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Abstract

Multiple clustering approaches aim to partition
complex data in different ways. These methods
often exhibit a one-to-many relationship in their
results, and relying solely on the data context
may be insufficient to capture the patterns rele-
vant to the user. User’s expectation is key for
the multiple clustering task. Two main challenges
exist: identifying the significant features to rep-
resent user interests and aligning those interests
with the clustering results. To address this is-
sue, we propose Contrastive Multiple Clusterings
(CMClusts), which extends contrastive learn-
ing to multiple clustering by elevating traditional
instance-level contrast to clustering-level contrast.
Furthermore, CMClusts integrates user expec-
tations or interests by extracting desired features
through tailored data augmentations, enabling the
model to effectively capture user-relevant cluster-
ing features. Experimental results on benchmark
datasets show that CMClusts can generate inter-
pretable and high-quality clusterings, which reflect
different user interests.

1 Introduction

Clustering is a mainstream unsupervised learning technique
that groups samples into several disjoint clusters [Jain et al.,
1999]. As data grows more complex, relying on a single clus-
tering may no longer be sufficient. In many situations, dif-
ferent orthogonal solutions may exist to meaningfully group
a given dataset [Bailey, 2018]. For example, a face image
dataset can be clustered based on identity and pose (as shown
in Figure 4), respectively. To address this problem, multiple
clustering approaches have been explored to partition a given
dataset in various ways [Yu et al., 2024].

The large majority of existing multiple clustering meth-
ods explore the data clustering structure by focusing on the
data. One approach seeks alternative clusterings in a semi-
supervised and sequential manner, where each clustering
complements already explored ones [Bae and Bailey, 2006;
Chang et al., 2017], or simultaneously optimizes multiple
sets of cluster centers or meta-clusterings in an unsupervised

fashion [Tokuda er al., 2021; Yao et al., 2023]. In con-
trast, other techniques aim to explore non-redundant clus-
terings in different feature subspaces, including ISAAC [Ye
et al., 2016], MSC [Hu et al., 2017], MISC [Wang et al.,
2019], MVMC [Yao et al., 2019], and Nr-kmeans [Mautz et
al., 2020], thus discovering diverse clusterings in linear sub-
spaces. Other methods aim to obtain alternative clusterings in
nonlinear subspaces generated by deep neural networks [Mik-
lautz et al., 2020; Wei et al., 2020b; Wei et al., 2021;
Ren et al., 2023b; Yao et al., 2023]. However, a critical point
is that these approaches often assume the clusters are distin-
guishable as long as the data structure is known, which is not
always the case. A one-to-many relationship exists in multi-
ple clusterings, and relying solely on the data context may be
insufficient to determine the appropriate clusterings. User ex-
pectations play a crucial role in the multiple clustering task,
as they define the relevance and practical utility of the identi-
fied clusters.

Two main challenges exist in finding multiple clusterings
that align with the user’s interests. The first is identifying
the significant features to represent user interests. This in-
volves the extraction of effective and valuable information,
typically embedded in high-dimensional spaces. The second
challenge is how to align the user’s interests with the clus-
tering results. Although multiple clustering algorithms are
capable of generating diverse clustering outcomes, users typ-
ically need to invest considerable effort to understand these
results. Moreover, it is difficult to extract meaningful insights
about the clustering semantics directly from the algorithmic
framework.

To address these challenges, we propose the Contrastive
Multiple Clusterings (CMClusts) approach, which lever-
ages tailored data augmentation strategies to perform con-
trastive comparisons, thereby producing distinct clusterings
aligned with user expectations. Targeted at the first challenge,
we design an interest-guided data augmentation, to augment
the original data to account for the user’s different interests.
As an example, the user’s visual/semantic priors are typically
readily available and easy to specify, e.g. we can intuitively
select the most salient features in images, such as color, iden-
tity, and shape. To address the issue of insignificant features,
the interest-guided data augmentation generates more diverse
training samples by applying transformations on the original
data. By capturing the invariant features under such trans-
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formations, we can effectively distill meaningful representa-
tions from the data. Feature compositions are complex and
challenging to distinguish. By taking the original dataset as
an anchor and contrasting it with the augmented data that pre-
serves the desired features while altering others, we can guide
the model to focus on the invariant features according with
user interests. In addition, introducing augmented negative
samples that break the invariance of the desired features and
maximizing their distance from positive samples can yield
more discriminative results. CMClusts formulates this pro-
cess through the adoption of a clustering-level contrast that
uses a triplet loss function to model the relationships between
positive and negative samples (created through different data
augmentations), aligning desired features with different inter-
ests. By minimizing the distance between anchors and posi-
tive samples, CMClusts ensures the effective extraction of
desired features and the quality of clusterings, while maxi-
mizing the distance between anchors and negative samples
guarantees the distinctiveness of different clusterings. As a
result, CMClusts finds diverse clusterings of quality, and
these clusterings align with user-interests.

