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Abstract

Addressing missing modalities and limited labeled
data is crucial for advancing robust multimodal
learning. We propose Robult, a scalable frame-
work designed to mitigate these challenges by pre-
serving modality-specific information and lever-
aging redundancy through a novel information-
theoretic approach. Robult optimizes two core ob-
jectives: (1) a soft Positive-Unlabeled (PU) con-
trastive loss that maximizes task-relevant feature
alignment while effectively utilizing limited la-
beled data in semi-supervised settings, and (2)
a latent reconstruction loss that ensures unique
modality-specific information is retained. These
strategies, embedded within a modular design,
enhance performance across various downstream
tasks and ensure resilience to incomplete modali-
ties during inference. Experimental results across
diverse datasets validate that Robult achieves su-
perior performance over existing approaches in
both semi-supervised learning and missing modal-
ity contexts. Furthermore, its lightweight design
promotes scalability and seamless integration with
existing architectures, making it suitable for real-
world multimodal applications.

1 Introduction

Motivation: In the Big Data era, multimodal learning sig-
nificantly improves data exploitation, outperforming single-
modality approaches [Huang et al., 2021]. However, most
existing methods [Daunhawer et al., 2023; Peng et al., 2022]
operate under idealized assumptions: fully labeled training
datasets and consistently available modalities during evalu-
ation. In practice, the challenges of missing modalities and
semi-supervised learning often coexist, yet current research
typically addresses these problems in isolation. For exam-
ple, missing modalities may arise when autonomous vehicles
lose sensor inputs due to environmental obstructions or when
medical diagnostics in resource-limited settings lack access
to all imaging modalities. Simultaneously, the scarcity of la-
beled data across domains remains a critical bottleneck, par-
ticularly in multimodal contexts where individual modalities
often require specialized labeling.

Addressing these challenges independently limits the adapt-
ability of multimodal systems and fails to capture the com-
plexities of real-world deployments. This work uniquely ad-
dresses these dual challenges by integrating strategies to han-
dle incomplete modalities and leverage unlabeled data simul-
taneously. By doing so, our approach enhances both flexibil-
ity and applicability, enabling robust performance in diverse
and imperfect scenarios. Unlike current literature, which
rarely addresses both issues concurrently, this work bridges
a critical gap with an innovative and unified solution.

Existing literature: One of the primary challenges in multi-
modal learning is handling corrupted or missing modalities.
Existing methods to address missing modalities typically fall
into two categories:

1. Generative approaches, such as VAE-based models
[Wu and Goodman, 2018], which reconstruct missing
modalities. While recent advancements [Feichtenhofer
et al., 2022; Woo et al., 2023] demonstrate promising
performance, these methods often depend on specific ar-
chitectures, limiting their flexibility.

2. Transfer learning methods, which align latent spaces
for cross-modal knowledge transfer [Ma er al., 2022;
Lee and Van der Schaar, 2021; Wang et al., 2020]. These
methods focus on adaptable training strategies [Chen et
al., 2023] but often lack a strong theoretical foundation
and are primarily guided by empirical intuition.

Simultaneously, the need for semi-supervised learning arises
from practical challenges in labeling raw data, especially in
domains where annotations are scarce or labor-intensive to
obtain. This challenge is amplified in multimodal learning,
as each modality may require distinct expertise for labeling.
For example, tasks such as object segmentation across video
and lidar data in autonomous driving [Zhang et al., 2022b]
or medical segmentation across imaging modalities [Acosta
et al., 2022] demand diverse and often non-standardized la-
beling procedures. Recent advancements in semi-supervised
learning, such as knowledge distillation [Su ef al., 2021] and
pseudo-labeling [Aberdam et al., 2022], have shown promise,
but these techniques are often designed for specific applica-
tions and struggle to generalize across varied multimodal set-
tings.
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Figure 1. Partial Information Decomposition for 2 input modalities
with target variable.

A detailed discussion of existing literature in both areas is
provided in Appendix A.

Proposed approach: The dual challenges of missing modal-
ities and semi-supervised learning remain critical open prob-
lems in multimodal research. This work advances transfer
learning methods for missing modalities (category 2) that per-
tain architectural flexibility and dataset compatibility, while
introducing a novel design to reduce dependence on labeled
data, ensuring robustness and adaptability in real-world sce-
narios.

