𝜔𝑟𝑠Lpred (𝑥 (𝑡 )𝑟𝑠 , 𝑥
(𝑡 )
𝑟𝑠 ), (15)

where 𝑥 (𝑡 )𝑟𝑠 is the prediction for the future traffic state, Lpred(·)
is the typical prediction loss, e.g., mean squared error loss,
etc.

4.3 Training Process
To streamline training for RIAM and STBLM without addi-
tional pre-training, synchronizing imbalance information ac-
quisition with balanced prediction knowledge learning, we
devised a bidirectional complementary iterative learning al-
gorithm with the following steps:

1. Optimize STBLM and Obtain the Regional Spatio-
Temporal Feature Statistics. Using the current
STBLM with 𝜃STBLM = {𝜃feat, 𝜃pred, 𝜃proj} and 𝜚 ={
𝜌𝑟𝑠 | 𝑟𝑠 ∈ 𝑅𝑠

}
,Δ =

{
𝛿(𝜙𝑖 , 𝜙 𝑗 ) | 𝑖, 𝑗 ∈ 𝑅𝑠

}
derived

from the current RIAM, the losses Ldcl and L̃pred
are computed to optimize 𝜃STBLM. Then, the N ={
𝜇𝑟𝑠 | 𝑟𝑠 ∈ 𝑅𝑠

}
, Σ =

{
𝜎𝑟𝑠 | 𝑟𝑠 ∈ 𝑅𝑠

}
are obtained to

provide guidance for the subsequent optimization of
RIAM.

2. Optimize RIAM and Derive the Regional Imbalance
Information. Using the current RIAM with 𝜃RIAM =

{𝜃enc, 𝜃dec} and the obtained N , Σ from the current
STBLM, the loss Lemb is calculated to optimize 𝜃RIAM.
After this, 𝜚 and Δ are derived from the current RIAM
to aid in the next optimization of STBLM.

By iteratively executing the above two steps, a bidirectional
connection is established between RIAM and STBLM, con-
tributing to a balanced pre-training process of spatio-temporal
prediction network, i.e., 𝜃feat and 𝜃pred. As a result, the pre-
trained 𝜃feat and 𝜃pred can be adapted to urban flow prediction
task in new cities with limited or no training data.

City # Regions Time span (m/d/y) # Taxis # Bikes

New York (NY, N) 460 1/31/2016-12/31/2016 133M 13.8M
Chicago (CHI, C) 476 1/31/2016-12/31/2016 24.5M 3.5M

Washington (DC, D) 420 1/31/2016-12/31/2016 10M 2.7M

Table 1: Detailed statistics of the datasets

5 Experiments
5.1 Experiment Settings
Datasets
Following previous work, we take urban flow prediction as
an example task, and evaluate our proposed framework on
real-world public datasets of three cities: New York (NY),
Chicago (CHI), and Washington (DC), which contain vehicle
pickup and drop-off records of bike and taxi. Each dataset
covers a time range of one year with time intervals of one
hour. The detailed statistics of datasets are shown in Table 1.
Additionally, we also use public POI data of each city. All
data are collected and opened by [Jin et al., 2022].

Task Settings
We use a similar few-shot traffic prediction setting to [Wang
et al., 2021; Jin et al., 2022]. We choose each of three cities
as the target city, while using one of (New York or Chicago)
or all of the remaining cities as the source cities. This creates
a total of eight tasks of cross-city transfer. For each source
city, we divided the training and validation sets in a 2:1 ratio.
For each target city, we allocate the last 2 months for testing,
the preceding 2 months for validation, and the last 3 days or
0 days before the validation data for training, forming two
data-scarce scenarios: few-shot and zero-shot. We first pre-
train our framework on source training data, then fine-tune it
on target training data. After that, we evaluate it on target test
data. Min-max normalization is applied for data preprocess-
ing.