The main contributions of our work are outlined below:
(i) Our CMClusts establishes a principled integration of
user-specified clustering interests with data augmentation
techniques, employing contrastive learning between aug-
mented and original data to disentangle and extract the de-
sired features from the original feature space, thereby effec-
tively aligning with user interests.
(i) CMC1lusts introduces the clustering-level contrast that
treats augmented data for the other clustering as negative
samples. This contrast not only enhances the discrimination
between positive and negative samples but also boost the di-
versity between different clusterings.
(iii) We conduct experiments using real-world benchmark
datasets, and compare CMClust s against representative and
competitive multiple clustering methods [Cui et al., 2007,
Yang and Zhang, 2017; Miklautz et al., 2020; Ren et al.,
2023b; Yao et al., 2023; Yao et al., 2024a]. Extensive results
demonstrate the advantages of CMClusts in generating di-
verse clusterings aligning with user’s interests.

2 Related Work

2.1 Multiple clusterings

Multiple clustering approaches aim to generate different al-
ternative clusterings for more comprehensive analysis of the
data [Bailey, 2018; Yu et al., 2024]. It differs from the multi-
view clustering [Zhang et al., 2020] and subspace cluster-
ing [Elhamifar and Vidal, 2013], which generate only one
clustering from diverse views or different cluster subspaces.
Early solutions aim to find alternative clusterings in the
original feature space [Yu et al., 2024]. Some of them take
prior clusterings as the reference to sequentially generate
the other alternative clustering in a semi-supervised man-
ner [Yang and Zhang, 2017; Chang et al., 2017]. Hence
the quality of alternative clustering depends on referenced
ones. In contrast, other methods simultaneously find mul-
tiple clusterings by jointly optimizing quality and diversity
by cluster centroids [Jain er al., 2008], mutual informa-

tion [Dang and Bailey, 2010] and other criteria [Ren er al.,
2023al. Recently, [Yao et al., 2023; Yao and Hu, 2024]
proposed two augmentation guided deep multiple clustering
solutions (AugDMC and DDMC), which discover multiple
clusterings through prototype-based representation learning
and variational expectation-maximization framework, respec-
tively. These methods learn feature consistency by disrupting
the structural integrity of the original data, which is prone
to introducing noise and semantic bias. Besides, [Yao er
al., 2024a; Yao er al., 2024b] utilized the alignment capa-
bilities of multi-modal large models (e.g. CLIP [Radford et
al., 2021]) to align users’ textual descriptions of preferences
with corresponding images, thereby generating clustering re-
sults that align with user expectations. However, these large
model based solutions require additional textual descriptions,
as they are unable to effectively extract user interested fea-
tures solely from the data itself, and need a higher computa-
tional cost with demanding multi-modal data.

Another line of methods explore diverse feature subspaces
and clusterings therein, where some methods [Cui et al.,
2007; Wang et al., 2019; Mautz et al., 2020] adopt orthogonal
or independent subspace analysis to discover multiple cluster-
ings, while others explore non-redundant clusterings by max-
imizing the feature statistical independence [Hu et al., 2017,
Niu er al., 2013]. More recent solutions merge deep sub-
space learning to find multiple clusterings. ENRC [Mik-
lautz et al., 2020] trains a non-redundant clustering network
leveraging deep autoencoders. iMClusts [Ren et al., 2023b]
diversifies multi-head attentions with redundancy control to
generate diverse salient nonlinear subspaces and clusterings
therein. [Wei et al., 2020a; Wei et al., 2020b; Wei et al.,
2021] found non-redundant clusterings from multi-view data
and heterogeneous networks. These deep multiple clustering
methods often obtain better results than shallow ones. How-
ever, they may produce meaningless clusterings, as they dis-
regard user’s interests or prior knowledge of the data, causing
the relationships between subspaces and the embodied clus-
terings are ambiguous.