Using Partial Information Decomposition [Williams and
Beer, 20101, the mutual information provided by an input X
with M modalities (X', ..., X ™) for a given task Y can be
decomposed into:

Z({X", .. XML Y) =R{X',.... XY} Y)

M . (1
+YUXHY)+ X XM Y,
=1

where R represents redundancy (shared task-relevant in-
formation among M modalities), U denotes unique infor-
mation specific to the i modality, and S quantifies syn-
ergy, the additional knowledge generated through interactions
among modalities (Figure 1 illustrates PID with 2 modali-
ties).

In an ideal setting with access to all modalities, a fu-
sion technique would efficiently capture R and S to opti-
mize predictions for Y. However, in real-world scenarios
where some modalities are unavailable, replicating S be-
comes challenging. For example, with two modalities, Y =
linear(X?!, X?) = non_linear(X') demonstrates that
synergy (S) improves predictions when both X' and X? are
available. Access to X! alone makes the relationship more
complex and harder to model with deep networks.

Approaches like knowledge distillation [Chen et al., 2023]
and contrastive learning [Radford et al., 2021] aim to ad-
dress missing modalities by mimicking the representations
produced by fused modalities in their absence. From an
information-theoretic perspective, these methods focus on
replicating redundant information (R) through latent-space
alignment. Building on this foundation, we explicitly intro-
duce a mutual information maximization objective (Objec-
tive 2.1) to align unimodal and fused representations. This
alignment ensures efficient knowledge transfer while mini-
mizing reliance on labeled data using a novel soft-positive
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Figure 2. Training/evaluation datasets under investigation.

pseudo-labeling mechanism that accounts for pseudo-label
uncertainty.

While alignment effectively captures R, it can unintention-
ally diminish unique information (/) from individual modal-
ities. This loss is particularly detrimental in semi-supervised
settings or when other modalities are unavailable. To ad-
dress this, we propose preserving modality-specific informa-
tion (U*) via Objective 2.2. This is achieved using a simple
yet effective reconstruction procedure in the latent space, uni-
versally applicable across modalities. Our results and abla-
tions (Tables 1 and 3) demonstrate how retaining 2/* improves
performance.

Together, Objectives 2.1 and 2.2 form the foundation of
our semi-supervised multimodal learning method, Robust
Multimodal Pipeline (Robult). Robult effectively balances
redundancy alignment and unique information preservation,
ensuring accuracy and robustness in scenarios with missing
modalities. Empirical results (Section 3) and theoretical un-
derpinnings highlight Robult’s superior performance com-
pared to existing methods, demonstrating its adaptability to
diverse real-world settings.

Contributions. Our primary contributions are:

* Jointly addressing the dual challenges of missing modal-
ities and semi-supervised learning.

* Framing two objectives under an information-theoretic
perspective and deriving novel loss functions to achieve
these goals.

* Introducing a soft Positive-Unlabeled contrastive loss
that efficiently utilizes limited labeled data through se-
lective weighting of potential positives.

2 Methodology

Training setting: We consider a training scenario where each
sample includes all modalities, but only some samples have
corresponding labels (Figure 2). Formally, let the training
dataset be Dirain = {(21,91), -5 (Th, Yk )s Thi1, -+ - Tn )
where each data point z; = (z,...,z}") contains M
modalities. The dataset consists of n samples, of which k
are labeled (0 < k < n).

Evaluation setting: To mimic real-world deployment, the
evaluation dataset Xyesr = {1, ..., Zm } consists of samples
with potential missing modalities - e.g. z; = (Jc?’s);Va €
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Figure 3. (3a) For each available modality < € {1,..., M}, f*(.)
extracts the latent representation hj. The modules g*(.) and ¢°(.)
then extract the unique information u§~ and redundant representation
zj-, respectively. These are combined and processed by the shared
module ¢(.) to predict gj; Late fusion strategies aggregate these
outputs into the final prediction g;. (3b) When all modalities mjl-M
are available, f°(.) extract a fused latent vector h?. This vector is

directly passed through ¢(.) to generate the final output Q}M .

.A;-M C {1,..., M}. Here, AM denote the indices of all avail-
able modalities for sample z; (Figure 2).

Notation: For clarity, in the theoretical framework, we de-
note the input random variables corresponding to the i*"
modality as X* (Figure 2). We would refer back to the
observation-level notation x; whenever needed.

