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Abstract
Speech-driven 3D facial animation aims to create
lifelike facial expressions that synchronize accu-
rately with speech. Despite significant progress,
many existing methods may focus on generating fa-
cial animation with a fixed emotional state, neglect-
ing the diverse transformations of facial emotions
under a given speech input. To solve this issue, we
focus on exploring the refined alignment between
speech representations and multiple domains in fa-
cial expression information. We aim to disentan-
gle the spoken language and emotion facial priors
from speech expressions, to guide the refinement
of the facial vertices based on speech. To accom-
plish this objective, we propose ExpTalk, which
first applies an Adaptive Disentanglement Varia-
tional Autoencoder (AD-VAE) to decouple facial
expression aligned with spoken language and emo-
tions of speech through contrastive learning. Then
a Refined Alignment Diffusion (RAD) is employed
to iteratively refine the decoupled facial expression
priors through diffusion-based perturbations, pro-
ducing facial animations that align with the emo-
tional variations of the given speech. Extensive ex-
periments prove the effectiveness of our ExpTalk
by surpassing state-of-the-arts by a large margin.

1 Introduction
Speech-driven 3D facial animation aims to generate natu-
ral and realistic 3D facial animation highly aligned with the
corresponding speech. With the rapid development of deep
learning, existing speech-driven 3D facial animation methods
efficiently generate relatively accurate facial expressions of
spoken language through lip synchronization [Cudeiro et al.,
2019; Fan et al., 2022; Peng et al., 2023a; Xing et al., 2023;
Fan et al., 2025]. Thanks to significant performance, these
methods exhibit promising potential for application across a
spectrum of fields, including digital avatars, virtual reality,
interactive entertainment, and online meetings [Morishima,
1998; Tanaka et al., 2022].

*Corresponding authors.
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Figure 1: Given speech with emotional variations as input (left), we
aim to generate facial animations with diverse emotional expressions
(right), e.g., from surprise to happy.

Despite significant progress, many existing methods
mainly focus on high-quality synchronization of facial lan-
guage expressions, but overlook the fine-grained generation
of facial emotional expressions. Such subtle facial emotions
are another core component of facial expressions apart from
facial spoken language [Murray and Arnott, 1993], playing
a crucial role in daily interactions. Recognizing this, some
methods [Daněček et al., 2023; Peng et al., 2023b] attempt
to utilize a single emotional aspect in speech to aid in synthe-
sizing the emotion in a complete facial animation. However,
in the real world, human emotions are complex and diverse,
which results in multiple emotions present in each complete
speech needing to be reflected in the facial expression. For
example, upon receiving an unexpected gift, individuals typ-
ically experience a moment of surprise quickly transitioning
into happiness, a shift synchronously reflected in their speech
and facial emotions, as shown in Figure 1. Rigid facial ex-
pressions aligned with the spoken language in speech but fail-
ing to fully match diverse speech emotions may potentially
trigger the uncanny valley effect [Mori et al., 2012].

To tackle the above issues, we propose a method for 3D fa-
cial animation generation, which decouples spoken language
and emotions from the original facial expressions, followed
by detailed refinements based on the corresponding speech
information to produce new expected facial expressions. Our
method has two goals: (1) Facial Expression Decoupling.
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The facial expressions of spoken language and emotions are
deeply fused. When individually refining them based on the
corresponding information in speech, they tend to mutually
interfere each other. Especially, when dealing with complex
emotional transitions requiring detailed refinements, such ad-
verse interference may be particularly significant. Thus, be-
fore detailed refinements, it is essential to decouple spoken
language and emotions in facial expressions. (2) Facial Ex-
pression Refinement. When transferring facial expressions
of spoken language and emotions, it is essential to make
subtle refinements to numerous facial vertices one by one.
This demand becomes more pronounced, particularly when
swiftly transitioning between emotions. For this demand, we
design deep damage to the facial features and deep recon-
struction techniques to refine facial expressions.

