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Abstract

Incomplete multi-view data presents a significant
challenge for multi-view clustering (MVC). Ex-
isting incomplete MVC solutions commonly rely
on data imputation to convert incomplete data into
complete data. However, this paradigm suffers
from the risk of error accumulation when clustering
unreliably imputed data, causing suboptimal clus-
tering performance. Moreover, using imputation
to fulfill missing data is inefficient, while inferring
data categories based solely on the existing views
is extremely challenging. To this end, we propose
an Imputation-free Incomplete MVC (I2MVC) via
pseudo-supervised knowledge distillation. Specif-
ically, I2MVC decomposes the incomplete MVC
problem into two tasks: an MVC task for complete
data and a pseudo-supervised classification task for
fully incomplete data. A self-supervised simple
contrastive Teacher network is trained for cluster-
ing complete data, and its knowledge is distilled
into a lightweight pseudo-supervised Student net-
work. The Student network, unrestricted by view
completeness, further guides the clustering of fully
incomplete data. Finally, the clustering results from
both tasks are merged to generate the final cluster-
ing outcome. Experimental results on benchmark
datasets demonstrate the effectiveness of I2MVC.

1 Introduction

Multi-view clustering (MVC) [Bickel and Scheffer, 2004;
Yao et al., 2019; Wei et al., 2021; Yu et al., 2024] is an unsu-
pervised learning paradigm specifically devised for the analy-
sis of multi-view data (MVD), which clusters data by exploit-
ing the feature similarities across different views. Multi-view
data, which describes objects from multiple perspectives, is
ubiquitous in real-world scenarios. For example, in medical
diagnosis, diseases can be examined using computed tomog-
raphy, magnetic resonance imaging, and ultrasound imaging.
By harnessing the consistency and complementarity of infor-
mation across multiple views, more precise diagnostic results
can be obtained.
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Figure 1: The difference between our I2MVC and other MVC
methods (with two views as an example). (a) Traditional incom-
plete MVC methods typically convert incomplete multi-view data
(IMVD) into MVD via exclusion or imputation techniques and then
perform clustering using MVC methods. (b) Our imputation-free
framework divides the IMVD into two parts: MVC for MVD and
pseudo-supervised classification (PSC) for fully incomplete MVD.

However, multi-view data is not invariably complete. For
instance, some diseases can be diagnosed without conduct-
ing all possible examinations, leading to missing views in the
dataset. Such data is known as incomplete MVD. As illus-
trated in Figure 1 (a), a canonical approach to handling in-
complete MVD involves converting it into complete MVD,
followed by applying MVC methods. This conversion typ-
ically includes three strategies [Wen er al., 2022]: (1) ex-
cluding data with missing views, (2) filling missing views
with zero or the average of existing views [Li et al., 2014;
Zhao et al., 2016], and (3) utilizing deep learning techniques
to generate missing data [Wei er al., 2020a; Bu er al., 2024].

Recently, incomplete MVC solutions based on deep learn-
ing for data recovery have been put forward. For instance,
COMPLETER [Lin et al., 2021] recovers missing views by
minimizing the conditional entropy between different views
through dual prediction. ICMVC [Chao er al., 2024] regards
the kNN graph of existing views as a potential graph structure
for the missing views and utilizes the message-passing capa-
bility of graph neural networks to fill in the missing data. The
consistency and complementarity of multi-view data can be
beneficial for feature learning and downstream tasks [Tan et
al.,2021; Wei et al., 2020b]. Nevertheless, as the data scales,
complex imputation becomes progressively challenging. On
the one hand, interpolation of large-scale data demands a sub-
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stantial amount of computing resources. On the other hand,
imputation is not always effective when there is an excessive
number of missing views.

