Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Diffuse&Refine: Intrinsic Knowledge Generation and Aggregation
for Incremental Object Detection

Jianzhou Wang!? | Yirui Wu!2*
Junyang Chen*

Lixin Yuan'?
, Huan Wang®, Wenhai Wang®

, Wenxiao Zhang"? | Jun Liu?,

'College of Computer Science and Software Engineering, Hohai University
2Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University
3School of Computing and Communication, Lancaster University
4College of Computer Science and Software Engineering, Shenzhen University
5College of Informatics, Huazhong Agricultural University
6Multimedia Laboratory, The Chinese University of Hong Kong

{wangjianzhou, wuyirui, yuanlixin} @hhu.edu.cn, wenxxiao.zhang @ gmail.com, j.1liu81 @lancaster.ac.uk,
junyangchen @szu.edu.cn, hwang @mail.hzau.edu.cn, whwang @ie.cuhk.edu.hk

Abstract

Incremental Object Detection(IOD) targets at pro-
gressively extending capability of object detectors
to recognize new classes. However, representa-
tion confusion between old and new classes leads
to catastrophic forgetting. To alleviate this prob-
lem, we propose DiffKA, with intrinsic knowledge
generated and aggregated by forward and back-
ward diffusion, gradually establishing rigid class
boundary. With incremental streaming data, for-
ward diffusion spreads information to generate po-
tential inter-class associations among new- and old-
class prototypes within a hierarchical tree, named
as Intrinsic Correlation Tree(ICT), to store intrinsic
knowledge. Afterwards, backward diffusion refines
and aggregates the generated knowledge in ICT, ex-
plicitly establishing rigid class boundary to miti-
gate representation confusion. To keep semantic
consistency with extreme 10D settings, we reorga-
nize semantic relevance of old- and new-class pro-
totypes in paradigms to adaptively and effectively
update DiffKA. Experiments on MS COCO dataset
show DiffKA achieves state-of-the-art performance
on IOD tasks with significant advantages.

1 Introduction

Humans expect learning models to continually handle new
tasks without forgetting old ones. However, models suffer
from catastrophic forgetting in incremental learning, facing
representation confusion between old and new classes (see
Fig. 1(a)). Due to the independent and identical input of
new classes [Gurbuz et al., 2024], feature representations of
old classes would vary to mis-match the correct ones, caus-
ing semantic drift to exacerbate inter-class confusion (see Fig.
1(b)). These problems have sparked Incremental Object De-
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Figure 1: (a) In IOD tasks, new class cnew Often confuse with old
class coiq4 in semantic representation, causing catastrophic forget-
ting. (b) Old-class feature drifts to exacerbate inter-class confusion
between co1q4,1 and co1q,2. (¢) DiffKA simulates forward diffusion to
generate inter-class associations, i.e., intrinsic knowledge. (d) Dif-
fKA simulates backward diffusion to refine and aggregate knowl-
edge, thus establishing rigid class boundary between Cyew and Coza,2
to mitigate catastrophic forgetting.

tection(IOD), requiring to acquire knowledge on extracting
representations of new classes and maintaining old ones.
Existing methods address problems with either Knowl-
edge Distillation(KD) or Replay [Li and Hoiem, 2016]. KD
stores old-class knowledge by incorporating parametric neu-
rons with low-level semantics, working as a implicit knowl-
edge transfer and requiring further abstraction [Kang et al.,
2023]. Meanwhile, Replay covers massive old data with few
key exemplars, only memorizing salient part with losing old-
class knowledge details. Despite achieving notable advances,
they struggle to simultaneously keep old-class knowledge and
update new-class one regarding incremental data stream. We
argue their respective drawbacks can be alleviated by intro-
ducing knowledge to generate rigid boundary between old-
and new-class representations. Such knowledge not only re-
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solves inter-class confusion with explicit representation parti-
tion among different classes, but also mitigates semantic drift
by maintaining details of old-class knowledge with anchor-
like representations corresponding to rigid class boundary.

With the emergence of advanced multi-modal large lan-
guage models(MLLMs), there has been a further exploration
by importing external knowledge [Junsu er al., 2024]. How-
ever, by gradually injecting knowledge accompanying with
incremental stream, the retrieving knowledge from external
databases may not have strong semantic relevance with ei-
ther old or new classes, progressively misleading into areas
that MLLMs originally excelled. Therefore, involving intrin-
sic knowledge learned from incremental data itself should be
emphasized, establishing rigid class boundary to boost per-
formance with respect to catastrophic forgetting.