Technically, we introduce the ExpTalk model for speech-
driven 3D facial animation to achieve each objective, which
consists of two target designs: (1) Adaptive Disentangle-
ment VAE (AD-VAE). This module decouples the original
facial expressions into two types of quantization codebooks,
encapsulating spoken language and emotion priors. Lever-
aging extracted speech emotions, we adopt fine-grained con-
trastive learning to drive the training of AD-VAE for adaptive
encodings disentangling. (2) Refined Alignment Diffusion
(RAD). This module first utilizes the noise-injection encoder
to make feature-dimension compression and iterative pertur-
bations for facial priors extracted by AD-VAE. Later, RAD
extracts speech features aligned with facial priors from mul-
tiple dimensions. With the refined speech features, we com-
pletely reconstruct facial priors to produce expected facial ex-
pressions synchronized with speech.

Our contributions are as follows:

• To the best of our knowledge, we take the early explo-
ration of the emotion-shift problem in speech-driven 3D
facial animation and propose ExpTalk to decouple the
emotions from facial expressions, enabling fine-grained
refinement of facial emotions based on speech emotion.

• We propose Adaptive Disentanglement VAE to decou-
ple the facial features via contrastive learning, prevent-
ing mutual interference in the subsequent refinement of
each facial prior. We propose Refined Alignment Diffu-
sion to iteratively damage and reconstruct facial priors
to align with corresponding speech.

• Extensive experiments prove the effectiveness of our Ex-
pTalk model, demonstrating its potential and effective-
ness in practical applications.

2 Related Work
2.1 Speech-Driven 3D Facial Animation
Recent work on speech-driven 3D facial animation meth-
ods [Cudeiro et al., 2019; Peng et al., 2023a] has achieved
significant progress in generating highly synchronized lip an-
imations based on speech. FaceFormer [Fan et al., 2022]
adopts a transformer-based [Vaswani, 2017] model to cap-
ture the relevant speech information, autoregressively gen-
erating continuous facial animations. CodeTalker [Xing et
al., 2023] leverages VQ-VAE to learn a discrete code space

and employs a temporal autoregressive model to sequen-
tially synthesize facial animations from input speech sig-
nals. UniTalker [Fan et al., 2025] introduces a unified multi-
head model to address annotation inconsistencies, enabling
3D facial animation across multi-domain datasets. However,
these methods fail to adequately consider the characteristics
of speech in conveying emotions, resulting in facial anima-
tions that still lack expressiveness.

To address this, recent studies [Kim et al., 2024; Xie et
al., 2025] have incorporated emotional information as an
additional condition to create emotional facial animations.
EmoTalk [Peng et al., 2023b] utilizes an emotion disentan-
gling encoder with a cross-reconstruction loss to decouple
emotion and content from speech, followed by an emotion-
guided multi-head attention decoder to generate facial ani-
mations. EMOTE [Daněček et al., 2023] employs a temporal
variational autoencoder to learn motion priors and uses an-
notated emotional vector labels with a transformer encoder-
decoder structures for animation generation. Despite these
advances, these methods still struggle with refined alignment
with real speech emotions.

2.2 Probabilistic Mapping of Diffusion Models
Recent advances in probabilistic modeling have enabled more
effective cross-modal alignment in various domains [Li et al.,
2023a; Ji et al., 2023; Li et al., 2023b], among which dif-
fusion models [Ho et al., 2020; Song et al., 2020] stand out
due to their capability to model complex data distributions
by iteratively adding noise and denoising. The extension to
human-driven tasks [Tevet et al., 2023; Zhu et al., 2024] has
motivated exploration in speech-driven 3D facial animation,
where they outperform traditional methods in generating di-
verse expressions. FaceDiffuser [Stan et al., 2023] first ap-
plied the diffusion framework to facial animation using audio
features as conditions and employing a GRU decoder for an-
imation generation. DiffSpeaker [Ma et al., 2024] enhanced
diversity of facial animations by integrating a transformer-
based architecture with designed bias. Building on this, our
work aims to leverage the iterative perturbation of diffusion
models to globally capture high-dimensional facial feature
distributions, enabling more refined cross-modal mapping.

