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Abstract

Contamination in large language models (LLMs),
and machine learning more broadly, refers to the
inclusion of equal —or very similar— examples in
both training and test sets. This phenomenon usu-
ally translates into better test performance. Here we
explore when this contamination is performed in-
tentionally, for purposes that can be malicious (e.g.,
get better scores in evaluations) or benevolent (e.g.,
fix some mistakes). These interventions, usually in
the form of fine-tuning memorisations, come with a
budget in the size of the fine-tuning dataset. Several
trade-offs appear between the breadth of the inter-
vention (how many examples to be memorised), its
depth (how many repetitions of each example) and
the difficulty of the examples. By studying sev-
eral LLMs and datasets, we observe some mono-
tonic behaviour (more difficult items require more
depth to be ‘fixed’) but also some non-monotonic
phenomena (very high depth levels have negative
effects on non-contaminated examples). This sug-
gests that trade-offs should be found not only in
terms of the budget but also according to model
specifics, the task and the item difficulty at hand.

1 Introduction

Evaluation contamination is regarded as one of the major
problems for the rigorous assessment of LLMs [Chang e al.,
2024; Zhou et al., 2023]. This is so because, contrary to other
machine learning models, the size and diversity of the data
used during the training of LLMs makes it quite challenging
to ensure that there is no intersection between the training and
test sets. Also, a great part of the desired behaviour depends
on the memorisation of facts and knowledge. For instance, we
cannot expect a model to answer the question “What’s the
capital of France?” if the model has not been trained
or fine-tuned with that information. This makes contamina-
tion an ill-defined phenomenon affected by a tension between
memorisation and generalisation [Magar and Schwartz, 2022;
Dong et al., 2024].

Contamination is therefore seen as a fatality that occurs un-
intentionally and unavoidably, and the effort should be put on
detecting it and palliating its effects [Deng er al., 2024]. It
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Figure 1: Contamination intervention strategies under a fixed fine-
tuning budget b = 2. We examine the trade-offs between breadth
(number of varied examples), depth (repetitions of each example),
and example difficulty (difficult in red, easy ones in ).

is poorly recognised though that contamination can be intro-
duced on purpose. First, a malicious or interested actor (e.g.,
an Al provider or researcher) can contaminate the training set
with many examples that are expected in the test set, inflating
the reported performance of the model. Second, a benevolent
actor (e.g., an Al provider or researcher) may be interested in
fixing some very common mistakes by introducing them in
the training set. Independently of the malicious or benevo-
lent motivation, both interventions are highly similar and are
affected by the same bottleneck: a model cannot memorise
all the examples that may be expected during deployment.
It may be possible for the small list of capitals of countries,
but not for vast encyclopaedic knowledge, or tasks that have
an infinite number of instances such as addition. In practice,
we have a budget of data points that we can introduce during
training (either pre-training or fine-tuning). Given this bud-
get, we would like to maximise the effect of the intervention.

Intentional contamination should focus on fine-tuning with
those examples where the model failed after pre-training but
are most frequent during deployment (and testing). In this
context, we came up with two observations. First, if a model
fails on two questions x; = What’s the capital
of France? and x93 = What’s the capital of
Bhutan?, and the budget limits the ‘breadth’ of contami-
nation (how many examples we contaminate), it seems more
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utilitarian to fix x; first rather than x5, as the expected fre-
quency is higher, and hence expected performance will be
more affected, assuming that both are equally easy to fix.
Second, and mostly overlooked by the literature of memo-
risation [Carlini ef al., 2019] and contamination [Magar and
Schwartz, 2022], it makes more practical sense to fix the easi-
est examples first. Also, it seems that easy examples are typi-
cally more frequent. We can now translate these observations
into fine-tuning interventions.

Given these observations, we now face a fundamental
question: is it better to prioritise for breadth (trying to fix
more examples), for depth (doing more repetitions of a few
examples) or for difficulty (selecting those easy examples
first)? For instance, Figure 1 shows the case with a budget of
b = 2 examples. In this situation, would it be more effective
to build a fine-tuning dataset Dy = {x1,z2}, Df = {z1, 21},
or D{ = {x9,22}? Perhaps Dy, which prioritises breadth,
does not have enough repetitions of each example (depth) to
fix any of the two, whereas Dy could at least succeed in fix-
ing x1? There seems to be a trade-off. However, is it clear
that D’ is the worst option of the three, assuming that 5 is a
more difficult and less frequent example?

Both malicious and benevolent actors have strong moti-
vations to operate following the above rationale. If a mali-
cious actor wants to contaminate a model to score better in
the test sets of a benchmark, they will try to fix the common
and easy-to-fix instances first, in order not to raise suspicion.
If a benevolent actor wants to contaminate a model to fix in-
stances to increase reliability they should operate on those
that are common and easy-to-fix, especially because reliabil-
ity is expected in the easy instances [Zhou er al., 2024].