We thus propose DiffKA, an intrinsic knowledge gener-
ation and aggregation method, which gradually establishes
rigid class boundary via diffusion to alleviate catastrophic for-
getting. Inspired by high-quality reconstruction and strong
associative ability [Rombach et al., 2022], we develop a
diffusion-based view for generation and aggregation of intrin-
sic knowledge, representing them as forward and backward
process respectively. Therefore, we first simulate forward
diffusion to spread information gained from streaming data,
generating potential inter-class associations as wide and deep
as possible(see Fig. 1(c)). Specifically, forward diffusion in-
tegrates representations of old- and new-class prototypes re-
garding different learning phases and semantic levels, build-
ing hierarchical correlations with an organized tree named as
Intrinsic Correlation Tree(ICT). Based on ICT storing intrin-
sic knowledge, backward diffusion is simulated by refining
and aggregating knowledge, explicitly establishing rigid class
boundaries in semantic space(see Fig. 1(d)). Specifically,
extra supervised information generated by forward diffusion,
such as labels, correlations and so on, assists class represen-
tations to progressively and optimally converge in semantic
space as detailed knowledge. By aggregating fine-grained
knowledge in different learning phases and different semantic
levels, DiffKA stabilizes convinced correlations among both
old and new classes for IOD task.

We further enhance the updating of ICT considering dy-
namic environment of IOD. ICT still requires emphasis on
that intrinsic knowledge should focus on cross-phase and
cross-level semantic consistency, in case that imbalanced, few
or extreme inputs cause disorders of semantic space. So we
leverage rearranging semantic relevance in paradigms to keep
semantic consistency. Regarding cross-phase inconsistency,
we adaptively enhance representation capability of new-class
prototypes to adjust forward diffusion, thus decreasing un-
certainty of defining class boundary with few or imbalanced
input. Regarding cross-level inconsistency, we employ differ-
ent types of tree structure adjustment in backward diffusion
based on variant scenarios, thus avoiding potential conflicts in
intrinsic knowledge. With updating promotion, DiffKA en-
sures rigid class boundary with excellent reliability and gen-
erality, even under extreme settings of IOD. Overall, the main
contributions are three-fold:

e To avoid catastrophic forgetting in IOD, we propose
DiffKA, with intrinsic knowledge generation and ag-

gregation performed by forward and backward diffu-
sion, building Intrinsic Correlation Tree(ICT) to estab-
lish rigid boundary between old and new classes.

* Regarding cross-phase and cross-level inconsistency
within ICT, we enhance its adaptively and effectively up-
dating via rearranging semantic relevance in paradigms.

* Experimental results demonstrate DiffKA achieves
state-of-the-art performance with significant advantages.

2 Related Work

2.1 Incremental Object Detection

To retain knowledge, IOD methods utilize either knowledge
distillation [Feng et al., 2022; Kang et al., 2023; Liu et
al., 2023a] or replay [Liu et al., 2023a; Liu et al., 2023b;
Junsu er al., 2024]. ERD [Feng et al., 2022] performs elas-
tic distillation on the response of classification and regression
heads to address class imbalance. Regarding destruction of
semantic space as cause of catastrophic forgetting, [Kang et
al., 2023] dynamically distills between-class and within-class
semantics to prevent forgetting.

For replay-based methods, CL-DETR [Liu et al., 2023al
selectively stores exemplars of old data to memorize previ-
ous learned samples. ABR [Liu et al., 2023b] embeds old in-
stances into new backgrounds to reduce shift. SDDGR [Junsu
et al., 2024] generates virtual images via controllable gener-
ators, eliminating original-data reliance.

2.2 Diffusion Model

Diffusion models [Ho et al., 2020; Nichol and Dhariwal,
2021; Rombach et al., 2022] are famous for impressive gen-
erative capability. LDM [Rombach er al., 2022] diffuses in
latent space for high-quality outputs. DiffusionDet [Chen et
al., 2023] reformulates box prediction as a denoising process,
while DFDD [Wu et al., 2023] uses forward diffusion of OOD
features and reverse recovery to sharpen feature discrimina-
tion. DiffKA leverages diffusion to generate and aggregate
intrinsic knowledge on rigid class boundary, expanding diffu-
sion to aid abstraction of knowledge.