2.2 Contrastive clustering

As an emerging paradigm of self-supervised learning, con-
trastive learning aims to project data into a new space
to reduce intra-class distances and increase inter-class dis-
tances [Chen et al., 2020]. For this merit, it has been widely
applied to clustering [Zhu e al., 2022; Yin et al., 2023]. For
example, MiCE [Tsai et al., 2020] introduces the instance-
level contrastive learning to obtain discriminative representa-
tions to optimize the clustering, while [Zhong et al., 2021]
further proposed the cluster-level contrastive framework to
get more compact cluster. Subsequently, [Xu et al., 2022]
proposed the contrastive multi-view clustering to solve the
conflict between consistent public information and inconsis-
tent private information of multi-view data.

These contrastive clustering methods can only generate a
single clustering. In contrast, our CMClusts uses different
data augmentations to align with user’s interests, generating
corresponding clustering results in the augmented data. By
contrasting the clusterings across different augmented data,
CMClusts facilitates clustering-level contrast to mine mul-
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tiple clusterings with both quality and diversity.

3 Methodology

In this section, we elaborate on the proposed contrastive mul-
tiple clustering framework, including the user interest-guided
data augmentation process, clustering-level contrastive fea-
ture extraction, and clustering loss function. The conceptual
framework is presented in Fig. 1, and a notation table is in-
cluded in the supplementary file.

3.1 User Interest-guided Data Augmentation

CMClusts aims to augment the original data to align with
user’s interests. Here, the user interests refer to the type of
clusterings that users are expected or interested in. We con-
sider image data as an example to illustrate the data augmen-
tation process; other types of data can also be augmented us-
ing proper tools.

Given a dataset X € RV*P an image x; can be aug-
mented through a function Aug(-) based on the user’s interest
setZ ={L, - ,Ix}:

Xp, = Aug(x;, I), (D

where x;, ; € R¢ corresponds to x; augmented with interest
type Ij,. In essence, CMClusts frames the desired features
as consistency information between the augmented and the
original data. While the choice of data augmentation tech-
niques is tailored to specific applications. For example, if
Z = {color, shape}, CMClusts can take random rotation
and color adjustment as augmentation techniques, which can
preserve the invariant color features or shape context to align
with user interests. Namely, rotation does not alter the color
features, while color adjustment maintains the shape con-
text. In this way, we can obtain K augmented representations
{Xr -

Remarks. Compared to the hard-to-obtain reference la-
bels (reference clusterings), these alike user interests provide
valuable clues for generating different and meaningful clus-
terings. To pursue knowledge-driven non-redundant cluster-
ings, most methods resort to the explicit division rules, such
as the link constraints and known clustering labels [Bae and
Bailey, 2006; Yang and Zhang, 2017; Ren ef al., 2023b].
These methods heavily depend on the quality of the refer-
ence information. Unfortunately, the generated clusterings
maybe not of any interest to the users. In practice, the user’s
visual/semantic priors are generally available and more inter-
esting. For example, we can intuitively select the most salient
features in images, such as color, identity and shape. Simi-
larly, by glancing conference papers, we can choose the in-
terested clustering criteria (i.e., topics and authorship).

3.2 Clustering-level Contrastive Feature
Extraction

After generating augmented data toward user interests, dis-

tinct deep neural networks {fy, (-), -, fox EV)} are em-

ployed to extract feature representations Z € RV *? from the

augmented samples as follows:

Zr; = fo,(Xk,i)- (2)

Different deep networks facilitate the tailored design of
feature extraction, ensuring adaptability to specific inter-
ests. Utilizing the same neural network for extracting diverse
features may diminish the model’s discriminative capability
across different interests. Notably, CMClusts is not tied
with any specific network architecture.