Partial views can provide enough information to conduct
downstream tasks [Tan et al., 2018; Ren et al., 2023a]. For
example, the diagnosis of chronic kidney disease necessitates
a comprehensive analysis of diverse data sources, including
blood tests, urine tests, and kidney ultrasound. In contrast,
Helicobacter pylori infection can be diagnosed solely through
an antigen test. Moreover, experienced doctors can rapidly
diagnose a patient’s illness based on their accumulated med-
ical knowledge without conducting additional examinations.
Such rapid recognition is feasible, particularly when a certain
margin of error is acceptable. Nevertheless, in the realm of
incomplete multi-view clustering, using the available views
to infer data categories rather than filling in the missing data
through imputation is extremely challenging and remains an
unsolved problem.

Based on the motivation mentioned above, this article pro-
poses an Imputation-free Incomplete MVC (I2MVC) algo-
rithm. Specifically, as depicted in Figure 1 (b), the incomplete
MVC problem is decomposed into a clustering problem of
MVD and a classification problem of fully incomplete MVD.
We train an MVC Teacher model using contrastive learning
and then train a lightweight Student model for fully incom-
plete MVD classification through pseudo-supervised knowl-
edge distillation. T2MVC brings two key benefits: (1) It fully
exploits the information from MVD without requiring im-
putation for incomplete MVD, thereby reducing processing
complexity and avoiding the accumulation of errors due to
imputation. (2) Through pseudo-supervised training, the Stu-
dent model can adjust the number of views in the input data to
a single view, performing incomplete MVD clustering with-
out the need of all views. Then the clustering of fully in-
complete data is conducted by the Student model. Extensive
experiments demonstrate the effectiveness of I2MVC.

The main contributions of our work are listed as follows:
(i) We propose a divide-and-conquer strategy for incomplete
MVC. It converts the task into clustering complete data and
pseudo-supervised classification of fully incomplete data, ef-
fectively using complete data to guide the clustering of in-
complete data.

(ii) We propose an imputation-free incomplete MVC
(I2MvC) based on pseudo-supervised knowledge distillation.
I2MVC transforms the requirement of multiple views into a
single view, reducing the required number of views when
clustering incomplete data and avoiding the imputation op-
eration.

(iii) Experiments on benchmark datasets demonstrate the
effectiveness of I2MVC on both complete and incomplete
MVD, and the pseudo-supervised knowledge distillation ef-
fectively guides the clustering of incomplete data.

2 Related Work
2.1 Multi-view Clustering

Multi-view clustering refers to methods designed to cluster
complete MVD. These approaches typically include matrix
factorization, multi-kernel learning, graph learning, and deep

learning methods. Matrix factorization-based methods [Yao
et al., 2019; Wei et al., 2020b; Peng et al., 2023] decom-
pose data matrices into low-rank matrices constrained by the
consistency of multiple views and clustering on the low-rank
matrices. Multi-kernel learning-based methods [Zhang et al.,
2021; Liu e al., 2023; Su et al., 2024] combine predefined
kernels from different views, either linearly or non-linearly, to
enhance clustering performance. Graph learning-based meth-
ods [Yang et al., 2022] aim to learn a consistent affinity graph
across all views and perform clustering algorithms like spec-
tral clustering on the consensus graph. Deep learning-based
methods [Xu et al., 2022; Ren et al., 2023b] leverage deep
networks to learn latent representations and then use learned
representations to partition the data into distinct groups.

Learning cohesive and discriminative representations from
different views is crucial for deep learning-based MVC meth-
ods. Contrastive learning has been extensively employed to
learn consistent representations from multiple views, present-
ing significant advantages in MVC. For example, MCGC
[Pan and Kang, 2021] regularizes the consensus graph with
a graph contrastive loss. CMHHC [Lin ez al., 2022] uses con-
trastive learning to align sample-level representations across
views and performs hierarchical clustering in the hyperbolic
space. DealMVC [Yang et al., 2023] uses global and lo-
cal contrastive calibration loss to jointly optimize interacted
cross-view features at two levels for multi-view clustering.
Simple Contrastive MVC (SCM) [Luo e al., 2024] fuses data
at the data level instead of the feature level, and constructs
augmented views via masking and adding noise, training an
auto-encoder with contrastive learning. Despite their strong
clustering performance, these methods do not address miss-
ing views, leading to suboptimal results when applied to in-
complete data.