Figure 3 illustrates our versatile multimodal pipeline named
Robult. Robult consists of M modality-specific branches and
a fusion branch indexed with zero. For each input variable
X, it is first projected into a shared latent space:

H'= f{(X"), ie{l,...,M}.

In parallel, a fusion network f°(.) processes all input modal-
ities jointly to produce a fused latent variable (also reside on
the shared latent space):

H = fo(x*),

where index O denotes the joint latent variable using all
modalities. This latent-space projection provides two key
benefits:

* Generalization: Robult supports different combina-
tion of modalities and their preferred projection meth-
ods/architectures.

« Efficient Fusion: Various strategies can be adopted be-
fore Robult’s main logic to efficiently attain fused repre-
sentations.

Each modality-specific module g(.) extracts unique informa-
tion of corresponding modality:

Ul = gi(H), ie{l,...,M},

while the shared module ¢°(.) effectively captures the redun-
dant information by processing individual or joint latent vari-
ables:

Zi _ gO(Hi)’ S = gO(HO).

Objectives: As discussed in Section 1, we draw inspiration
from the second category of literature on missing modalities,
which primarily leverages knowledge distillation and con-
trastive loss techniques [Poklukar et al., 2022b]. These meth-
ods aim to align unimodal (student) representations, such as
Z*, with the fused (teacher) representation .S, enabling uni-
modal representations to efficiently replicate the redundant
information encapsulated in the fused representation. Al-
though this redundant information exists within each modal-
ity, extracting it directly from a single modality can be sig-
nificantly more complex without access to all modalities. For
example, encoding object shape from an image may be chal-
lenging, whereas a textual description can explicitly provide
the same information. Mimicking the fused representation
offers a shortcut, simplifying the extraction of redundant in-
formation within unimodal representations.

However, these approaches fail in the semi-supervised train-
ing setting, owing to 2 emerging challenges:

* (1) The over reliance on label signals (e.g. classification
clusters) in the alignment process.

* (2) the diminishing of unique information contained in
different modality after alignment process.

Regarding the former challenge, we directly address the la-
bel need of Contrastive Learning with Label-level sampling
[Zhang et al., 2022a] by a novel soft Positive-Unlabelled (PU)
contrastive loss, together with an adaptive weighting strategy,
detailed about which is covered in Section 2.1. Theoretically,
this PU contrastive loss corresponds to a mutual information
maximization problem between the desired fused representa-
tion S and the learned unimodal representation projected into
that same latent space Z*’s. Objective 2.1 of our method can
be expressed as follow:

Objective 2.1. Aligning S and Z! by maximizing the mutual
information Z(S, Z%) (i =1, M).

For the latter challenge, we observe that attempting to only
align modalities during training diminishes the unique infor-
mation provided by each modality, thus the model is losing
information that could help inform it when only that spe-
cific modality is available. Therefore, a model should ide-
ally benefit by maintaining the redundancy while also ex-
plicitly preserving each modality’s unique information. This
claim is later supported by experimental results and abla-
tions (Section 3 - Table 1). To address the challenge of van-
ishing modality-specific information from multimodal align-
ment during training, we emphasize a disentanglement strat-
egy that preserves unique information while still facilitating
the redundancy learning process of Objective 2.1. Robult in-
tegrates a set of modules g*(H'), where i = 1,..., M, to
produce unique representations U* for each modality. We aim
to preserve the unique information for each modality via the
learning of U* with Objective 2.2 as follows:
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Objective 2.2. Learning U ¢ by minimizing the conditional
entropy H(H'|Z*,U") (i=1,M).

During training, all branches are executed and three loss func-
tions update the learned modules. The soft positive unlabeled
loss, £ py, maximizes knowledge extraction from the few la-
beled samples in a batch (Subsection 2.1). The reconstruc-
tion loss, L. forces each branch to extract unique modality-
specific information (Subsection 2.2). The task-specific su-
pervised loss, Ly, is used on the labeled samples across all
modules to learn label information (Subsection 2.3).

2.1 Maximizing Mutual Information with Soft
Positive-Unlabeled Contrastive
Learning

To address the impact of missing modalities, we aim to learn
redundant information by aligning the fused latent variable S
with unimodal representations Z*, as formalized in Objective
2.1. This is achieved by maximizing their mutual informa-
tion Z(S, Z*). However, direct computation of this quantity
is infeasible without access to the joint distribution pg z: or
the marginal distributions pg and p:. Instead, we derive and
optimize a lower bound for this mutual information.