3 Method
We aim to generate 3D facial animations synchronized with
the given speech, which contains diverse emotions. The task
can be formulated as follows: let A1:T = (a1, . . . ,aT ) de-
note the input speech sequence corresponding to T video
frames, where each at ∈ RD contains D samples. Let
V1:T = (v1, . . . , vT ) denote the facial vertices sequence of
length T , with each frame represented by V vertices, where
vt ∈ RV×3. Our goal is to generate facial vertices sequence
V1:T with emotional variations based on speech A1:T .

As shown in Figure 2, ExpTalk follows a two-stage
pipeline. In the first stage, we introduce Adaptive Disen-
tanglement VAE (AD-VAE) to reconstruct the facial vertices
sequence. Leveraging fine-grained contrastive learning with
a pre-trained speech emotion feature extractor, this mod-
ule adaptively disentangles the spoken language and emo-
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Adaptive Disentanglement VAE (AD-VAE)

Figure 2: Overview of ExpTalk. In the first stage, AD-VAE employs contrastive learning to learn and disentangle the spoken language and
emotion priors of facial vertices, quantized into two sub-codebooks. In the second stage, RAD extracts features from speech and recovers the
noise-injected encodings through speech-guided and emotion-guided conditional attention mechanisms.

tional facial priors, which are then quantized into two sub-
codebooks for the reconstruction of the facial vertices se-
quence. In the second stage, we propose Refined Alignment
Diffusion (RAD), which refines facial expressions based
on speech information by integrating speech-guided and
emotion-guided conditional attention mechanisms to denoise
the noise-injected encodings from encoders of AD-VAE.

During inference, the model ExpTalk takes the speech se-
quence A1:T and speaker identity p as inputs. By iteratively
denoising random noise, the model generates the facial ani-
mation V̂1:T = (v̂1, . . . , v̂T ). Formally,

V̂1:T = ExpTalk(A1:T ,p; Θ), (1)
where Θ denotes the learnable parameters of the model.

3.1 Adaptive Disentanglement VAE
In facial expressions, spoken language and emotions may be
deeply fused, leading to mutual interference when separately
refining them. The mutual interference may be more signif-
icant, especially when refining more diverse emotions. In-
spired by [Zhang et al., 2020; Wu et al., 2024], Adaptive
Disentanglement VAE (AD-VAE) is designed to disentangle
facial expressions into two independent priors: spoken lan-
guage and emotion. By embedding them into distinct quan-
tization sub-codebooks, AD-VAE ensures their independence
in the latent space. This disentanglement process is driven
by fine-grained contrastive learning, which leverages speech
emotion features as a supervisory signal to adaptively disen-
tangle facial priors.

Model Design
AD-VAE consists of a motion encoder, an emotion encoder,
and a facial vertices decoder. The motion and emotion en-
coders share the same structure and are designed to extract
spoken language and emotional priors, respectively. Both
encoders utilize spiral convolution operators to extract spa-
tial features of facial vertices and temporal attention to cap-
ture the temporal dependencies within the vertices sequence.
This design effectively integrates both the spatial correla-
tions among vertices and the temporal dependencies of the
sequence. The spiral convolution operator [Bouritsas et al.,
2019; Gong et al., 2019] is a graph-based convolution that
samples vertices in the spatial domain to capture local corre-
lations. Given a convolution center v, the local neighborhood
is described by k−ring(v), the set of vertices exactly k steps
away from v, and k−disk(v), the union of all i−ring(v) for
i ≤ k. They are formally defined as:

0−ring(v) = v,

k−disk(v) = ∪i=0,...,ki− ring(v),

(k + 1)−ring(v) = N (k−ring(v)) \ k−disk(v), (2)

where N (·) denotes the set of neighboring vertices of a given
vertex. The spiral sequence is defined by concatenating sev-
eral k−ring(v) until reaching a predefined length. Using
these sequences, the spiral convolution operator encodes lo-
cal vertices information via a fully connected layer. Tempo-
ral attention is then applied to the encoded features, generat-
ing motion encoding zm ∈ RT×N×C and emotion encoding