2.2 Incomplete Multi-view Clustering

Most incomplete MVC solutions transform incomplete data
into complete data through imputation and then apply MVC
for clustering. Common imputation strategies include sim-
ple methods (such as zero imputation and mean imputation)
[Zhou et al., 2024] and generative methods (such as diffu-
sion imputation and graph neural networks) [Wen et al., 2024,
Chao et al., 2024]. COMPLETER [Lin et al., 2021] pro-
poses recovering missing views at sample-level, rather than
missing similarity information, and achieves data recov-
ery and consistency learning within a unified information-
theoretic framework, improving the interpretability of in-
complete MVC algorithms. However, sample-level recov-
ery will lose instance commonality. Prolmp [Li et al.,
2023] constructs a sample-prototype relationship and per-
forms data recovery using prototypes from the missing views
and the sample-prototype relationships inherited from ob-
served views. Graph convolutional networks (GCN) [Kipf
and Welling, 2017] have an advantage in learning commu-
nity consistency, providing a new paradigm in imputation.
ICMVC [Chao et al., 2024] utilizes the message-passing
mechanism of GCN to complete missing latent representa-
tions by leveraging neighbors of missing instances. DVIMC
[Xu et al., 2024] parametrizes the approximate posterior
of each view using Variational auto-encoders (VAEs) and
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Figure 2: Conceptual framework of I2MVC. The incomplete MVD (views: V, missing rate: 7) is split into two subsets based on whether
views are missing: complete MVD (X°) and fully incomplete MVD (X). For complete MVD, Self-supervised Simple Contrastive MVC
is trained as the Teacher model, which provides clustering labels C° and cluster centers. To free the model from the constraint of a fixed
number of views, the complete MVD is mixed up to generate (1 — ) NV single-view samples. Then, the mixed data are used to train a
simple Student classifier supervised by clustering pseudo-labels from the Teacher. The retained views are averaged for each sample in fully
incomplete MVD, and the encoder in Student is used to infer clustering results C*. The final result is generated by merging C¢ and C”.

integrates information through Product-of-Experts, thereby
avoiding the need for imputation. Although DVIMC learns
the data distribution of different views, it ignores the consis-
tent information across views. Compared with the existing
incomplete MVC methods, our T2MVC uses multi-view data
for pseudo-supervised distillation and trains a Student model
that can cluster incomplete data with just one view.

3 Methodology

This section introduces the proposed I2MVC, which mainly
contains three components: self-supervised simple con-
trastive MVC, pseudo-supervised knowledge distillation, and
imputation-free clustering for fully incomplete MVD. Figure
2 shows the schematic diagram of I2MVC.

3.1 Preliminary

Given an MVD dataset X = {X! ..., X% ---XV} with
N samples and V(V > 2) views, XV = {z¥,--- ,2%} €
RN *¥dv ig the data matrix of the v-th view, where d, is its
feature dimension. When there are no missing views in the
data, it is referred as complete MVD. When all samples have
[1,V — 1] missing views, it is referred as fully incomplete
MVD. X denotes the feature matrix formed by concatenating
all views in complete MVD. For problem analysis, suppose
X™ denotes randomly masked data, and X" denotes the ma-
trix with Gaussian noise. X° denotes mixing all views of
complete MVD. For fully incomplete MVD, existing views
are averaged to generate X/. The encoder embeddings are

denoted as Z the clustering distribution as Q, and the auxil-
iary distribution as P. The clustering partition for complete
MVD is C¢, while that for fully incomplete MVD is C/.

3.2 Self-supervised Simple Contrastive MVC

I2MvC divides the incomplete MVD into complete MVD and
fully incomplete MVD for clustering. For complete MVD,
any deep MVC algorithm can be used. Simple Contrastive
MVC [Luo et al., 2024] efficiently transforms view-specific
encoders into a single encoder via data-level fusion, thereby
reducing the model size. However, its feature learning and
clustering processes are isolated, causing a lack of clustering-
oriented guidance during feature learning. Given that, we
propose Self-supervised Simple Contrastive MVC (S3CM) to
make the joint optimization of feature learning and clustering.