Lower Bound Derivation. Let F' be a binary random vari-
able indicating whether a pair (s;, z},) is sampled from the
joint distribution pg z: (' = 1) or from the product of
marginal distributions pg ® pzi (F' = 0). Then, a lower
bound for Z(S, Z%) is expressed as:

1(S,2") > —E,_ , logv(S, Z")

| Z. &)
= —Ey(s,zi|r=1) log v(S,2")

where v(5, Z%) is a non-parametric approximation of p(F =
1|S, Z"). For a sampled pair (s, 2;,) in a batch of B samples,
where s; is the fused representation for sample j and 2 is the

th modality-specific representation for sample k, v(sj, z}) is
defined as:

A(sjh2)
S8 #si:2h)
(s, 21) = exp({s;; 24)/7)-
The derivation of Result 2 is detailed in Appendix B.2.

U(Sjv lev) =

where

Challenges with Sampling. The lower bound in equation 2
relies on expectations under Epg z:, a key source of devia-
tion in existing studies, which presents challenges in practice.
Two common sampling strategies include:

1. Instance-level sampling, which considers only intra-
sample pairs (s, 2}) within q mini-batch [Radford et al.,

20211].

2. Label-level sampling, which uses label information to
sample inter-sample pairs (s;, z},) with the same labels,
e.g. y; = yi [Zhang er al., 2022al.

The first approach risks introducing false negatives, while the
second requires fully labeled data, limiting its applicability in
semi-supervised settings.
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Figure 4. Soft-PU Loss mechanism. Unlabeled positive pairs are
identified using soft labels from Robult’s classifier. These pairs are
re-weighted based on their proximity and the mean proximity of true
labeled positive pairs to mitigate false positives.

D Unlabelled False Positive

Soft Positive-Unlabeled (PU) Contrastive Loss. To over-
come these limitations, we propose a novel soft Positive-
Unlabeled (PU) contrastive loss with adaptive weighting. Let
L indicate whether a sampled pair (s;, z1) is labeled (L = 1)
or not (L = 0) (where L = 1 if the label information of both
samples ¢ and k is known, and L = 0 otherwise), The lower
bound in equation 2 can then be decomposed as:

-E logv(S, Z") = —Eps,z1|p=1) log v(S, z"

= _p(Lzl)Ep(S Zi|F=1,L=1) log v (S, Zi)

—p(L= O)E (8,Z%|F=1,L=0) log v(S, Z)
3)

We formulate the two terms in equation 3 as separate loss
components: Ly, for labeled data and £,;;, for the unlabeled
data.

pS,Zi

For labeled samples, let B 1 denote the index set of inputs
in the batch that share the same class as sample j (F' = 1)

and are labeled (L = 1), i.e. k € B, <= (sj,2;) ~

p(S, Z|F = 1,L = 1). The labeled loss is then defined as a

NT-Xent-like contrastive loss [Chen et al., 2020]:

Lip =—— Z

i=1j€B

Z log v( smzk 4)

B £

For unlabeled samples, directly sampling from p(S, Z|F =
1,L = 0) is challenging due to the absence of label infor-
mation. To address this, we propose leveraging the output
of the Robult classifier to generate soft labels, regularized by
adaptive weights calculated dynamically within each mini-
batch. This approach effectively balances the influence of
soft-labeled pairs and mitigates the limitations of traditional
pseudo-labeling methods [Aberdam et al., 2022].

A key challenge during initial training stages is the instability
of the Robult classifier, which may produce unreliable out-
puts and hinder effective filtering of false positives, as illus-
trated in Figure 4. To counteract this, we adjust the contri-
bution of soft-labeled pairs to the loss function, ensuring ro-
bust training. For each anchor sample s; within a mini-batch,
there are labeled positive partners or, in unsupervised scenar-
ios, unimodal representations z;. The average proximity of
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these labeled partners to s; serves as a reference for deter-
mining “positive” proximity thresholds. Unlabeled positive
pairs identified by the Robult classifier are expected to ex-
hibit proximity close to this reference mean. To refine the
loss computation, we increase the weight of pairs that align
closely with the reference mean and decrease the influence of
outliers. This weighting mechanism, implemented using an
RBF kernel, allows precise adjustment of each couplet’s con-
tribution based on its proximity. By dynamically adapting
weights, our method effectively reduces the impact of poten-
tial false positives and enhances the overall performance of
the final loss function, as demonstrated in Figure 4.

wiy, = RBF (¢}, ¢(s5, 21));
Z- e O
where ¢} = mean {(b(sj, 2|k € Bl,l} .