Unlike canonical contrastive clustering methods that min-
imizes the distance between different augmentations of the
same instances [Li ef al., 2021] (instance-level contrast) or
minimizes the overall distance between instances within the
same cluster [Zhong et al., 2021] (cluster-level contrast),
CMClusts defines a clustering-level contrast that aims to
maximize the diversity between clusterings of respective aug-
mentations. This contrast can reduce the redundancy between
clusterings. To compute the clustering-level contrast, we ap-
proximate it via a triplet loss as follows:

N
Lip; = Z dist(z;, zi,;) — dist(z;,2;;) + a, 3)

where z; is the i-th anchor sample in X, z;; (j # k) is the
feature vector of the ¢-th sample in the j-th augmented data
view. Typically, a single augmented view suffices. « is a mar-
gin that defines a minimum distance by which the negative
sample should be farther from the anchor than the positive
sample. The distance between z; and z, ;, which can also be
computed with other metrics, is computed as:

dist(zi,2.,i) = ||zi — 214 ]|5- 4)

For the first term of the triplet loss L.,;, as described
in Section 3.1, the augmentation operations are determined
based on the user’s interests, ensuring the invariance of the
desired features while altering other features. Therefore, by
contrasting the original data X with the augmented data Xy
and minimizing the distance between their feature embed-
dings, CMClusts learns the invariant features between the
two, which correspond to the user’s desired features.

For the second term of the triplet loss L;,;, increasing the
distance between the anchor z; and z; ; in another augmented
view increase the diversity between two clusterings. This is
driven by the goal to explore different clusterings.

3.3 Clustering Loss Function

The clustering-level contrast mainly focuses on the diver-
sity between different clusterings. CMClusts further de-
signs a clustering loss to pursue the compact and separate
relationship within and between clusters of a specific clus-
tering, thereby improving the quality of respective cluster-
ings. Specifically, the clustering loss contains the intra-cluster
loss and inter-cluster loss. The intra-cluster loss pursues that
samples within clusters are more compact, while the inter-
cluster loss ensures that samples between clusters are more
dispersed. The intra-cluster loss is computed as:

1 2
Lintru = ALAL AN Z ||Xk7’i - Xk‘,j”ga (5)
ICRl(ICk = 1) <=,
1,j€C},
where x;, ; and x;, ; are samples of the [-th cluster in the k-th
clustering. In addition, we ensure the separability between
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Figure 1: Framework overview of CMClusts. The data matrix X is augmented into KX different views {Xj }5_; based on user’s interests,
which specifically refer to the types of clustering or grouping criteria defined by users. Then, the augmented and original data are mapped
into the latent feature spaces {Zy } _; as positive pairs, and the augmented data in the other view are treated as negative ones. CMClusts
leverages a clustering-level contrastive loss to minimize the distance between positive pairs while maximizing the distance between negative
ones, guiding the model to focus on user-interest features. The trained model embeds data into feature spaces {H}, } ~—; for initial clusterings,
which are further optimized by clustering loss to generate multiple clusterings {Cx } =, with diversity and quality.

clusters by increasing the distance between the cluster cen-
ters, and define the inter-cluster loss as follows:

1
f_@ Z

l1,12€C5 L1 £l

2
Linter llew, — el (6)

where c¢;, and c;, are centers of cluster C,l; and ij, respec-
tively.

The total clustering loss incorporates both intra-cluster and
inter-cluster losses, with a trade-off parameter 8 balancing
these two losses as follows:

Lclu —N Lintra + 5 . Linter- (7)

Minimizing the intra-cluster variance and maximizing the
inter-cluster separation can promote the formation of well-
structured and semantically meaningful cluster representa-
tions, as our experiment will show.

3.4 Opverall Objective

To learn the specific features of interest to the user across
different augmented data views and generate high quality, di-
versified clusterings, we can jointly optimize CMClusts by
combining the aforementioned losses as follows:

LCMClusts & Ltri + Lclu~ (8)

However, the computation of clustering loss is dependent
on the initial clustering labels. Therefore, we adopt a tai-
lored alternative optimization strategy. Initially, CMClusts
is trained using the triplet loss Ly.; to extract the desired clus-
tering features. Then, k-means is employed to generate the
initial clustering labels. After this, the model parameters are
frozen, and the clustering center positions are adjusted by the
clustering loss L., to obtain the final clustering labels.

Algorithm 1 lists the procedure of CMClusts. Specif-
ically, Line 1 initializes the augmented data views {X}&£ .
Lines 2-6 iteratively optimize the parameters of 8 and extract
different sets of desired features {Hy } &, to align with user
interests.It is worth noting that the contrastive loss is com-
puted across clusterings, but only the feature extractor of the
current clustering is updated; others remain fixed. Lines 9-11
optimize the clustering loss to generate K clusterings.