Before concatenation, Principal Component Analysis
(PCA) [Hotelling, 1933] is applied to X to obtain dimension-
aligned features. Consistent with Simple Contrastive MVC,
data-level fusion on complete MVD is performed to obtain
X*. Then random masking and Gaussian noise are applied to
generate augmented data X" and X", which are used to con-
struct sample pairs of augmented views for contrastive learn-
ing.

Auto-encoder (AE) efficiently conducts unsupervised rep-
resentation learning by minimizing the reconstruction error.
Given its simplicity and effectiveness, we apply AE as a back-
bone network to learn the embedding of the concatenated
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view and augmented views:
where f{ is the encoder and 6 is the learnable weight.
The reconstruction loss optimizes the feature learning of

the AE:
Lree =L+ L + L

L= SIX X3
= ST X,
=5 SIX - XN,
where X*, X", X" are reconstructed data by decoder g:
X! = gh(Z"), X" = gh(Z™), X" = gh(Z"),  ©)

To learn the consistent information between different aug-
mented views, a contrastive loss is constructed:

@

N
1 n,m m,n
Econ — N Z (ﬂl + ACZ )> (4)

=1

where £ and £]"" are the mutual contrastive InfoNCE
loss [Oord et al., 2018] of the i-th instance as follows:
exp (S;""/71)
exp (S /1) + Y ,cs- exp (S™t/11)’
®)

where S are the cosine similarity between two sam-
ple features. S~ = {zY}; ;""" is the negative samples set
of z]'. 7y is a temperature coefficient, which is set to 0.5 ac-
cording to Simple Contrastive MVC [Luo et al., 2024]. We
consider different augmented views of the same sample as
positive pairs and other samples as negative ones.

To ensure that representations learned by AE are aligned
with the clustering objective, we use a self-supervised clus-
tering loss to jointly optimize clustering and feature learning:

(1 + 127 — pyl13)~"

L™ = —log

nm qn,t
R

R S IFS N
P - 3;/21 Qij ©)
N Zj/ szj// Ez Qij/’

Eclu == KL(P“Q)7

where M is the cluster centers vector of the j-th cluster, and
Q;; is the probability of the i-th instance assigned to the
j-th cluster. P is a target distribution for promoting high-
confident probabilities to be larger and low-confident ones to
be smaller, which is controlled by the KL divergence [Kull-
back and Leibler, 1951]. To obtain reliable initial clustering
centers for calculating clustering distribution Q, we pre-train
AE f}, gi using the loss function as follows:

Et = Erec + Econ- @)

pre

The initial clustering centers are initialized by conduct-
ing k-means [Hartigan and Wong, 1979] on the embedding
learned by AE. The S3CM is optimized by L

L= Leon + a0 Lo, (®

where « is a hyper-parameter controlling self-supervised
clustering.

Finally, the clustering labels of complete MVD are ob-
tained by selecting the index with maximum probability:

Ci =argmaxQj, 7=1,---, k, 9)
J

where £ is the pre-defined number of clusters.

3.3 Pseudo-supervised Knowledge Distillation

S3CM uses contrastive loss, reconstruction loss, and self-
supervised clustering loss to fully learn information from
complete MVD, which can be applied for feature learning
and clustering in fully incomplete MVD. However, due to the
missing views, its formulation cannot directly fit the input re-
quirement of S3CM.