Let B{ .o denote the index set of inputs in the batch that share
the same class as anchor j (F' = 1) but are not labeled (L =

0),ie k€ By < (s;,2)) ~ p(S,Z'|F = 1,L = 0).
The unlabeled loss is given by:

P _ifz L N
M 1B,

i=1jEB

Z w;k logv(sj, 21).
keBi ,
(6)
The complete soft Positive-Unlabeled (PU) loss is the sum of
the labeled and unlabeled components:

Lpy = Lup + Ly @)

2.2 Minimizing Conditional Entropy with Latent
Reconstruction Error

This section details the procedure for achieving Objective 2.2,
which focuses on preserving unique information U*. Let
pui, zi denote the joint distribution of U® and Z°, where
(uj»7 z;) ~ pyi z: are derived from the corresponding in-
stance h; Inspired by [Chen et al., 2016], the conditional

entropy H(H®|Z!,U") is expressed as:

HH'|U', Z') = K, , . []EPH”Uq,,Z,i [log p (H1 U, Zz)]]
(®)

Upper Bound Derivation. Since directly computing p(H" |

U*, Z") is challenging, we approximate it using a distribution

q(H* | U*, Z"). Substituting ¢ into Eq. 8, we derive:

HOH' |2, U%) = ~Eyyi i [Eygiypi i [loga(H*|UY, 2°) - 21201 ]

= —Eyi i [Byiypi zillog a(H' U, Z%)] + KL(pl|9)|

< —Eyi gi {]EHi,'Ui’Zq‘, llog q(H'|U?, Zi)]]
)
The last inequality arises because the KL divergence
KL(pl||q) is non-negative. Thus, minimizing H(H*|Z*,U?)
reduces to minimizing its Evidence Lower Bound (ELBO)-
like [Kingma and Welling, 2014] upper bound using the ap-
proximating distribution ¢ (H' | U*, Z%).

Modeling ¢ (H* | U?, Z*) with Latent Reconstruction. We

model ¢ (H* | U?, Z%) through a latent reconstruction pro-
cedure in the shared latent space. Specifically, we define a

reconstruction module r*(U?, Z') = H' where H’ approxi-
mates H'. For each pair (u}, zj) ~ pyi zi generated from
hi, the module r?(.) attempts to reconstruct h’ such that it
closely resembles h; The reconstruction loss is formulated

as:
M B

ﬁZZl — (R}, b2, (10)

i=1 j=1

ﬁrec =

where (.; .) denotes the L2-normalized dot product operation,
B is the size of mini-batch, and M is the number of modali-
ties.

This reconstruction in latent space is computationally effi-
cient and alleviates the complexity of directly reconstruct-
ing raw modality data. = Moreover, it generalizes well
across various modalities, enhancing the flexibility of Robult.
The reconstruction loss L, is back-propagated exclusively
through the M unimodal branches. This design ensures that
the unique information /(X% Y") is preserved through U?,
without interfering with the shared branch’s focus on learning
redundant information, as discussed in Section 2.1.

2.3 Training strategy

The objectives outlined in Sections 2.1 and 2.2 are optimized
through their respective loss functions. Due to the distinct
purposes of these objectives, it is advantageous to learn them
separately. Specifically, we apply L,.. to guide the learning
of g°(.) i = 1,..., M), while Lpy drives the optimization
of f(.), f°(.), and ¢°(.). To maximize the utility of labeled
data, we incorporate an additional supervised loss Lg.,;,. This
loss directs the learning process for the entire Robult net-
work and adapts based on the task type: L; loss for regres-
sion tasks and cross-entropy L., for classification tasks. A
detailed training procedure, including loss formulations and
implementation details, is provided in Appendix B.3.

3 Experimental Results

3.1 Datasets and Metrics

Dataset:
datasets.

* CMU-MOSI [Zadeh et al., 2016] & CMU-MOSEI
[Zadeh et al., 2018b]: Containing three modalities -
text, audio, and visual, supporting sentiment analysis
and emotion recognition tasks. Each video is labeled
on a scale from -3 (negative) to 3 (positive) sentiment.

e MM-IMDb [Arevalo et al., 2017]: Containing image and
text modalities, serving genre classification task - which
involves multi-label classification as a movie has several
genres.