3 Methodology

3.1 Task Description

We follow the stricter IOD protocol of [Liu et al., 2023al.
Formally, given a categories set C = {1,2,...,C}, we rep-
resent a dataset as D = {(z,y)}, where = denotes an image
sample, and y = {(b, ¢)} is the annotation set to indicate the
bounding boxes b and the set of category labels ¢ € C corre-
sponding to objects within the image. D and C are then di-
vided into M disjoint subsets based on the number of training
phases, where D = D1 U---UD)y; andC = C1U- - -UCyy. For
phase m, we focus on samples in D,,,, where y only contains
annotations for objects of Class C,,, and discard the others. In
the mth training phase, the model need recognize the objects
in C,,, with D,,, while retaining the capability to recognize
all previously learned categories Ci.,,—1. Notably, the model
can observe all samples of categories in former phases, while
samples of specified categories are annotated in the ¢th phase.
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(a) Intrinsic Knowledge Diffusing Module

Figure 2: Structure overview of DiffKA, which consists of (a) Intrinsic Knowledge Diffusing Module, (b) Establilshment of Intrinsic Corre-
lation Tree and (c) General Updating Scheme. In forward diffusion, prototypes P; are extracted to establish ICT with hierarchical semantic
levels. In backward diffusion, the detector gradually refines the coarse object queries ()¢ supervised by ICT.

3.2 Overview

As shown in Fig. 2, we present the structure overview of Dif-
fKA. Inspired by the end-to-end detector, i.e., Deformable-
DETR [Zhu et al., 2021], we first feed images into ResNet-50
backbone network to extract feature maps, which are then fed
into encoder for position encoding. After encoding, the de-
tector would predict a set of object queries. Finally, class and
bounding box head would predict classes and positions of all
objects based on queries. It’s noted that detector is pre-trained
with old classes, while we perform incremental learning to
detect new classes with the proposed intrinsic knowledge dif-
fusing module and enhanced updating scheme.

In intrinsic knowledge diffusing module(see Fig.2(a)), we
simulate diffusion to gradually build Intrinsic Correlation
Tree(ICT), with forward and backward diffusion generating
and aggregating intrinsic knowledge, i.e., inter-class associa-
tions in semantic space. During forward diffusion, at Forward
Timestep 0, we adopt detector to predict old-class instances
Sota = {S;|li = 1,..., K} with K classes of pre-learned se-
mantic information. Based on S,;4, we further extract set of
informative K prototypes Py = {P, o | i = 1, ..., K}, which
are fed to build ICT as initialization of its leave nodes. As
shown in Fig. 2(b) to illustrate the establishment of ICT, P,
gradually merged to form its N parent nodes P; = {P” |
i =1,..,N;t =1,. — 1} by step-wisely adding noise
for snnulatlon of forward diffusion, which explores potential
inter-class associations as wide and deep as possible. Mean-
while, we progressively optimize towards non-overlap and
geometrically distinct properties of P, with reasonable pro-
totype merging rules. During merging, we also generate label
set £ = {L;, | i=1,..,N;t =1,....,T — 1} for each

parent node by containing labels of all leave nodes. It’s noted
that we use the joint representation of labels other than in-
dividual category label, which exhibits the enhanced seman-
tics of multi-label prototypes stored in ICT. Finally, we could
abstract all old-class semantic representations as root of ICT
Pr, aggregating intrinsic knowledge in a progressive optimiz-
ing manner.

During backward diffusion, we refine and aggregate
knowledge provided by ICT. At Backward Timestep 7', we
first sample sets of object queries Qr from Gaussian noise.
Based on Q7, we adopt decoders to step-wisely refine Qp
with the intrinsic semantic knowledge generated in forward
diffusion, i.e., additional supervised information referring to
Lo.t—1 and Py.;_1 stored in ICT, progressively generating de-
noised and semantic enriched object queries Q.