Baselines
We compare the performance of STBaT and a number of
baselines for urban flow prediction. Based on whether re-
quires source data, the baselines can be classified into non-
transfer baselines and transfer baselines.

• Non-transfer Methods: The non-transfer baselines con-
sist of three methods, including ARIMA [Box and Jenk-
ins, 1968], a statistical method, and two deep learning
methods, i.e., ST-net [Yao et al., 2019] and PDFormer
[Jiang et al., 2023].

• Transfer Methods: For transfer baselines, we select two
types of learning-based approaches: four source-only
pre-training methods, including vanilla finetuning (Fine-
tuned), MAML [Finn et al., 2017] and MetaST [Yao et
al., 2019]; and two source-target joint pre-training meth-
ods, consisting of ST-DAAN [Wang et al., 2021] and
CrossTReS [Jin et al., 2022].

For ARIMA models, we employ 6 autoregressive steps, 1
moving average step, and 1 integration step. Following previ-
ous work, we use the official code and hyper-parameters re-
ported by the original papers of PDFormer, MAML, MetaST,
ST-DAAN, RegionTrans and CrossTReS.
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Task Baselines Few-Shot Zero-Shot
RMSE MAE RMSE MAE

Bike

Target DC CHI NY DC CHI NY DC CHI NY DC CHI NY

ARIMA 3.384 2.551 9.900 1.481 0.968 5.167 - - - - - -
ST-net 2.945 2.187 10.126 1.394 0.832 5.186 - - - - - -

PDFormer 2.919 2.183 9.774 1.385 0.819 5.097 - - - - - -

Source NY CHI NY CHI NY CHI NY CHI NY CHI NY CHI NY CHI NY CHI

Finetuned 2.584 2.530 2.153 9.109 1.304 1.291 0.852 4.810 3.454 3.605 2.495 15.968 1.270 1.764 0.917 6.813
MAML 2.860 2.697 2.175 8.981 1.352 1.408 1.065 4.960 3.596 3.645 2.470 16.349 1.282 1.659 1.222 6.954
MetaST 2.565 2.462 1.990 8.984 1.225 1.258 0.830 4.641 3.429 3.593 2.433 15.672 1.264 1.304 0.782 6.837

RegionTrans 2.557 2.496 2.031 8.846 1.119 1.273 0.826 4.704 3.447 3.604 2.489 15.880 1.272 1.773 0.913 6.815
ST-DAAN 2.538 2.421 1.938 8.810 1.106 1.177 0.784 4.513 - - - - - - - -
CrossTReS 2.482 2.405 1.895 8.779 1.058 1.070 0.731 4.445 - - - - - - - -

STBaT (ours) 2.358 2.363 1.857 8.570 0.952 0.992 0.682 4.154 3.343 3.521 2.306 15.182 1.145 1.205 0.710 6.741
Improvements +5.0% +1.8% +2.0% +2.4% +10.0% +7.3% +6.7% +6.6% +2.5% +2.0% +5.2% +3.1% +9.4% +7.6% +9.2% +1.1%

Taxi

Target DC CHI NY DC CHI NY DC CHI NY DC CHI NY

ARIMA 5.194 8.435 23.307 1.839 2.610 7.127 - - - - - -
ST-net 5.412 9.922 23.988 1.851 3.349 7.923 - - - - - -

PDFormer 5.271 9.483 23.390 1.846 2.966 7.302 - - - - - -

Source NY CHI NY CHI NY CHI NY CHI NY CHI NY CHI NY CHI NY CHI

Finetuned 5.015 4.890 7.871 21.809 1.794 1.675 2.642 6.836 7.558 6.049 17.553 37.513 2.177 1.901 4.769 11.212
MAML 5.333 4.867 7.913 21.531 1.762 1.710 2.636 7.001 7.580 6.108 17.283 39.194 2.212 1.906 4.743 11.839
MetaST 4.767 4.863 7.875 21.272 1.780 1.814 2.609 6.532 7.525 6.018 17.023 37.277 2.197 1.885 4.645 11.211