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

ze ∈ RT×N×C , collectively denoted as z∗.
To ensure independence between the encodings, a pre-

trained speech emotion feature extractor, emotion2vec [Ma
et al., 2023], is utilized to extract emotional features from the
corresponding speech. During training, contrastive learning
is applied to enhance the alignment between the facial emo-
tion encoding and speech emotional features while reducing
the similarity between the facial motion encoding and speech
emotional features, achieving encoding disentanglement [Li
et al., 2024].

After extracting the encodings, the corresponding vec-
tors ei in the sub-codebook E∗ are queried using a nearest-
neighbor search operation for quantization:

ẑ∗ = arg min
ei∈E∗

∥z∗ − ei∥22, (3)

where ∥ · ∥22 denotes the L2 norm.
For decoding, the facial vertices decoder adopts a structure

symmetric to the encoder. The quantized encodings are con-
catenated and mapped to their original dimensions, followed
by temporal attention and spiral convolution operators to re-
construct the facial vertices sequence V̂1:T .

Loss Functions
To fully train our AD-VAE, we introduce carefully designed
loss functions, which consist of three parts: reconstruction
loss Lrec, quantization loss Lqua, and contrastive loss Lcon.

The reconstruction loss Lrec ensures that the model can
accurately reconstruct the sequence. This loss is computed as
the L1 loss between the ground truth facial vertices sequence
and the predicted sequence:

Lrec =
1

T × V

T∑
t=1

V∑
i=1

∥vt,i − v̂t,i∥1 , (4)

where T denotes the sequence length, and ∥ · ∥1 denotes the
L1 norm used for distance calculation.

The quantization loss Lqua is used to constrain the proxim-
ity between the unquantized latent encodings and the code-
book vectors. This loss is defined as the weighted sum of
codebook loss term and commitment loss term proposed from
VQ-VAE [Van Den Oord et al., 2017]:

Lqua = ∥ẑ∗ − sg(z∗)∥22 + β ∥z∗ − sg(ẑ∗)∥22 , (5)

where sg(·) denotes the gradient-stop operation.
The contrastive loss Lcon guides the disentanglement of

motion and emotion encodings. To achieve this, a pre-
trained speech emotion feature extractor is introduced to ex-
tract speech emotion features e ∈ RT×K , where K is the fea-
ture dimension. Emotion encodings of corresponding frame
are paired with speech emotion features as positive samples,
while motion encodings serve as negative samples. The loss
is defined using InfoNCE [Oord et al., 2018]:

Lcon = − 1

T

T∑
i=1

log
exp(sim(ei, ze,i)/τ)∑N

j=1 exp(sim(ei, zm,j)/τ)
, (6)

where τ denotes the temperature, and sim(·, ·) denotes the
cosine similarity, defined as sim(a, b) = a⊤b

∥a∥∥b∥ .

The total loss for AD-VAE LADV is given by:

LADV = Lrec + λquaLqua + λconLcon, (7)

where λqua and λcon are hyperparameters.

3.2 Refined Alignment Diffusion
After decoupling spoken language and emotion priors of
facial expressions, achieving seamless synchronization and
expressiveness in facial animations requires precise cross-
modal alignment with the corresponding speech information.
To realize this objective, we design Refined Alignment Dif-
fusion (RAD), a diffusion-based denoising network that iter-
atively refines spoken language and emotion priors of facial
expressions to align with the corresponding speech informa-
tion. We attempt to preserve high-frequency details and en-
able realistic, emotionally consistent facial animations syn-
chronized with speech in the alignment process.