To enable clustering using only the available views in fully
incomplete MVD, we transfer the knowledge from S3CM to
a simpler AE through knowledge distillation [Hinton, 2015].
This involves training a model capable of learning single-
view features. Specifically, we first adapt the AE’s input by
mixing up the views in complete MVD to generate X°, where
each view represents a separate sample. The AE then learns
data features through the following process:

Z° = f3(X%), X° = g3(2°). (10)

It is also optimized by reconstruction loss L7.. The soft
clustering assignment Q° is calculated according to the well-
trained center vectors. Additionally, to enable the Student
model to learn features without ground-truth supervision, we

design the following offline distillation process:

L1.q = KL(softmax(Z' /75)||softmax(Z* /75)),
L. = CrossEntropy(Q?®, OneHot(C%)), (11)
£s :£i66+(1—ﬂ)'£kd+ﬁ'ﬁcea

where 79 is the distillation temperature and [ is also a bal-
anced hyper-parameter. Since no ground-truth labels exist,
the one-hot vector of clustering pseudo-labels is substituted
for the classification pseudo-supervision information. This
ensures that the Student AE can generalize the knowledge
learned by S3CM, enabling feature extraction and clustering
for fully incomplete MVD with its observed views.

3.4 Imputation-free Clustering for Fully
Incomplete MVD

Considering that the number of available views in fully in-

complete MVD varies across samples, we compute the fea-

ture X/ for each sample by averaging the features of its avail-

able views. The Student model then clusters these samples,

producing the clustering result C/ for fully incomplete MVD:

Z' = f3(X7),
qf _ 0= 2] — p,l13) i
Voo - gl

¢/ :argmaxQ{j,jzl,~~ , k.
J
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Finally, the clustering partitions C¢, Cf from complete
MVD and fully incomplete MVD are simply merged to ob-
tain the final clustering partition C, since C¢, C7 are induced
from the same cluster centers.

3.5 Analysis of Computational Complexity

Assume the incomplete dataset contains N samples, V' views,
and k clusters, with a view missing rate of 7. I2MVC
adopts mini-batch training, with the batch size denoted as
|B]. The computational complexity of each stage is analyzed
as follows: In the data division stage, the algorithm deter-
mines whether each sample has complete views and parti-
tions the data accordingly. This operation has a complex-
ity of O(NV). The complexity of the S3CM phase pri-
marily arises from the contrastive loss computation, result-
ing in a complexity of O(((1 — 1)N)?). During the pseudo-
supervised knowledge distillation phase, the complexity is
O((1 — n)Nk), as it involves assigning pseudo-labels and
training the lightweight classifier on (1—7)N complete MVD
samples. The imputation-free clustering phase, responsible
for clustering n N fully incomplete MVD samples, has a com-
plexity of O(nNk). For incomplete data clustering, overall
complexity is O(|B|?> + NV + |B|k); for complete data clus-
tering, it is O(|B|? + |B|k), both dominated by S3CM.

4 Experiments

4.1 Experimental Setup

Datasets. The datasets used in this study are benchmark
datasets widely used in MVC, including NGs [Hussain et
al., 2010], BDGP [Cai et al., 2012], WebKB [Craven et al.,
1998], and MNIST-USPS [Peng et al., 2019]. These datasets
not only contain different modalities and different amounts
of samples, but also different numbers of views. Table 1 pro-
vides the statistics information of these datasets.

Since our focus is on incomplete MVD, we randomly se-
lected data from each category to construct two subsets: com-
plete MVD and fully incomplete MVD, with a missing rate of
1, where 0 < 1 < 1. To create the fully incomplete MVD, we
applied random masking to set the number of views for each
sample to a range of [1,V — 1], where V is the total num-
ber of views. This setup ensures that the constructed datasets
simulate scenarios involving randomly missing views.

Metrics. The performance of all methods was assessed us-
ing three primary evaluation metrics: clustering accuracy
(ACC), normalized mutual information (NMI), and adjusted
Rand index (ARI). To enable comprehensive algorithm com-
parison, we additionally introduced four computational ef-
ficiency indicators: peak GPU memory utilization (GPU
MEM), total trainable parameters (PARAM), computational
time per epoch (TPE), and total execution time (TIME).
These metrics collectively serve to quantify both the effec-
tiveness and efficiency of the evaluated approaches.