The time complexity of data augmentation is O(wh),
where w and h are the width and height of the image, re-
spectively. The time complexity of an m-layer feature extrac-
tion network is O(>_." | d;_1d;), where d; is the number of
neurons in the i-th layer, dg = D and d,,, = d. The time
complexity of the triplet loss L;,.; and clustering loss L.j,
are both O(Nd). Therefore, the overall time complexity of
CMClusts is O3, di—1d; + 2Nd + wh). Compared
with Multi-Sub [Yao et al., 2024a] using the CLIP pre-trained
model, CMClusts does not require an additional text en-
coder and thus has a lower complexity and runtime.

4 Experiments

4.1 Experimental setup

Baselines. We compare CMClusts against representa-
tive multiple clustering methods, including OSC [Cui et al.,
20071, MNMF [Yang and Zhang, 2017], ENRC [Miklautz et
al., 2020], iMClusts [Ren et al., 2023b], AugDMC [Yao et
al., 2023], and Multi-Sub [Yao et al., 2024a]. These com-
pared methods were discussed in Section 2, and their config-
urations are deferred into the supplementary file.

Datasets. Seven benchmark datasets (ALOI [Geusebroek
et al., 2005], Fruit [Yao et al., 2023], CMUFace [Ren et al.,
2023b], COIL [Nayar, 1996], Cards [Yao et al., 2023], We-
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Algorithm 1 CMClusts: Contrastive Multiple Clustering

Input: Dataset X; the number of clusterings K; the user’s
interest set Z = {I},}/<_,; the training rounds {73 }2*_, for K
clusterings;

Output: Clustering partition: {Cj }5_,.

1: Initialize augmented data {Xj, }/_ | based on Z.
2. fork=1— Kdo
3: fort=1— 75 do

4: Update the latent representations Zj, by Eq. (2).

5.  end for

6:  Compute triplet loss Ly,; by Eq. (3).

7:  Update the parameters of feature extraction network
with Adam optimizer.

8:  Extract the desired feature Hy: Hy, = fy, (Xk).

9:  Generate the k-th initial
kmeans(Hy,).

10:  Compute the intra-cluster loss L;y¢-q Via Eq. (5).

11:  Compute the inter-cluster loss Lt via Eq. (6).

12:  Update the cluster centers via Eq. (7).

13: end for

14: Generate K clusterings {Cj, }<_,.

clustering Cy, =

bKB and Mice [Ren et al., 2023b]) are used to evaluate the
performance of CMClust s and other baselines. The first five
are image datasets, the sixth is a textual dataset, and the last
is a mouse single-oocyte transcriptome dataset with two dif-
ferent clusterings (2 or 4 clusters). These datasets have been
widely used to validate multiple clustering methods [Bailey,
2018; Yu et al., 2024]. Their statistical information are given
in Table 1. More details are provided in the supplementary
file. In experiments, we implement data augmentation by
enriching features that are relevant to the desired clustering
based on user’s visual priors or interests. For example, we
augment data with respect to color by varying shapes (i.e.
rotation, flipping, random cropping) and ensure color invari-
ance. For the expected shape clustering, we can augment data
with respect to shape by varying color (i.e. hue, saturation,
contrast changes) and keep the shape unchanged.

Evaluation metrics. To quantitatively evaluate the perfor-
mance of each method, we measure the quality and diversity
using the Normalized Mutual Information (NMI) and Jaccard
Index (JI) with reference to distinct ground-truth labels. A
higher score indicates the generated clustering more consis-
tent with the groundtruth, which is with higher quality and
more diverse from the other clustering.