During training, the denoising network of RAD f(·) takes
the noise-injected encodings zn

m and zn
e , conditioned on the

speech A1:T , speaker identity p, and diffusion step n, and
directly predicts the clean encodings ẑ0

m and ẑ0
e ,

ẑ0
m, ẑ

0
e = f(zn

m, z
n
e ,A1:T ,p, n). (8)

In the inference phase, the high-noise version distributions
of the motion and emotion encodings at diffusion step N ,
p(zN

m , zN
e ), are sequentially converted to the low-noise ver-

sion distributions through a Markov chain, until the clean en-
coding distributions p(z0

m, z
0
e ) are achieved:

p(z0
m, z

0
e |A1:T ,p, N) = p(zN

m , zN
e )

N∏
n=1

p(zn−1
m , zn−1

e |zn
m, z

n
e ,A1:T ,p, n), (9)

where p(zN
m ) ∼ N (0, I) and p(zN

e ) ∼ N (0, I) represent the
initial distributions of motion and emotion encodings, mod-
eled as standard normal distributions N (0, I) with a mean of
0 and an identity covariance matrix I . Subsequently, they are
passed into the decoder of the trained AD-VAE to reconstruct
the facial vertices sequence.

Model Design
RAD consists of encoders, conditional embeddings, and
a backbone conditional transformer decoder. We use
WavLM [Chen et al., 2022] as the pre-trained speech en-
coder Ea(·) to extract speech features from A1:T and emo-
tion2vec [Ma et al., 2023] as the pre-trained speech emotion
encoder Ee(·) to extract emotion features. Both features are
linearly transformed to match the dimensions required for the
diffusion process. The noise input zn = [zn

m, z
n
e ], which con-

catenates the motion and emotion noise-injected encodings,
is processed by the noise encoder En(·), a linear layer that
compresses high-dimensional noise to retain critical motion
and emotion information.

The speaker identity embedding Ep(p) and diffusion step
embedding Et(n) are introduced as conditional embeddings
into the model to enhance the model’s capacity for capturing
speaker style [Thambiraja et al., 2023; Yu et al., 2024] and
diffusion step information.
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Methods 3D-MEAD VOCASET
MVE↓

(x10−4)
LVE↓

(x10−4)
EVE↓

(x10−5)
FDD↓

(x10−6)
MVE↓

(x10−5)
LVE↓

(x10−5)
EVE↓

(x10−6)
FDD↓

(x10−7)

FaceFormer [Fan et al., 2022] 2.0250 6.8722 6.8028 3.8110 3.0653 7.5879 8.8491 3.8452
CodeTalker [Xing et al., 2023] 1.9007 6.8714 6.7396 3.9093 3.1632 7.9097 9.0418 3.8115
FaceDiffuser [Stan et al., 2023] 1.8882 6.1975 6.3530 3.9476 1.7558 4.5374 7.4725 4.5054
UniTalker [Fan et al., 2025] 1.9628 5.7877 6.3427 3.5193 2.2663 5.1653 7.9655 4.7602
EMOTE [Daněček et al., 2023] 1.7965 2.9881 7.7131 2.6517 3.6182 19.609 21.802 3.7362
EmoTalk [Peng et al., 2023b] 1.7512 5.3816 7.0731 3.6462 2.3534 6.1929 9.7849 3.1588
DEEPTalk [Kim et al., 2024] 1.5506 3.2658 7.0984 2.2827 5.7721 22.191 24.294 14.766
ExpTalk (Ours) 1.4891 2.6947 4.4064 2.1790 2.5932 4.4744 5.4821 3.1522

Table 1: Quantitative Evaluation Results on 3D-MEAD and VOCASET datasets. The best and the second best results are highlighted in bold
and underlined.

Inspired by DiffSpeaker [Ma et al., 2024], we adopt a con-
ditional transformer decoder as the backbone for denoising.
This decoder takes speaker identity p and diffusion step n
as conditions, and incorporates speech-guided and emotion-
guided conditional attention to progressively remove noise.