Baselines. Baselines span three categories: complete MVC
(DIVIDE [Zhang ef al., 2024] and SCM [Luo et al., 2024]),
imputation-based incomplete MVC (COMPELTER [Lin et
al., 20211, Prolmp [Li et al., 2023], ICMVC [Chao et al.,
2024]), and imputation-free incomplete MVC (APADC [Xu

Dataset NGs WebKB  MNIST-USPS BDGP
Modality Text Image Image Text&Image
#Samples 500 1051 5000 2500
#Classes 5 2 10 5

#Views 3 2 2 2

#Dimension 2000/2000/2000 1840/3000 784/784 1750/79

Table 1: Statistics of four benchmark datasets.

et al., 2023] and GIMVC [Bai et al., 2024]). All baselines
conduct clustering using k-means [Hartigan and Wong, 1979]
on the latent representation of data.

Implementation Details. We used the publicly available
code for the compared methods and followed the imple-
mentation details provided in their original papers. For
I2MVC, its backbone network structure was kept consistent
with SCM [Luo et al., 2024] to ensure a fair comparison.
The code of I2MVC was developed using Python 3.8 and Py-
Torch 1.13, and all experiments were conducted on a Tesla
T4 GPU with 16GB memory. The distillation temperature
To was set to 2, and the view missing rate varied within
{0, 0.1, 0.3, 0.5, 0.7}. The learning rate for the Teacher
model was set to 3e-4 during both the pre-training and train-
ing phases, while the Student model in the distillation phase
used a learning rate of 3e-5. Each phase was trained for at
least 50 iterations. The hyper-parameters «, § were searched
within {0.001, 0.01, 0.1, 1, 10} and ranged 0.1 ~ 0.9
with step 0.1, respectively. All algorithms were performed
five times, and the average value and standard deviation were
measured.

4.2 Comparison with Baselines on Complete and
Incomplete MVD

We compared the clustering performance of eight methods
across four datasets, including both complete MVD and in-
complete MVD (with a missing rate of n=50%). The results
are shown in Table 2. Based on the results, we make the fol-
lowing observations: (i) Our proposed I2MVC achieves com-
petitive results on both complete and incomplete MVD, espe-
cially on incomplete data. (ii) Although complete MVC algo-
rithms are impacted by view missing, applying simple filling
techniques can still yield reasonable clustering performance,
which suggests it is possible to achieve MVC without spe-
cific imputation. (iii) Imputation-based clustering methods
generally outperform other imputation-free methods except
for our I2MVC. Intuitively, employing imputation to com-
plement missing views will introduce additional information.
However, when the view missing rate is high, the quality of
the supplemented views is compromised, leading to subopti-
mal clustering outcomes. (iv) Since our I 2MVC uses the clus-
tering partitions of the complete view data as supervision in-
formation to guide the clustering of incomplete data, I2MVC
stands out among the imputation-free methods. These results
demonstrate the effectiveness of T2MVC.

4.3 Performance with Different Missing Rates

Figure 3 presents the clustering performance of eight meth-
ods applied to the BDGP with varying missing rates within
{0, 0.1, 0.3, 0.5, 0.7}. I12MVC exhibits a more pronounced
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NGs BDGP MNIST-USPS WebKB

ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI
DIVIDE 43.6+49 21.9+1.5 18.5+23  89.2+55 78.6x7.5 76.1x10.7 943%53 923+12 91.2+43 89.2+55 78.6x7.5 76.1+10.7
SCM 96.3+0.9  89.0+2.1  91.0+2.1 95.0#2.4  87.1#2.8  88.4+4.7 98.7#0.0 96.5+0.1 97.2+0.0 67.6+4.9 23.4+3.0 12.7+6.5
COMP  39.1+6.0 16.0+5.9  9.1+3.8 60.2+2.8  55.843.8  34.3x5.1 87.1£7.6 93.6x2.5 86.5+£7.0 85.0£53 25.6£19.1 35.0+24.5
Prolmp 745119 55.349.7 52.5+12.0 71.3%13.7 64.9£159 54.3+21.0 99.5£0.1 98.7+x0.2 99.0£0.2 75.6+8.3 26.6+15.6 28.2+17.8