We conduct experiments on the following

e UPMC Food-101 [Wang et al., 2015]: Containing two
modalities, text and images, this dataset is a classifica-
tion dataset consisting of 101 food categories.

* Hateful Memes [Kiela et al., 2020]: Containing text and
image modalities, this dataset aims at identifying hate
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speech in memes. This dataset includes challenging ex-
amples that are similar to hateful ones but are actually
harmless.

Metrics: For sentiment analysis related to CMU-MOSI
and CMU-MOSETI datasets, we adopt mean absolute error
(MAE), correlation (Cor), binary accuracy, and F1 score, fol-
lowing [Poklukar er al., 2022b; Tsai et al., 2018]. Here, bi-
nary categories determine positive sentiment scores (> 0) or
negative ones (< 0). For the evaluation of the three remain-
ing datasets, we adhere to the metrics specified in [Lee er al.,
2023b]. With the MM-IMDb dataset, the multi-label classifi-
cation performance is assessed using F1-Macro. The classifi-
cation accuracy is employed for the UPMC Food-101 dataset.
Lastly, for Hateful Memes, the evaluation is based on the AU-
ROC metric.

3.2 Baselines and Experimental Settings

Baselines: We incorporate several state-of-the-art ap-
proaches representing popular strategies into our comparative
evaluation. Specifically, GMC [Poklukar erf al., 2022b] serves
as a contrastive learning-based approach, ActionMAE [Woo
et al., 2023] represents a generation-based method, and we
include a Transformer-based approach proposed in [Lee et
al., 2023b], referred to as Prompt-Trans for brevity. To en-
sure optimal reproducibility, we inherit the implementations
of all baseline methods from their original code bases. Addi-
tionally, we implement unimodal frameworks (Unimodal) for
each modality, trained in a supervised manner with available
labels, to serve as our baseline comparison.

Implementation details: To ensure a fair comparison, we
use similar encoder architectures for processing raw data
modalities whenever possible. The unimodal baselines are
designed with the same architectures as Robult, each with
its own classifier. For Robult, positive samples for the soft
P-U loss are determined after discretizing labels if needed.
Specifically, in the cases of CMU-MOSI and CMU-MOSEI
datasets, label information in the range of [—3, 3] is quanti-
fied into 7 discrete categories (—3, —2, ..., 3). Additionally,
for the multi-label dataset MM-IMDb, two samples are con-
sidered positive if they share all the same labels. Regard-
ing Prompt-Trans, we only report its results for three datasets
involving two modalities (MM-IMDb dataset, UPMC Food-
101 dataset, and Hateful Memes dataset), as the extension to
multiple modalities cannot be directly inferred from the orig-
inal work [Lee et al., 2023b].

Experimental details: The primary focus of our per-
formance reporting is on two extreme scenarios: semi-
supervised settings with only 5% labeled data and scenar-
ios where only a single modality is presented during evalu-
ation. All reported results are averaged over 3 different ran-
dom seeds. In the semi-supervised setup, the newly created
labeled portion is ensured to maintain the correct label ratio
as the original training sets. Additional experiments extend-
ing these two settings to more modalities and a higher percent
of labeled data are detailed in Appendix D.1 and D.2 respec-
tively. Specific details on implementation settings relating to
each dataset are provided in Appendix - C.2.

CMU-MOSI CMU-MOSEI

Metrics Unimodal GMC ActionMAE Robult \ Unimodal GMC ActionMAE Robult
Text Modality:

MAE () 1.41 1.407 1.476 1.397 0.81 0.815 1.115 0.784
Corr (1) 0.137 0.14 0.066 0.144 | 0383 0.346 0.136 0.459
F1 (1) 0.551  0.559 0.535 0.578 | 0.717 0.716 0.614 0.739
Acc (D) 0.553  0.562 0.47 0.569 | 0.712  0.708 0.603 0.732
Audio Modality:

MAE () 1576 1518 1.546 1415 0.842  0.836 1.215 0.825
Corr (1) 0.041  -0.065 0.046 0.085 0.111  0.193 0.101 0.221
F1 (1) 0.512 0457 0.508 0.539 | 0.618 0.642 0.634 0.679
Acc (D) 0.496 0.46 0.467 0.535 | 0599  0.63 0.543 0.65
Vision Modality:

MAE (}) 1451 1.497 1.511 1.425 0.891  0.839 1.127 0.826
Corr (1) 0.044  -0.07 -0.03 0.086 | 0.163 0.2 0.104 0.201
F1 (1) 0.585  0.446 0.511 0.593 | 0.637 0.621 0.594 0.647
Acc (D) 0425  0.449 0.514 0.522 | 0.624 0.62 0.561 0.632
Full Modality:

MAE (}) 1.39%4 1.47 1.496 1.392 | 0.783 0819 1.103 0.779
Corr (1) 0.186  0.101 -0.092 0.247 | 0364 0.328 0.337 0.504
F1 (1) 0.597  0.497 0.553 0.657 073 0.693 0.694 0.744
Acc (D) 0.594  0.498 0.477 0.63 0.729  0.688 0.643 0.741

Table 1. Results on CMU-MOSI, CMU-MOSEIL

3.3 Main Quantitative Results

All results are shown in tables with the best outcomes in red
and the second-best in blue.

Sentiment Analysis: The results for CMU-MOSI and CMU-
MOSEI datasets are summarized in Table 1. For both
datasets, Robult significantly outperforms all the compared
methods, suggesting its effectiveness and consistency in
semi-supervised and missing modality scenarios. Regard-
ing CMU-MOSI, due to its smaller scale compared to CMU-
MOSE]I, the labeled portions are also smaller. This condition
poses a challenge for existing baselines that heavily rely on
label information. In contrast, Robult effectively addresses
this challenge, demonstrating the ability to extract meaning-
ful representations even with limited labeled data. On CMU-
MOSEI, Robult consistently produces superior representa-
tions, achieving the best performances across all recorded
metrics. Notably, Robult improves the correlation (Corr) be-
tween the predicted sentiment levels and ground truth by up
to 19.8%, outperforming the second-best method, which is
the unimodal for textual data.

Classification tasks: In Table 2, empirical results for three
classification tasks show that Robult consistently outperforms
existing approaches and baselines in most cases, except for
one scenario on the Hateful Memes dataset with the full
modality available, where Robult achieves comparable per-
formance with Prompt-Trans [Lee et al., 2023b]. Notably, the
Hateful Memes dataset includes samples with “benign con-
founders”, negatively impacting performance when models
rely solely on single modalities [Kiela ef al., 2020]. Leverag-
ing the soft Positive-Unlabelled loss, Robult effectively ad-
dresses and mitigates performance gaps with either single
modality inputs or the full ones. In addition, we calculate
F1 macro scores for all methods on these three datasets in the
unimodal and multimodal cases. We further visualize a Crit-
ical Difference Diagram [Demsar, 2006] in Figure 5. This
diagram visually represents the performance among different
machine learning algorithms across various datasets by dis-
playing the mean performance ranks, with lower being better,
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Unimodal Prompt-Trans GMC ActionMAE Robult
MM-IMDb - F1 Macro (1):

Text 0.24 0.198 0.296 0.055 0.321

Image 0.207 0.148 0.291 0.039 0.298

Full 0.196 0.268 0.307 0.171 0.332
UPMC Food-101 - Accuracy (1):

Text 0.321 0.151 0.395 0.196 0.435

Image 0.296 0.111 0.382 0.132 0.415

Full 0.138 0.432 0.41 0.358 0.446
Hateful Memes - AUROC (1):

Text 0.584 0.511 0.617 0.528 0.623

Image  0.524 0.475 0.528 0.508 0.596

Full 0.618 0.635 0.616 0.542 0.632

Table 2. Results on MM-IMDb, UPMC Food-101, Hateful Memes.
cD

| —
1 2 3 4 5
Robult J _L ActionMAE
GMC  PromptTr
Unimodal rompt-frans

Figure 5. CD diagram showing the mean rank of each method on
three datasets.

and connecting statistically indistinguishable groups (within
95% confidence level) with a thin horizontal bar, as per the
Friedman hypothesis test. From the diagram, Robult exhibits
a clear improvement gap compared to other state-of-the-art
methods in average ranks, while ActionMAE and Prompt-
Trans show no statistically significant difference in their per-
formance.

3.4 Main ablation studies

Owing to space constraint, we provide here a key analysis of
ablation study for different components of Robult. For a more
comprehensive analysis, please refer to the additional exper-
iments in Appendix D, which offer further insights into how
architectural choices, Soft-PU loss, and weighting schemes
influence Robult’s performance quantitatively and qualita-
tively.