Specifically, the network consists of masked conditional
self-attention, masked conditional cross-attention, and a feed-
forward network. The query Q in the self-attention comes
from the noise input encoding En(z

n) ∈ RT×N , while the
keys K and values V are obtained by concatenating the
speaker identity embedding Ep(p), diffusion step embedding
Et(n), and the noise input encoding En(z

n). Based on prior
experience [Fan et al., 2022; Ma et al., 2024], we apply a
symmetric temporal period mask Ms(i, j) to restrict atten-
tion to a small range within the current frame, while also con-
sidering the speaker identity and diffusion step information:

Ms(i, j) =


0, 1 ≤ j ≤ 2,

⌊(i− j)/p⌋, 2 < j ≤ i,

⌊(j − i)/p⌋, i < j ≤ T + 2,

(10)

where p denotes the temporal period, which corresponds to
the frame rate. The operator ⌊·⌋ represents the floor function.

The speech-guided and emotion-guided conditional cross-
attention mechanisms share an identical structure. Their keys
K and values V are constructed by concatenating the speaker
identity encoding Ep(p), the diffusion step encoding Et(n),
and either the speech features Ea(A1:T ) or the emotion fea-
tures Ee(A1:T ). To ensure strong frame-level correlations
between the speech and emotion features and their corre-
sponding encodings, we apply an alignment mask Mc(i, j):

Mc(i, j) =

{
0, if |i− j| ≤ k or j ∈ {1, 2},
−∞, otherwise,

(11)

where k denotes the frame-level alignment window size, con-
trolling the range of temporal correlation between frames.

After multiple layers of the conditional transformer de-
coder, ẑ0

m and ẑ0
e are dimensionally recovered by the latent

decoder Dn(·), which is implemented as a linear layer.

Loss Functions
The loss for RAD LRAD is defined to measure the difference
between the predicted encodings after the denoising process

and the ground truth encodings. We use the Huber loss to
quantify this difference, as follows:

LRAD = Ep(zn
m,zn

e )

[∥∥ẑ0m − z0m
∥∥
H

+
∥∥ẑ0e − z0e

∥∥
H

]
, (12)

where Ep(zn
m,zn

e ) is the expectation over the noise encodings
distribution, and ∥ · ∥H denotes the Huber loss [Huber, 1992].

4 Experiments
4.1 Experimental Settings
Datasets. In our experiments, we employ the 3D-MEAD
dataset [Wang et al., 2020; Daněček et al., 2023], which
provides high-quality facial expression data for training and
evaluating emotion-driven facial animation methods. Each
3D facial mesh is registered to the FLAME topology [Li et
al., 2017], with 5023 vertices. The dataset includes speech
and 3D reconstruction data from 46 English-speaking sub-
jects across eight emotion categories: Neutral, Happy, Sad,
Surprise, Fear, Disgust, Anger, and Contempt, with three in-
tensity levels for each emotion except Neutral. Facial vertices
sequences are sampled at 25 frames per second. To introduce
emotional variations, we randomly concatenate the speech
and facial vertices data. Due to the absence of official data
configuration, we select 10 subjects for training and 3 unseen
subjects for testing to ensure fairness.

To further evaluate our model, we employ the VOCASET
dataset [Cudeiro et al., 2019], which includes 480 speech
samples and 3D facial reconstruction data from 12 subjects.
The facial animations are originally sampled at 60 frames per
second. We downsample them to 25 frames per second and
randomly concatenate the speech and facial vertices data to
align with the same configuration as the 3D-MEAD dataset.
We follow the official data split for fair comparisons.
Implementation Details. For the training of ExpTalk, we
use the Adam optimizer [Kingma, 2014] in both stages. AD-
VAE is trained for 100 epochs with a batch size of 1 and a
learning rate of 1 × 10−3, taking approximately 10 hours.
RAD is also trained for 100 epochs with a batch size of 1 and
a learning rate of 2 × 10−5, taking about 12 hours. During
inference, we use 50 steps of the DDIM [Song et al., 2020]
sampler. Our framework is implemented with PyTorch and
runs on an Nvidia RTX 4090 GPU.
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Figure 3: Qualitative evaluation results on single-emotion and multi-emotion speech. The green and orange boxes highlight the emotional
variations on the upper face and lips, respectively.