n Method

0% ICMVC  87.7+2.6 68.5+43 72.0+49 934493  89.449.3 88.9+12.7 99.3#0.1 98.0+0.4 98.5+0.3 73.8+1.5 30.2+4.5 22.7+#2.7
APADC  40.1+5.3 144#53 11.4+53  66.0£5.6  50.1#2.8  402+59 97.6£0.6 94.7+0.9 94.6+1.5 84.4+3.5 254+8.0 40.2+9.2
GIMVC  61.2+1.1 51.0#2.0 374420 91.9+0.0 77.7%0.1  80.9+0.1 87.1+6.0 94.6x2.1 81.1£5.1 89.9+0.3 41.0+1.4  58.1*+1.0
2MVC  97.7+0.5 92.8+1.3 94.3+1.1 98.1£0.5 94.5+1.0 95.5+1.1 98.7#0.1 96.5+0.2 97.2+0.2 97.4+0.5 78.5+3.1 88.8+1.9
DIVIDE 29.2+#3.0  7.0£3.9 5.1£3.7 55.6+4.5  46.5+2.1  30.1+4.3  91.9+0.7 83.1+0.8 83.1x1.2 76.9+8.1 57.0+8.1 53.1+11.3

SCM 65.8+2.9  52.743.3 47.0£#3.9  85.5%1.0 66.4+1.6  67.0+23 92.2+0.2 84.4+0.3 83.8+0.3 65.5£3.6 22.4+4.8 9.5+4.9
COMP 324435  7.4+22 4.0£2.0 572455 439454 259435 87.3x02 89.3x0.5 83.9+0.5 788+29  5.6+6.8 9.5£13.5
50% Prolmp 554462 31.5+5.1 27.746.1  58.9+73  459+7.6 374487 96.7+04 91.8+0.8 92.840.8 70.4+4.0 16.0+4.7  16.8+59

ICMVC  54.0+6.1 27.9+42 249+4.6  84.845.1 71.1#45  70.0£6.4  96.0+0.1 90.5+0.1 91.4+0.1 68.5+x1.6 152425 13.7+2.3
APADC  263+2.0 4.4%1.7 1.8£1.5 55.9+44.1 329454 287462 94.8+0.6 88.6£0.8 88.5+x1.4 78.1x03  0.9+12 1.7£3.2
GIMVC  37.5+1.9 259409 119405 87.240.5 68.8+0.6 70.9+1.0 81.5+£3.1 78.5+0.7 73.0£1.4 854403 27.2+13 444+14
I2MVC  92.0+0.8 78.5+1.5 80.9+1.7 96.8+1.1 90.4+24  92.1+2.6 96.8+0.1 92.0+0.3 93.0+0.3 91.8+0.3 50.8+1.9  64.6x1.1

Table 2: Clustering results of all algorithms on four datasets with different missing rates (0% means complete data and 50% means incomplete
data). The best is highlighted in bold, and the underline denotes the second best.
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Figure 3: Clustering performance comparison of eight methods on BDGP with different missing rates.

clustering effect on data with low missing rates than other T scM IZMVC w0 S3CM  B0] RMVCwoPSKD  EX] 2MVC
methods. Moreover, the proposed approach retains its ability

; X . o NGs BDGP
to effectively cluster data despite the increase of the missing 100 -
rate. These findings demonstrate the effectiveness of the pro-
posed clustering framework.

4.4 Ablation Study

To validate the effectiveness of the key components (i.e. o
S3CM and pseudo-supervised knowledge distillation) in our ACC NMI ARI ACC NMI ARI
proposed method, we designed several variant models: (i)
SCM is the simple contrastive multi-view clustering network Figure 4: Ablation results of different components.
[Luo et al., 2024]; (ii) 12MVC w/o S3CM removes the pro-
posed S3CM module and directly uses the MVD information 2 BMVC DRMVCwoS3CM  [6.0 I2MVC w/o PSKD
learned by original SCM to guide the training of the Stu-
dent network; (iii) I2MVC w/o PSKD removes the pseudo- 100
supervised knowledge distillation (PSKD) module from the
I2MVC framework. In this case, the Student model is trained
solely using the reconstruction loss of the auto-encoder, with-
out guidance from the well-trained Teacher model on the H H
MVD. Besides, we recorded the clustering performance at 04 : e - 04 : b ;
each clustering stage. Fo S By & Foo& Sy &
The ablation experiments were conducted using the NGs gﬂ“\:ité“é C\fﬁo S ¥ Qﬁ‘\:‘,@é C}fs@ C}?Q +
and BDGP datasets, with a missing rate 77 = 0.5. The results § §
about different components are presented in Figure 4. Over-
all, removing any single component from I2MVC leads to a