Considering incremental streaming, we propose a general
updating scheme to deal with four scenarios (see Fig. 2(c)).
Facing old-class samples with representation confusion, we
would abandon them due to lack of ground-truth labels. Fac-
ing old-class samples without confusion, we would update
their corresponding old-class prototypes Py with the inputting
samples. Facing new-class samples without confusion, we
would build a new prototype P, to update ICT as a leaf
node for further forward diffusion. Facing new-class sam-
ples with confusion to cause catastrophic forgetting as shown
in Fig. 1(a), we gradually move semantic representations of
new-class samples via backward diffusion, generating rigid
class boundary to avoid confusion.

In enhanced updating scheme, we solve cross-phase and
cross-level semantic inconsistency with different strategies.
Due to rich intrinsic knowledge of old-class learned and
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stored in previous phases, the detector would generate imbal-
anced number of new-class and old-class instances to cause
semantic disorders. By calculating weight based on new-
class object queries Q,,.,, and old-class ones Q,;4, we adap-
tively adjust forward diffusion to generate balanced prototype
representation P;. Meanwhile, cross-level semantic incon-
sistency leads to conflicting confusions between new-class
object query Q.. and old-class prototypes P;_;, P; gen-
erated by decoders at Timesteps t — 1, . Such confusions
result in unconvinced and terribly organized intrinsic knowl-
edge stored in ICT. By determining whether P, and P;_; ex-
ists parent-son relationship, we would either update ICT with
general updating scheme if existing, or build new-class proto-
types Pyew from the conflicting level to higher levels as well
as from Timestep ¢ + 1 to 7' if not.

3.3 Intrinsic Knowledge Diffusion Module

In this subsection, we focus on generating the ICT within In-
trinsic Knowledge Diffusion module. Specifically, we em-
ploy forward diffusion to extract intrinsic knowledge from the
incremental data stream to construct ICT. Within the ICT, the
detector utilizes backward diffusion to refine information and
establish rigid boundaries among all classes.

Forward Diffusion. At Forward Timestep 0, we feed de-
tector ® with new samples D,,,, to predict all instances of the
learned old classes Sy = ®(D,,,). Based on S,;4, we extract
set of informative K prototypes Py = {P,o | i = 1,..., K},
where we define P; o as the mean distribution center of all
instances belonging to class 4, i.e., P;o = \TILI >S;. As
demonstrate by [Kothapalli, 2023], all instances of the same
class tend to form cluster-like distribution, leading F; ¢ to be
efficient in representing semantic information. Afterwards,
Py are used to build ICT with each prototype initialized as its
leaf node.

In Forward Diffusion period ¢ € {0,...,T — 1}, step-wise
Gaussian noise ¢; ~ N(0,0?) is added to P;, progressively
blurring semantic information of prototypes over time:

P = VP 4+ /(1 — a)N(0,07), (1

where o; = H:ZO a; controls strength of the added noise.
a; = 1 — fB;, where f3; represents the variable referring to
noise variance gradient illustrated in [Ho ef al., 2020]. With
noise increasing, class prototypes overlap at first, and then the
most similar prototypes start to merge. To achieve their non-
overlap and geometrically distinct properties, we propose to
optimize P; with merging rules, which is defined to search
two prototypes F; ; and P;; for merging with the minimum
Kullback-Leibler Divergence:

(i,5) = argmin, Z P;iIn Pz.’t. 2)
ij=1 gt

To prevent over or insufficient merging, we further define the
number of parent nodes N; = [|C| x n'], where [-] donates
the rounding up function, and n € [0, 1] is a hyperparame-
ter to control the rate of prototype merging. It’s noted that
we adopt a higher 7, since it result in fewer fusions at each
timestep, thus forcing DiffKA to focus on the easily confused
classes in forward diffusion.

With P, iteratively merging to less prototypes, we achieve
an organized and hierarchical tree named as ICT, which cap-
tures intrinsic knowledge with semantic correlation estab-
lished during forward diffusion. Similar with other diffusion
models, the forward diffusion involves none of learnable pa-
rameters.