Compared Baselines. We extend several state-of-the-arts
as baselines for a comprehensive comparison: (1) non-
emotion-driven methods: FaceFormer [Fan et al., 2022],
CodeTalker [Xing et al., 2023], FaceDiffuser [Stan et al.,
2023], and UniTalker [Fan et al., 2025]. (2) emotion-driven
methods: EMOTE [Daněček et al., 2023], EmoTalk [Peng et
al., 2023b], and DEEPTalk [Kim et al., 2024].

4.2 Quantitative Evaluation
We follow the evaluation metrics used in CodeTalker [Xing
et al., 2023] and FaceDiffuser [Stan et al., 2023], includ-
ing Mean Vertex Error (MVE), Lip Vertex Error (LVE), and
Upper-Face Dynamics Deviation (FDD). To evaluate the ac-
curacy of facial emotion representation, we also adopt Emo-
tional Vertex Error (EVE) from EmoTalk [Peng et al., 2023b].

MVE measures overall accuracy via the Euclidean dis-
tance between generated and ground-truth facial vertex se-
quences. LVE measures accuracy in the lip region, reflecting
lip synchronization, while EVE focuses on the upper face
(e.g., forehead, eyes), capturing emotional expressiveness.
FDD evaluates dynamic consistency by comparing the stan-
dard deviation of upper facial movement between generated
and ground-truth sequences.

Table 1 presents the quantitative evaluation results. On
the 3D-MEAD dataset, ExpTalk demonstrates outstanding
performance across all metrics, showcasing its capability to
generate emotionally expressive 3D facial animations. On
the VOCASET dataset, ExpTalk leads in most metrics, al-
though its MVE score is slightly lower than comparison mod-
els. This can be attributed to the characteristics of the VO-
CASET dataset, where speech samples are relatively short,

MEAN

STD

Ground Truth FaceDiffuser EMOTE EmoTalk Ours

× 10−3mm
3.0

0.0

Figure 4: Heatmap visualization of mean and standard deviation:
comparison of ground truth and animations from different methods.

and the dynamic range of vertex movements is limited. Such
dataset distribution may place greater emphasis on static re-
gions, which are less critical for evaluating dynamic emo-
tional expressions. Despite this, ExpTalk excels in metrics
such as LVE and EVE, which focus on dynamic facial re-
gions, validating its ability to generate expressive and emo-
tionally consistent facial animations aligned with speech.

4.3 Qualitative Evaluation
To further validate our method, we visualize and compare fa-
cial animations driven by single-emotion and multi-emotion
speech. Single-emotion speech samples are from the 3D-
MEAD dataset, while multi-emotion speech is synthesized
by concatenating single-emotion speech clips with 1-second
transitions. The results are shown in Figure 3.
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Figure 5: The t-SNE visualization of facial encodings under five
emotions. The left figure shows encodings without disentanglement,
while the right displays emotion encodings with disentanglement.

Methods LipSync↑ Expressiveness↑ Realism↑

CodeTalker 2.6 2.0 2.4
UniTalker 3.5 2.1 2.9
EMOTE 3.5 3.6 3.3
EmoTalk 3.3 3.1 3.0
Ours 3.6 3.8 3.7

Table 2: User Study Results for Lip Synchronization, Emotional
Expressiveness, and Visual Realism.

For single-emotion speech, non-emotion-driven methods
leave the upper facial region relatively static and lack emo-
tional expressiveness. Emotion-driven methods often gener-
ate overly exaggerated or indistinct expressions. In contrast,
ExpTalk, through decoupling and refinement, generates fa-
cial animations with better lip synchronization and emotional
expressiveness, closely matching the ground truth.

For multi-emotion speech, ExpTalk achieves emotional
transitions in facial expressions, such as from happy to sur-
prise or anger to happy. By aligning facial expressions with
diverse speech emotions, our model produces more natural
and expressive animations than other methods.