o]

NGs BDGP

NMI (%)
&
X

Figure 5: Ablation results of different clustering stages.
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(b) BDGP

Figure 6: Clustering results with different hyper-parameters.
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Figure 7: Comprehensive performance comparison of eight methods
on BDGP and MNIST-USPS.

performance decrease, which indicates that each component
of the proposed method is effective. Specifically, after re-
moving the self-supervised clustering loss, the clustering per-
formance on both datasets significantly deteriorates, demon-
strating the important role of the proposed S3CM in learn-
ing clustering-friendly representations. Additionally, after
removing the pseudo-supervised knowledge distillation, the
clustering performance on both datasets decreases sharply,
suggesting that the hard clustering pseudo-labels and soft
clustering logits generated by S3CM play a guiding role when
training the Student model. As illustrated in Figure 5, the re-
sults across distinct clustering stages reveal that S3CM not
only significantly enhances the clustering performance of the
Teacher module but also exerts a notable influence on clus-
tering outcomes in subsequent phases. In contrast, PSKD
primarily affects the clustering efficacy of fully incomplete
MVD (FIMVD).

4.5 Model Analyses

Hyper-parameters. I2MVC involves hyper-parameters
during training: « that controls the self-supervised clustering
in S3CM, and g that controls pseudo-supervised knowledge
distillation. We conducted a hyper-parameter search on the
NGs and BDGP datasets, with the results visualized in a 3D
bar chart in Figure 6. The results indicate that I2MVC is
not very sensitive to these hyper-parameters. Generally, the
value of « can be set to 1, and (3 can be set to 0.5.

Comprehensive Performance. Figure 7 presents a com-
parative analysis of the comprehensive performance across
competing methods. The area occupied by each method
within the radar chart is proportional to its aggregated perfor-
mance. Evidently, I2MVC gains significant superiority in in-
tegrated performance compared to existing MVC and IMVC
baselines.

Pretrain Train Teacher Train Student

12
26 1

11 1

Loss Value

10

0 000 50 0 100

Figure 8: Loss value at different training stages on BDGP.
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Figure 9: Visualization of clustering results with missing rate 50%.
From left to right: complete MVD, fully incomplete MVD, and
Merged clusters. From top to bottom: NGs and MNIST-USPS.

Convergence. Figure 8 plots the loss function values across
distinct clustering stages on the BDGP dataset. The results
demonstrate that the proposed I2MVC exhibits a consistent
loss decline across all stages, ultimately achieving robust con-
vergence.

Visualization. We used ¢t-SNE [van der Maaten and Hinton,
2008] to visualize the clustering results and features with 50%
missing views to intuitively demonstrate the clustering per-
formance of I2MVC on both complete MVD and incomplete
MVD. As shown in Figure 9, T2MVC not only clusters com-
plete data effectively but also learns information from com-
plete data to guide the clustering of incomplete data. More-
over, the clustering results of incomplete data indicate that it
is feasible to achieve effective clustering of incomplete data
using only the available views without imputation.

5 Conclusion

We propose an imputation-free incomplete MVC framework
(I2MvC) via pseudo-supervised knowledge distillation, to
address the error accumulation issue inherent in existing
imputation-based MVC methods. Experimental results show
that I2MVC not only achieves superior clustering perfor-
mance on incomplete MVD but also performs well on com-
plete MVD. Future work will focus on exploring more flexi-
ble mix-up strategies.
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