We evaluate the impact of each loss component on Rob-
ult’s performance using Hateful Memes dataset, which mirror
the semi-supervised and missing modalities conditions of our
main experiments. This analysis involves testing variations
of Robult with different ablations. (1) Removal of L., - this
setting utilizes available label information only in L,y 0
Robult can only produce latent representations. An additional
Logistic Regressor is trained with these representations as its
input, and this pipeline’s final scores are reported. (2) Re-
moval of L. - this setting discards L,.., corresponding to
our Objective 2.2. (3) Removal of Ly, - this setting makes the
learning of Objective 2.1 rely only on L. (4) Removal of
L - this setting associates Objective 2.1 exclusively with
L. Table 3 summarizes the results of this ablation exper-
iment. Overall, any ablation negatively impacts the perfor-
mance of Robult. In particular, the absence of Ly, signif-

Metrics GMC  Robult Robult (1) Robult(2) Robult (3) Robult (4)
CMU-MOSI - Text Modality:
MAE 1407  1.397 1.589 1.511 1.443 1.429
Corr  0.14 0.144 0.047 0.101 0.051 0.123
F1 0559 0.578 0.542 0.52 0.593 0.571
Acc  0.562  0.569 0.544 0.523 0.422 0.573
CMU-MOSI - Audio Modality:
MAE 1518 1415 1.586 1.561 1.494 1.495
Corr  -0.065  0.085 0.023 0.005 0.046 0.085
F1 0457  0.539 0.526 0.499 0.51 0.517
Acc 046 0.535 0.518 0.502 0.442 0.509
CMU-MOSI - Vision Modality:
MAE 1497 1425 1.663 1.711 1.445 1.504
Corr  -0.07  0.086 0.025 -0.023 0.041 -0.066
F1 0446  0.593 0.519 0.485 0.571 0.459
Acc 0449  0.522 0.519 0.465 0.47 0.448
CMU-MOSI - Full Modality:
MAE 147 1.392 1.588 1.434 1.411 1.459
Corr  0.101  0.247 0.071 0.239 0.166 0.229
Fl 0497  0.657 0.524 0.567 0.549 0.6
Acc  0.498 0.63 0.523 0.566 0.552 0.601
Hateful Memes - Text Modality:
AUROC  0.617  0.623 0.528 0.59 0.605 0.576
Acc  0.581 0.59 0.535 0.556 0.571 0.562
Hateful Memes - Image Modality:
AUROC 0.528  0.596 0.518 0.582 0.588 0.566
Acc 0551  0.562 0.524 0.551 0.526 0.539
Hateful Memes - Full Modality:
AUROC 0.616  0.632 0.538 0.618 0.634 0.582
Acc 0532 0.595 0.542 0.55 0.554 0.552

Table 3. Ablation analysis on CMU-MOSI and Hateful Memes
datasets for Robult.

icantly worsens the performance, as there is no loss guiding
the learning of Robult’s classifier, which is crucial for gen-
erating soft label information consumed by the soft Positive-
Unlabeled loss L£,;5. Consequently, this ablation adversely
affects two loss components, explaining the poorest result
among all variations. The removal of £,.. particularly harms
the performance with unimodal inputs, aligning with the mo-
tivation for Objective 2.2, as the unique information U  is no
longer preserved. In two remaining cases, both ablations di-
minish Robult’s overall performance, indicating their equal
contribution to achieving Objective 2.1.

4 Contributions & Limitations

Contributions: Our Robult pipeline leverages limited label
data through a soft Positive-Unlabelled (PU) loss and latent
reconstruction loss, enhancing modality interactions and pre-
serving unimodal data integrity. It supports various modal-
ity types and quantities, scales linearly with modalities, and
functions independently of specific architectures. This flexi-
bility facilitates integration with existing DL frameworks, ad-
vancing multimodal learning in practical settings.

Limitations. Robult’s design presumes that the proximity of
positive couplets follows a Gaussian distribution, a method
proven empirically but not theoretically. Future work should
seek theoretical validation for this assumption. Moreover,
with our setting, the potential of labeled data in scenarios with
missing modalities in training remains untapped. Exploring
these cases could further improve Robult’s effectiveness in
complex real-world applications.
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