Backward Diffusion. We refine knowledge provided by
ICT iteratively in backward diffusion. At Backward Timestep
T, a fixed number of object queries Qr are sampled from
Gaussian noise. Based on Qp, we adopt decoder ¢ to step-
wisely refine O, at Backward Timestep ¢ with the correspond-
ing intrinsic semantic knowledge stored in ICT, i.e., £; and
P,, and previous Q;1:

Qt = ¢t(Qt+1)F7 [’taPt)a (3)

where F'is the feature encoding of the inputting image. Based
on Q;, we calculate the unified loss function L p for refine-
ment:
T-1 K
Loip =YY Liee, - (Lets + Loor + Lye), 4
t=0 i=1
where 1;c ., donates that we only compute Lo rp for object
queries if its predicted class exists in set £;. Unlike [Liu et al.,
2023a] which treats background class as negative instances
for supervision, we filter instances with labels not existing
in L4, thus emphasizing to retain the missing annotations as
well as additional information in incremental environment.
Furthermore, we achieve Lo p with tree-structured labels £;
rather than individual class labels, ensuring the detector to
focus on the annotated classes and simultaneously avoiding
to misclassify unannotated objects as background.
Specifically, classification loss L.;s, bounding box predic-
tion loss L., and prototype constraint loss L, are defined
as:

Los = Zceﬁ _Igi (C) logﬁ&i (CA)
Lbom = 71roU(b6¢abi) + ’YQ”bUAi - blHl (5)
ch = ||Qt7Pt|| = Qtln%:’

where p; (c) denotes one-hot label encoding for class ¢, s, (¢)
represents the confidence of prediction, v; and ~» are hyper-
parameters, function fr,i() calculates intersection of union

for the generated bounding boxes, bz, and b; represent pre-
dicted and annotated bound boxes respectively, ||, -||; refers
to L1 Normalization to measure Euclidean distance between
vectors, and ||-, -|| computes the Kullback-Leibler Divergence

of two distributions. Note that we obtain l;(fi via binary
matching [Carion et al., 2020] to search for the best anno-
tations for object queries.

Specifically, L.;s encourages the detector to make high
confidence predictions with multiple class labels for a sin-
gle object, thus representing inter-class semantics within one
object. By designing classification loss with multiple labels
in backward diffusion, we facilitate the aggregation of shared
intrinsic knowledge corresponding to single object instance.
Ly, evaluates the accuracy of bounding box prediction. Ly,
refers to the additional supervised information extracted from
prototypes Py.;_1, thus keeping refined queries Q; to be con-
sistent with the stored prototypes in ICT.
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Figure 3: Workflow of the proposed enhanced updating scheme. (a)
To solve cross-phase inconsistency caused by imbalance instance
numbers between old and new classes, we re-weight their contribu-
tion in forward diffusion to generate balanced prototypes. (b) To
solve cross-level inconsistency caused by the conflicting confusion,
i.e., one new class confuses with two different old classes at differ-
ent levels in ICT, we either perform general updating or create new
branch by analyzing their relationship.

3.4 Enhanced Updating Scheme

In this subsection, we first introduce general updating scheme
of ICT with incremental streaming data. Afterwards, we pro-
pose enhanced updating scheme to adaptively and efficiently
update ICT, facing cross-phase and cross-level inconsisten-
cies induced by extreme settings of IOD.

General Updating Scheme. As shown in Fig. 2(c), the
general updating scheme is designed to deal with four sce-
narios. Focusing on representation confusion between new
and old classes to cause catastrophic forgetting, at Backward
Timestep 0 of the 1st training epoch for diffusion, we cre-
ate a new prototype without the confusing samples to update
ICT as a leaf node, maintaining non-overlap and geometri-
cally distinct properties of all nodes.

At Backward Timestep 0 of the 2nd training epoch, we
use the updated ICT to supervise the generation of new-
class prototype with the confusing samples. Since its the-
ory of Markov Chain ensures to effectively perform neighbor
searching [Ho et al., 20201, diffusion owns capability to gen-
erate the cross samples on class boundary. Therefore, its gen-
erated supervision would gradually pull confusing samples in
semantic space, until their detection results fits ground-truth
labels in training epoch 7T, thus generating new-class pro-
totype P With rigid class boundary among old and new
classes. In other words, the intrinsic knowledge embedded in
ICT guides the way of boundary shifting, gradually moving
confusing samples to locate near the boundary with super-
vised information provided via diffusion.

Enhanced Updating Scheme. Since IOD tasks often in-
volve unstable incremental data streams, DiffKA may en-
counter extreme inputs with imbalanced class samples across

different learning phases, thus causing cross-phase inconsis-
tency in generating intrinsic knowledge during forward diffu-
sion. Meanwhile, semantic information of new-class proto-
types may vary greatly at different backward timesteps, lead-
ing to cross-level inconsistency. Both inconsistencies disor-
der the semantic space to exacerbate catastrophic forgetting.