RegionTrans 4.810 4.678 7.744 21.367 1.775 1.691 2.732 6.741 7.550 6.039 17.536 37.507 2.181 1.901 4.764 11.203
ST-DAAN 4.675 4.694 7.687 21.209 1.636 1.683 2.583 6.469 - - - - - - - -
CrossTReS 4.598 4.585 7.673 20.899 1.599 1.561 2.421 6.285 - - - - - - - -

STBaT (ours) 4.391 4.415 7.625 20.545 1.423 1.413 2.196 5.558 7.374 5.912 16.030 36.560 2.107 1.780 4.229 10.715
Improvements +4.5% +3.7% +6.3% +1.7% +11.0% +9.5% +9.3% +11.6% +2.0% +1.8% +5.8% +1.9% +3.4% +5.6% +9.0% +4.4%

Table 2: Performance of all methods on cross-city setting, with the best results highlighted in bold and the suboptimal results underlined

Implementation Details
We implement STBaT using PyTorch. For the dimensions
of FCs in the regional pattern autoencoder, we set them to
(16, 32) for the encoder, (32, 14) for the POI classifier and
(32, 256) for the spatio-temporal feature distribution predic-
tor. We choose the ST-net model as the spatio-temporal fea-
ture extractor, stacking three residual blocks with 64 chan-
nels and a single-layer LSTM with 128 hidden units. For
the STBLM, the dimensions of the FC layers of the feedfor-
ward predictor are set to 256 and 1, and the dimensions of
the feedforward projector are set to 256 and 256. To capture
temporal dependencies, we set the horizon 𝜏 to 6, meaning
that the input data consisted of observations from the previ-
ous 6 intervals, to predict the urban flow in next time step. We
train the model until the validation error does not decrease for
5 consecutive epochs on the source data, and then select the
model with the lowest source validation error as the initializa-
tion for target adaptation. We evaluate the target performance
using root mean squared error (RMSE) and mean absolute er-
ror (MAE). The mean error for both the pickup and drop-off
predictions is reported.

5.2 Evaluations
Performance Comparison of Few-Shot and Zero-Shot
Prediction
We evaluate each method in both few-shot and zero-shot sce-
narios, and report the average results of 5 independent runs in
cross-city tasks in Table 2.

In few-shot prediction scenario, deep learning methods
based solely on target data i.e., ST-net and PDFormer, exhibit
unsatisfactory performance. Among the transfer baselines,
source-target joint pre-training methods (e.g., ST-DAAN and
CrossTReS) generally outperform source-only pre-training

methods (e.g., MetaST and RegionTrans). This advantage
stems from the utilization of few-shot target data during pre-
training to help adapting to specific target city. Notably,
STBaT does not utilize any target data during pre-training,
whereas it reduces RMSE by up to 6.3% and MAE by up to
11.6% compared to the best source-target joint pre-training
method. This improvement can be attributed to the balanced
learning strategy, which acquires a favorable initialization
that internalizes knowledge beneficial for generalization, thus
facilitating precise transfer to the target domain.

In zero-shot prediction scenario, the non-transfer baselines
and some transfer baselines that utilize target for pre-training
are not applicable. Among the source-only pre-training meth-
ods, MetaST yields lower error compared to other baselines,
resulting in suboptimal performance. This may be attributed
to its model design, which includes memory units that can
capture transferable patterns from the source cities. Thanks to
the capability to identify and calibrate distribution biases aris-
ing from imbalance in the source cities, STBaT once again
achieves optimal performance in zero-shot scenarios. It en-
hances RMSE by 5.8% and MAE by 9.4% compared to the
best source-only pre-training method, showcasing the superi-
ority of our proposed framework in situations of severe data
scarcity.