Implementation. For image data, CMClusts adopts the
pre-trained ResNet50 [He et al., 2016] as the backbone net-
work for feature extraction, and defines a multilayer percep-
tron (MLP) with rectified linear units (ReLLU) as the activate
functions to project the learned features into a nonlinear rep-
resentation. For text data, CMClusts integrates traditional
text feature extraction techniques, such as the Bag-of-Words
model and TF-IDF, to encode textual features, and then em-
ploys a multi-layer perception network (MLP) as the back-
bone for further feature extraction and representation learn-
ing. For single-cell Mice data, CMClusts obtains its fea-

Datasets ~ Samples (/N) Dimension (d) Clusters
ALOI 288 32x32 2;2
COIL 648 32x32 3;3
Fruit 4856 32x32 4,4

CMUFace 640 32x32  20;4;2
Cards 8029 32x%x32 13;4

WebKB 1041 500 4,4

Mice 146 41092 4,2

Table 1: Information of Used Benchmark Datasets

ture matrix and maps it to a lower-dimensional space us-
ing an MLP. And the « and § are hyperparameters. For
a detailed analysis, please refer to the supplementary file.
Additionally, all the methods are implemented in PyTorch
2.4 and tested on a server with NVIDIA L40 GPUs. The
source code of CMClusts is available at https://www.sdu-
idea.cn/codes.php?name=CMClusts.

4.2 Results and analysis

Table 2 provides the average clustering results of 10 indepen-
dent runs of each method on benchmark datasets, with the sig-
nificantly best results are highlighted in bold (pairwise ¢-test
with 95% confidence). We can find that CMC1ust s achieves
the best results in almost all cases, proving its effectiveness.
In addition, we have the following important observations:

(i) Deep vs. Shallow methods: In most cases, deep multiple
clustering methods, ENRC, iMClusts, AugDMC, Multi-Sub
and CMClusts, perform better than the shallow OSC and
MNMEF. This clear gap confirms the advantage of deep learn-
ing based methods, owing to the expressive representation ca-
pability. The performance of CMClusts surpasses that of
other methods due to its capability to effectively incorporate
user interests, encoding these interests through diverse data
augmentations. By leveraging contrastive learning among
augmented features, the original features, and other irrele-
vant augmented features, CMClusts enhances the salience
of desired features while promoting diversity across different
augmented features. This capability is critical for generating
diverse and high-quality clusterings. ENRC and iMClusts ob-
tain competitive results in simple task like ALOI, but struggle
with more complex tasks, which may be due to their inability
to generate multiple orthogonal or non-redundant subspaces
from large data with complex structures. AugDMC outper-
forms ENRC and iMClusts in complex scenarios such as Fruit
and CMUFace, because the discriminative data view obtained
by data augmentation is beneficial for generating multiple
clusterings. However, AugDMC’s mediocre performance on
other datasets indicates the limitation of its simple adop-
tion of prototype representation learning. Multi-Sub demon-
strates some improvements over the aforementioned methods,
reflecting the strong representational power of large multi-
modal models in capturing clustering structures. Neverthe-
less, it cannot cluster text data and transcriptomic datasets,
and clustering is also challenging for data that is hard to gen-
erate textual cues (e.g., identity-based clustering in CMU-
Face). CMClusts gains competitive performance on text
dataset WebKB and transcriptomic dataset Mice, highlighting
the versatility of its data augmentation and clustering-level
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Dataset Type Metrics 0OSC MNMF ENRC iMClusts | AugDMC | Multi-Sub | CMClusts
color NMI | .344=.000e | .281%.006 | .982+.001e | .816+.001e | .344+.017e | 1.000+.000 | 1.000=.000

ALOI JI | .497+.000e | .3612.009e | .965+.000 | .873+.000e | .497+.105e | 1.000+.000 | 1.000+.000
shape | M| 344%.000w |~ 2632008 |"992% 0000 | 928% 000 | 1.000+.000 | 1.0002000 | 1.000+.000

JI | .497+.000e | .362+.210e | .994+.0000 | .937+.001e | 1.000+.000 | 1.000+.000 | 1.000+.000

color NMI | .022=.002e | .013£.001e | .084+.012e | .I83+.001e | .094=.001e | .155=.001e | .205+.000

COLL JI | 267+.001e | .215+.002e | .232+.000e | .284+.001e | .276+.000e | .213+.002e | .297+.000
. NMI | .102=.001e | .055£.003e | .125+.013e | .126+.002e | .065%.003e | .251=.000e | .269+.000

species JI | 273+.001e | .225+.001e | .263+.004e | .273+.004e | 257+.002e | .352+.001e | .382+.000

K . NMI | .184+.02Te | .019%.112e | 402%.003e | 421+.002e | 466+.021e | .660+.001e | .696=.000