Due to rich intrinsic knowledge of old-class learned and
stored in previous phases, the detector would generate imbal-
anced number of new-class and old-class instances to cause
cross-phase inconsistency (see Fig. 3(a)). Since prototype is
defined as mean center of instances, few new-class instances
rarely have impacts on prototypes stored in ICT P, which
leads DiffKA to struggle in learning new-class semantic in-
formation. We thus rearrange semantic correlations between
old and new classes, which weights new-class prototypes to
not only boost the efficiency of its knowledge aggregation,
but also strengths semantic associations between new-class
and old-class prototypes. Given the number of old- and new-
class instances, i.e., |Sy4| and |Syeq |, the total number of old
and new class, i.e., |Coiq| and |Corq|, we thus weight new-class
instances with the old ones to adjust their impacts on forward
diffusion:

_ ISold| |8new|
|Cold| |Cnew |

where @ represents the operation of element-wise sum.

Due to the small number of new-class samples, DiffKA ob-
tains unstable representation in semantical space during back-
ward diffusion, which might cause confusions with different
levels of old-class prototypes stored in hierarchical ICT (see
Fig. 3(b)). To resolve cross-level inconsistency, we define
confusion predictions with two criteria: 1) not background
class, where the predicted bounding box should coincide with
the ground-truth, 2) the confusion occurs between new-class
and old-class predictions with high confidence. At Backward
Timestep ¢, We thus achieve the confused predictions Uy form
object queries Q; :

Upy={(b,&)€ fn(Qs) | farov(b,b)=A1,p(6) > Na,
éecold7 cec Cnew }7 (7)

Pt Pi,tfl 3] Pj,tflai € Cold7j € Cneun (6)

where f,(+) is the classification and regression head mapping

Q; to predicted class label ¢ and bounding box b, function
farou () measures the overlap or distance between bounding
boxes [Rezatofighi ez al., 20191, p(é) is the prediction confi-
dence of object query for class ¢, and A\; and Ay are hyperpa-
rameters.

Afterwards, we detect the conflicting confusion by deter-
mining whether P, and P;_ exists parent-son relationship.
If exists referring to no conflicting confusion, DiffKA would
perform the general updating scheme. If not exists referring
to occurring of conflicting confusion, we adaptively adjust
ICT to prevent the conflict. More precisely, if a conflict is de-
tected at timestep ¢, DiffKA would create new prototypes for
P;, which are first connected as children to P;_;, and then
created as nodes at higher semantic levels as well as later
backward timesteps ¢ € {t + 1,¢ + 2,...,T}. Therefore,
such adjustment would create a new branch in ICT for cross-
level inconsistent classes.
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Setting Method Baseline Buffer Rate | mAP APso AP7s APs APy APp
LwF Deformable DETR 10% 245 366 267 124 282 352

RILOD GFLvl 0% 299 450 320 158 33.0 405

SID GFLv1 0% 340 514 363 184 384 4409

70410 iCaRL Deformable DETR 10% 359 525 392 191 394 48.6
ERD Deformable DETR 10% 369 557 401 214 396 487

CL-DETR | Deformable DETR 10% 40.1  57.8 437 232 432 521

DiffKA Deformable DETR 0% 403 57.6 441 229 44.0 533

DiffKA™ | Deformable DETR 10% 40.5 584 441 223 44.0 539

LwF Deformable DETR 10% 239 415 250 120 264 33.0

RILOD GFLv1 0% 245 379 257 142 274 335

SID GFLvl 0% 328 490 350 17.1 369 445

40440 iCaRL Deformable DETR 10% 334 520 360 180 364 455
ERD Deformable DETR 10% 36.0 552 387 195 387 49.0

CL-DETR | Deformable DETR 10% 37.5 551 404 209 408 50.7

DiffKA Deformable DETR 0% 372 551 39.8 194 400 503

DiffKA* | Deformable DETR 10% 377 552 408 202 413 510

Table 1: Comparison results (%) with two-phase setting on COCO 2017 dataset. Buffer rate refers to the proportion of old training samples,

which are stored and available in incremental learning phases. DiffKA™ means DiffKA with promotion of 10% buffer.