We also visualize heatmaps of the mean and standard de-
viation of facial animations generated by four methods com-
pared to the ground truth. Figure 4 demonstrates that ExpTalk
achieves superior performance, with upper facial movements
more closely aligning with the ground truth. Additionally, We
use t-SNE[Van der Maaten and Hinton, 2008] to visualize fa-
cial encodings with and without disentanglement, as shown in
Figure 5. The results indicate that disentanglement enhances
the distinction of different facial emotions, further validating
its effectiveness in reconstructing facial expressions.

4.4 User Study
To evaluate ExpTalk’s effectiveness, we conducted a user
study comparing it with CodeTalker, UniTalker, EMOTE, and
EmoTalk. Using 90 speech samples from the 3D-MEAD,
RAVDESS [Livingstone and Russo, 2018], and online videos,
covering diverse demographics, languages, and prosodic fea-
tures. We generated facial animations driven by single and
multiple emotional speech. Participants rated randomly pre-
sented videos on lip synchronization, emotional expressive-
ness, and visual realism using a 1–5 scale. The mean opinion
scores are shown in Table 2. ExpTalk outperformed com-
pared methods across all aspects, demonstrating its ability to

Methods MVE↓
(x10−4)

LVE↓
(x10−4)

EVE↓
(x10−5)

w/o conditional
transformer decoder 1.9101 4.0953 7.4156

w/o emotion2vec 1.5407 2.7288 4.6375
w/o disentangle 1.6249 2.8212 4.5238
w/o diffusion 1.6043 2.8569 5.4564
Ours 1.4891 2.6947 4.4064

Table 3: Ablation Study.

generate expressive and emotionally rich facial animations.

4.5 Ablation Study
We conduct ablation studies on the 3D-MEAD dataset. The
results are as shown in Table 3 and Figure 5.
Effect of the Key Components. We investigate the impact
of the conditional Transformer decoder and emotion2vec.
Replacing the conditional decoder with a standard Trans-
former decoder, we add speaker identity and diffusion step
embeddings to the noise input and speech features. Results
show that removing the conditional decoder significantly de-
grades multiple metrics, primarily because the model ini-
tially relies on audio information but gradually shifts focus
to speaker identity as the noise is removed. Replacing emo-
tion2vec with wav2vec [Baevski et al., 2020] in both mod-
ules results in decreased emotional expressiveness, indicat-
ing that emotion2vec enhances fine-grained emotion model-
ing through its pretrained knowledge and effectively guides
both AD-VAE disentanglement and RAD refinement.
Effect of the Model Architecture. We evaluate the neces-
sity of facial feature disentanglement and the diffusion frame-
work. Removing the emotion branch in AD-VAE leads to en-
tanglement between emotional and non-emotional informa-
tion in facial features, making it difficult for the model to
clearly refine facial expressions and resulting in facial anima-
tions with ambiguous emotional characteristics. This obser-
vation is further validated by Figure 5. Replacing the diffu-
sion framework with a Transformer decoder to predict facial
priors causes a significant drop in EVE, demonstrating that
the iterative denoising in the diffusion process plays a crucial
role in the fine-grained alignment of facial priors.

5 Conclusion
In this work, we propose an innovative speech-driven 3D fa-
cial animation method, ExpTalk, aimed at generating more
natural and emotionally expressive facial animations. The
meticulously designed AD-VAE employs fine-grained con-
trastive learning to embed disentangled encodings into dis-
tinct quantization sub-codebooks. RAD then facilitates
the refined alignment of cross-modal information between
speech and facial priors, ensuring lip synchronization and
emotional consistency in the generated speech-driven facial
animations. Extensive qualitative and quantitative experi-
ments validate the method’s advantages on multiple bench-
mark datasets. We hope ExpTalk will inspire further research
toward more realistic facial animation generation.
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such as deepfake creation or deceptive practices. Ethical con-
siderations, including privacy and consent, are prioritized in
all stages of data usage and model deployment.
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