Fruit JI | 206+.001e | .152+.0226 | .301+.032e | 315+.041e | .304+.021e | 461+.001e | .498+.000
. NMI | 465+.031e | .018+.010e | .380=.110e | 410%.002e | 517=.10Te | .610£.003e | .619+.000

s JI | 343+.001e | .163+.110e | .297+.131e | .311+.032e | .352+.071e | .401+.000e | .408+.000

dentity | NMT | A95%021e | 228%010w | 504 00Te | 527%004e | 5T2%00Te | 543£007e | 3822000

JI | .192+.012e | .051+.023e | .164+.011e | .197+.002e | .170+.003e | .201+.005¢ | .214+.000

CMUFace | pose NMI | .013=.011e | .017=.0220 | .023+.2070 | .026+.0040 | .015+.001e | .032+.0060 | .017+.000
JI | .160+.013e | .141+.1126 | .153+.050e | .170+.0010 | .156+.002e | .2012.0010 | .172+.000

olass NMI | .006=.001e | .007£.002e | .007+.001e | .006+.010e | .005+.002e | .008=.001e | .009+.000

JI | 360+.002e | .401+.001e | .362+.000e | .360+.001e | .359+.002e | .352+.001e | .433+.000

imber | NMI | 133£00Te | 052%03Te | 100£.001e | 124£003e | 106£001e | 153£000e | .175£.000

Cards JI | .109+.001e | .0712.010e | .092+.002e | .103+.001e | .082:+.002e | .121%.000e | .154+.000
s NMI | .019=.000e | .032%.010e | .090+.000 | .I00+.001e | .081=.000e | .170=.001e | .213+.000

JI | .170£.002e | 2110108 | .140+.001e | .205+.001e | .182:+.000e | .191+.002e | .234+.000

university | NMT | 2820036 [ 012£.00Te | 217£000e | 451£.001e | 383£010s - 460=.000

WebKB Y1 31 | .290+.000e | .180+.011e | .221+.002e | .352+.001e | .331+.0050 - 359,000
NMI | .201+.101e | .011=.010e | .133£.001e | .106+.002e | .155+.004e - 242%.000

category JI | 221+.026e | .142+.014e | .150+.002e | .137+.0026 | .214+.000e - .283+.000

e NMI | .254=.000e | .018.000e | .107+.002e | .123+.000e | .152%.001e - 363%.000

- JI | 23240008 | .145+.000e | .190+.001e | .203+.000e | .218+.001e : 267+.000
oo NMI | .768=.000e | .875+.000 | .695+.001e | .726+.000e | .703%.000e - 2909=.000

yp JI | .831+.0008 | .921+.000e | .667+.001e | .676+.000 | .650+.001e - 947+.000

Table 2: Performance of baselines on generating multiple clusterings. e or o indicates whether CMClusts is superior/inferior to the other
method, with statistical significance checked by pairwise ¢-test at 95% level. The best results are highlighted in bold font.

contrast.

(i) With interest vs. Without interest: CMC1lust s outper-
forms other competitive baselines in most cases, which sug-
gests the effectiveness of users’ interest on boosting multiple
clusterings. OSC and MNMF obtain the alternative cluster-
ing with reference to already explored clusterings, they have
a poor overall quality and diversity. iMClusts rectifies each
feature subspace by incorporating weakly-supervised prior
knowledge, but these knowledge maybe not always accu-
rate and available in complex data. Although ENRC projects
data into different subspaces and provides alternative cluster-
ings without requiring prior knowledge, the results are not
good as CMClusts, due to the lack of redundancy con-
trol. Multi-Sub aligns image and textual features through
a large multi-modal model, but it requires additional tex-
tual prompts, which may lead to suboptimal performance on
datasets with a wide variety of categories and complex de-
scriptions. In contrast, CMClusts leverages interest-guided
data augmentations and clustering-level contrast to extract
features aligned with user interests, without requiring addi-
tional textual prompts.

4.3 Visualization of Multiple Clusterings

To intuitively check the quality of clustering generated by
CMClusts, we employ t-SNE [Van der Maaten and Hinton,
2008] to visualize the clustering space learnt by CMClusts

and five baselines (excluding MNMF due to its poor per-
formance) on the Fruit dataset as a two-dimensional scatter
plot. The color clustering results are shown in Figure 2,
and the species clustering results are provided in the supple-
mentary, where different colors represent distinct cluster la-
bels. We can observe that the cluster distributions produced
by the baselines are more compact with small inter-cluster
distances, making it difficult to obtain well-separated and dis-
tinguishable structures. In contrast, the clustering results of
CMC1lusts exhibit clear inter-cluster boundaries and tightly
distributed intra-cluster points, confirming that CMClusts
can effectively generate higher-quality clusterings.