40+20x2 40+10x4
Method Upper bound (0-80) |— 5555 +(60-80) +(40-50) +(50-60) +(60-70) +(70-80)
RILOD 27.8/42.8 15.8/24.0 25.4/38.9 11.2/173 10.5/15.6 84125
SID 40.2/58.3 34.0/51.8 23.8/36.5 34.6/52.1 24.1/38.0 14.6/23.0 12.6/23.3
ERD 36.7/54.6 32.4/48.6 36.4/53.9 30.8/46.7 26.2/39.9 20.7/31.8
CL-DETR Ne/c24 - 353/ - - - 2817 —
DIffKA 2102 36.8/54.8 36.1/54.2 36.6/55.5 32.7/49.6 31.6/47.2 29.6/45.8

Table 2: mAP and APs results (%) of comparative methods with multi-stage setting on COCO 2017 dataset. - denotes the missing values.

4 Experiments

4.1 Experimental Settings

Datasets and Comparisons. We evaluate DiffKA with the
widely-used COCO 2017 dataset [Lin et al., 2014]. For com-
parisons, we adopt six famous IOD methods, i.e., LwF [Li
and Hoiem, 2016], RILOD [Li et al., 2019], iCaRL [Rebuffi
etal.,2017], ERD [Feng et al., 20221, SID [Peng et al., 20211,
and CL-DETR [Liu ef al., 2023a]. Results of comparative
methods are from [Liu et al., 2023a] and [Junsu et al., 2024].

Metrics. Following [Feng er al., 2022], we use six stan-
dard COCO evaluation metrics, i.e., mean Average Precision
(mAP), AP50, AP75, APg, AP),, and AP;. After the first
phase of training, we introduce Forgetting Percentage Points
(FPP) metric [Liu et al., 2023a] to measure the decline in
mAP for the previously learned classes.

Scenario setup. Following [Liu ef al., 2023a], we consider
two scenarios, i.e., the two-phase and multi-phase setting. In
two-phase setting, the model is trained on A class using ﬁ

training samples, and the remaining AJFLB samples are used
to train the model on the new B class during the incremental
learning. In experiments, we define two-phase settings, i.e.,
A = 40,B = 40, and A = 70, B = 10, resulting in total
training phases M = 2, the number of classes in the first
learning phase |C;| = A, and the number of classes in the
second learning phase |C2| = B. In multi-phase setting, the
model requires to recognize P + X X Y classes, where the
model is trained with P classes in the first learning phase,
and then incrementally learns X new classes in each learning

phase. Therefore, we could define M =Y + 1, |C4] = P,
and |C3o] = -+ = |Cp| = X. In our experiments, we set
40 + 20 x 2 and 40 4 10 x 4 for multi-phase experiments.

Implementation Details. DiffKA is bulit based on
Deformable-DETR [Zhu et al, 2021] with its original
settings. In incremental phases, we freeze the coarse
Deformable-DETR and initialize a new detector with its
parameters to train for 50 epochs in each phase.

4.2 Comparisons with Other Methods

Two-phase Setting. Table 1 presents the experimental re-
sults with the two-phase setting, where DiffKA achieves
SOTA results on AP,,, with both settings, proving its effec-
tiveness in knowledge generation and aggregation across dif-
ferent learning phases. In 70+10 setting, DiffKA outperforms
replay-based methods (e.g., CL-DETR) with no access to old-
class samples, indicating that DiffKA greatly reduces seman-
tical dependence on old-class samples through knowledge
generating and storing in ICT. Meanwhile, DiffKA ranks sec-
ond in APg, where its performance is slightly smaller, i.e.,
0.3%, than best performance achieved by CL-DETR. Since
DiffKA is built based on Deformable-DETR for knowledge
generation, DiffKA is less effective in small object detection.