Across all baselines, although source-only pre-training
methods can fit to more data-scarce scenarios, they fail to
outperform source-target joint pre-training methods across all
tasks. Consequently, no single baseline achieves both univer-
sality and precision, except for STBaT, which consistently
outperforms other methods in all tasks and scenarios.

Impact of Components
To assess the efficacy of each design within STBaT, we create
two variants of our framework.
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w/o POI w/o FDP STBaT

(a) Impact of model structure

NY-DC CHI-DC N+C-DC
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R
M

SE

w/o SimDCL w/o WLoss STBaT

(b) Impact of training loss

Figure 3: Performance comparison of different variants of STBaT

Method Finetuned MetaST CrossTReS STBaT (ours)

Peak Memory (GB) 1.57 3.39 7.65 1.95
Training Time (h) 0.25 2.34 1.28 0.39

Table 3: Training memory and time costs of different approaches

• Variants of model structure: Including removing the
POI classifier (w/o POI) and removing the spatio-
temporal feature distribution predictor (w/o FDP).

• Variants of training loss: Including removing
the similarity-aware distribution contrastive learning
loss (w/o SimDCL) and removing the density-aware
weighted prediction loss (w/o WLoss).

Figure 3 depicts the RMSE of STBaT variants in few-shot
taxi flow prediction task of DC. For the model structure,
STBaT w/o POI and w/o FDP both lead to significant per-
formance drop, highlighting the importance of capturing re-
gional functionalities and flow characteristics for modeling
urban regional imbalances. For the training loss, both STBat
w/o SimDCL and w/o WLoss result in accuracy degradation,
attributed to unbalanced learning in feature extraction and
traffic prediction, respectively.

Impact of Hyper-parameters
To assess the impact of the hyper-parameters on STBaT’s per-
formance, we conduct analyses in few-shot taxi flow predic-
tion tasks of DC. The results are shown in Figure 4. (1) We
vary the dimension 𝐷 of the region embedding, and set it to
32. This allows us to effectively capture the traffic patterns.
(2) We tune the parameter 𝛽 of embedding loss and find that
a value of 0.01 consistently yields the best performance in
different prediction tasks. (3) We adjust the bandwidth ℎ of
the RIAM’s density estimator, and set it to 0.85 to achieve the
best performance. (4) We set the temperature 𝜏dcl to 1 to bet-
ter learn balanced spatio-temporal feature extraction, adapt-
ing effectively to different target city prediction tasks.

Impact of Data Scarcity
We conducted an experiment based on taxi flow prediction
tasks to investigate the performance of our method under dif-
ferent scarcities of target data. Figure 5 shows that as the
amount of available data in the target city increases, the per-
formance on different cross-city tasks gradually improves and
eventually approaches saturation. The significant improve-
ment from 0 days to 3 days of data indicates that model can
adapt well to the target city, even with minimal data.
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(a) Vary 𝐷 of region embedding
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(b) Vary 𝛽 of the embedding loss
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Figure 4: Performance of STBaT with different hyper-parameters
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Figure 5: Performance with different scarcities of data

Efficiency Study
We studied the training efficiency of STBaT against several
representative baselines, with detailed comparisons shown
in Table 3. The results demonstrate that while vanilla fine-
tuning achieves the lowest training costs, its performance lags
significantly behind competitors; STBaT substantially out-
performs MetaST and CrossTReS in both memory and time
consumptions through its effective learning algorithms.

6 Conclusion
This paper introduces a spatio-temporal balanced transfer
learning framework (STBaT), a novel paradigm to enhance
the universality and precision of pre-training a model for data-
scarce urban flow prediction. By leveraging a Regional Im-
balance Acquisition Module and a Spatio-Temporal Balanced
Learning Module, STBaT demonstrates its superiority in few-
shot and zero-shot scenarios of diverse prediction tasks. For
future work, integrating the idea of STBaT into various ur-
ban computing tasks, such as graph-based predictions, shows
promise. Our study paves an encouraging path for future
spatio-temporal generalization learning.
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