In addition, to vividly show the multiple clusterings gener-
ated by CMClusts and check the alignment between user-
interests and the clustering outcomes, we present multiple
clusterings guided by user-interests on the ALOI and CMU-
Face datasets in Fig. 3~Fig. 4. Each clustering outcome cor-
responds to a specific type of clustering expected by the user.
In Figure 3, the first clustering reflects the outcome under the
user’s color preference, where the color differences between
clusters are distinct, while the shapes are mixed. The second
clustering coincides with the user’s shape preference. Here,
the colors are more chaotic, but the shapes are clearly dis-
tinct. Similarly, as shown in Figure 4, CMC1lust s effectively
identifies three clusterings based on identity, pose, and glass
or not, corresponding to different user-defined criteria.
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Figure 2: 2D scatter plot of the generated color clustering on Fruit by CMClust s and baselines. CMClusts better groups colorful images.
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Figure 3: Two clusterings (color, shape) found by CMClusts on

ALOL
-
o~
w

(b) Pose

(c) Glass

Figure 4: Three clusterings (identity, pose, glass or not) found by
CMClusts on CMUFace.

4.4 Ablation Study

To investigate the contributing factors of CMClusts,
we introduce four variants: w/oAug, w/oContrast,
w/oClusteringLoss, and wJointOpt, which respectively
remove data augmentation in Eq. (1), contrastive learning
in Eq. (3), clustering loss in Eq. (7), and the separate
optimization strategy for the feature extraction networks
in Eq. (8). Figure 5 presents the average NMI values of
CMClusts and its variants. Similar trends are observed in
JI, whose results are provided in the supplementary file. We
find that CMClust s outperforms its variants, demonstrating
that data augmentation, contrastive learning, clustering loss,
and the separate optimization strategy are indispensable for
generating high-quality clusterings with diversity.

The NMI of w/oContrast are generally the lowest, con-
firming the critical role of clustering-level contrast in cap-
turing discriminative latent features from augmented data
views. Solely the augmented data and feature extraction net-
works fail to produce satisfactory clustering results. Addi-
tionally, the performance of wJointOpt is noticeably inferior
to CMClusts, highlighting that, compared to jointly opti-
mizing the triplet loss and clustering loss, optimizing the net-

-w/oAug
L [_Iw/oContrast |
[Iw/oClusteringLoss
[ wJointOpt
0.8 I CMClusts i
=
0.6
4
0.4
0.2
ALOI Fruit COIL CMUface Cards WebKB Mice

Figure 5: NMI of CMClusts and its variants.

work with the triplet loss to obtain effective initial clustering
labels and then fine-tuning with the clustering loss gives bet-
ter clustering performance.

We also observe that removing data augmentation leads to
a significant drop in NMI. This is because data augmentation
generates diverse enhanced views from complex data, reflect-
ing user’s respective interests. Without data augmentation,
only using original data considerably reduces the diversity
of clustering results. Furthermore, the clustering loss also
plays an important role in fine-tuning the clustering outcome
with moderate improvement. In summary, these factors en-
able CMClusts to achieve high-quality multiple clusterings.

In addition, we investigate the hyperparameter sensitivity
of CMClusts and provide the results in the supplementary
file. The results indicate that the performance of CMClusts
is not greatly impacted by hyperparameters, and the fluctua-
tion range of NMI is less than 0.1.

5 Conclusion and Future Work

This paper introduces CMClusts, a novel contrastive
multiple clustering solution aligning with user interests.
CMClusts fulfils user interests by extracting desired fea-
tures from augmented data, and explores multiple clusterings
with diversity by clustering-level contrast. CMClusts out-
performs competitive baselines in both quality and diversity
on benchmark datasets. The explored distinctive clusterings
indeed accord with different user interests. Next, we will in-
tegrate foundational models with multiple clusterings to en-
hance the applicability of multiple clustering across broader
domains and validate its generalizability in real-world tasks.
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