Multi-phase Setting. Table 2 represents the comparison re-
sults with the multi-phase setting, where DiffKA achieves
SOTA results with various settings. It’s noted that errors ac-
cumulates and catastrophic forgetting exacerbates with more
phases of learning. However, DiffKA exhibits a more sig-
nificant improvement, i.e., 1.5 % in mAP, with more chal-
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ICT EUS CID AP,; AP,q AP, FPP
339 339 - 94

v 395 419 223 1.4
v v 392 415 22.0 1.8

v v v 40.3 417 37.0 1.6

Table 3: Ablation study of ICT, enhanced updating scheme(EUS),
CID loss on COCO 2017 dataset with 70410 two-phase setting.

n )\1 >\2 mAP AP50 AP75 APS APJ\/I APL
0.8 1] 05 05| 387 567 432 219 429 522
09| 05 05| 403 576 441 229 440 533

1 0.5 05| 40.1 57.3 44.1 225 438 53.0
09| 05 03| 402 576 440 227 442 533
09| 05 0.7 | 403 57.5 44.1 23.0 44.1 53.2
091075 05| 402 577 439 23.0 442 533

Table 4: Results with different values of parameters 7 in forward dif-
fusion, threshold parameters A1, A2 in enhanced updating scheme.

Label Strategy mAP AP59 APrs
Randomé&Individual ~ 27.3 42.0 29.5
Fixed&Individual 39.7 57.2 43.6
Joint&Multiple 403 576 44.1

Table 5: Ablation study of different strategies for class label set
stored in ICT.

lenging 40+10x4 settings, comparing with 0.8 % gained with
40+20x2 setting. Such phenomenon proves the effectiveness
of DiffKA in mitigating severe catastrophic forgetting, since
intrinsic knowledge within ICT greatly alleviates the forget-
ting with imbalanced, few, or extreme setting of IOD.

4.3 Ablation Study

Table 3 shows the ablation results of ICT, EUS, and CID Loss.
Without EUS and CID loss, ICT is still capable to generate in-
trinsic knowledge for old-class prototypes, maintaining old-
class knowledge to deal with IOD task. Such phenomenon in-
dicates class prototypes and inter-class relations plays a criti-
cal role in mitigating forgetting. when CID Loss is removed,
EUS causes a slight performance drop, since EUS fails in dis-
tinguishing and processing confused instances without proper
supervision. With the combination of EUS and CID, ICT
achieves optimized and gradually knowledge updating, which
mitigates forgetting and promotes the learning of new-class
prototypes.

Parameter Setting. Table 4 presents results of DiffKA with
different parameters 1 and A1, Ao. n = 0.9 ensures the best
performance of DiffKA with the most reasonable prototype
merging rate, forcing DiffKA to focus on the easily confused
classes in forward diffusion. Meanwhile, DiffKA is not sen-
sitive to the varying of \; and Ao with high robustness.

Strategy for Class Label Set. In Table 5, we evaluate dif-
ferent strategies for class labels set, where Random and Fixed
refer to randomly select or select the first individual label
from L, for supervision respectively, Joint refers to contain
multiple labels of all leave node as supervised information.
Random strategy fails to capture intrinsic knowledge with a

Timestep 0 Timestep 1 Timestep 2
- Pl
- 3 SR8
&
- <
[=28 ¢ vy
L]
]

Timestep 3 Timestep 5

Bl

Figure 4: Visualization of semantic space of ICT at each timestep
in 70+10 two-phase setting, where each point represents a object
instances and different color donates different class. We set n = 0.5
to control prototype merging rate and only visualize part of classes.

Figure 5: Qualitative results of DiffKA with 70+10 two phase set-
ting, where results of upper row are predicted by Deformable DETR
trained with 70 classes, and the bottom row is predicted by DiffKA
after incremental learning.

significant performance drop. Fixed strategy achieves worse
results than joint strategy, since multiple and joint labels is
efficient in describing inter-class associations stored in ICT.

4.4 Qualitative Analysis

In Fig. 4, we show the visualization of semantic space at
different forward timesteps, which proves that DiffKA effec-
tively simulates the diffusion process to hierarchically estab-
lish inter-class relationships for IOD task. Fig. 5 shows pre-
dictions on samples from COCO 2017 dataset. As shown in
Fig. 5(a) and (b), DiffKA preserves predictions from previous
learning phases, even enhancing the detection confidences of
closely related classes in ICT. Several challenging cases con-
taining both old and new-class instances are represented in
Fig. 5(c) and (d), where we can find DiffKA accurately pre-
dicts the new-class instances (e.g., potted plant and horse),
and occasionally struggles with difficult instances, such as
blurred or small objects.

5 Conclusion

DiffKA generates and aggregates intrinsic knowledge with
forward and backward diffusion, establishing rigid class
boundaries and maintaining semantic consistency across
training phases and semantic levels.
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