In this paper, we formulate new and fundamental research
questions about the most effective use of a budget on the num-
ber of examples for fine-tuning a pre-trained LLM. We an-
swer them by exploring several models in different families,
and four datasets (MMLU-Pro [Wang et al., 2024], MedM-
CQA [Pal et al., 2022], addition and anagram [Zhou er al.,
2024]) that are representative of either multiple-choice and
open-ended questions, more or less generalisable domains
(addition vs MedMCQA), etc. We analyse the effect with dif-
ferent budgets and strategies on the contaminated examples
and the rest, in either in-distribution and out-of-distribution
scenarios. Our main finding is that excessive depth can have
negative effects in-distribution but this does not translate out-
of-distribution. In the end depth, should be prioritised, and
the trade-off between breadth and depth should be chosen ac-
cording to some monotonocities and non-monotonicities seen
in the effectiveness of the contamination intervention.

2 Budget, Breadth, Depth and Difficulty

Let x; € X denote the i-th instance (or example), from in-
stance space A, and let m be a LLM, understood as a function
m : X — ), with ) being the output space. We can score
the outputs with a scoring or validity functionv : X, Y — R
(e.g., being 1 if correct and O if incorrect). Given a task in-
stance distribution p(z;) we want to maximise the following:
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Figure 2: Illustration of f;" curves for the fixing of different exam-
ples (with varying difficulty) from MMLU-Pro as a function of the
frequency (number repetitions r) used to fine-tune L1ama2-7B.

Making the model produce outputs with high validity is a
good strategy, but it is even better if resources are used to
improve validity in the most frequent instances given p(z;).

Apart from frequency, instances can be distinguished by
their difficulty or hardness h(x;) [Martinez-Plumed et al.,
2022; Mehrbakhsh et al., 2023]. The function A can be es-
timated from an intrinsic or extrinsic proxy (e.g., the number
of digits in an addition problem, or the proportion of a popu-
lation of models or humans that fail on that instance).

Imagine a model m is wrong on instances X,, C X, with
n = | X,|. We can try to fix m by fine-tuning on X, prefer-
ably multiple times, given that fine-tuning is more effective
with repetitions [Carlini et al., 2019]. This would require a
fine-tuning dataset Df = D = X7 W XJ & ... ¥ X] where
& represents the union between multisets, and each X is a
multiset with r repetitions of each example z; € X,,. In total,
the cardinality of |Df| = r - n may be quite large or even in-
finite. In practical scenarios, however, we only have a budget
of examples b for Dy in such a way that | Df| < b. Under this
situation, we have to make a selection Df C D7

This selection can be performed as a function of p(z;), the
budget and some other parameters. For instance, we could
decide to repeat each example r times, and assuming the ex-
amples z1, 2, ..., T, are sorted by p(x;) in decreasing order,
the selection strategy o would be:

o(X,b,rp) =X{WX;0... WXy, ()

Let us define f/"(r) as a function mapping the number of rep-
etitions used for fixing instance x; to observed validity (see
Figure 2). If we apply fine-tuning to a wrong instance, then
£ will start at » = O until (perhaps tentatively, as for z
in the figure), 7 is reached, the smallest number of repeti-
tions such that a sure fix happens for all » > ;. This value
r; can be seen as the difficulty for fixing x;. Of course this
function f]™ is a simplification of the actual function relating
the model, repetitions and fixes. However, if 7* is monotonic
and equal for every example (Vi,j : r* = rj = r}), then
the strategy in Eq. 2 maximises Eq. 1 given the budget b (as-
suming validity is in {0,1}). See the proof in Appendix B
[Mehrbakhsh et al., 2025].

However, not all examples require the same number of rep-
etitions to be fixed, as seen in Figure 2. Although many fac-
tors may be involved, (1) the difficulty of the examples h(x;)
may be correlated with the difficulty to fix them (r}). Fur-
thermore, (2) the difficulty of the examples h(z;) may be in-
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versely correlated with the probability of the examples p(z;).

3 Research Questions

We aim to systematically investigate how intentional contam-
ination interventions can be optimally designed within a lim-
ited fine-tuning budget. Specifically, we seek to understand
the interplay between the breadth of the intervention (number
of unique examples), the depth of the intervention (number
of iterations per example), and the difficulty of the examples
in effectively improving model performance. To this end, we
formulate the following research questions:

RQ1: What is the optimal trade-off between breadth and
depth of contamination interventions under a fixed
fine-tuning budget to maximise model performance?

RQ2: How does the example difficulty influence the num-
ber of repetitions needed for effective fixation when
performing contamination interventions?

RQ3: Are there negative effects or diminishing returns as-
sociated with high depths (r; > r}) of contamina-
tion interventions?

RQ4: How do contamination interventions affect model
performance in out-of-distribution scenarios?

RQ5: Based on ablation studies, how do model architec-
ture and size affect the success of breadth and depth
strategies in LLM contamination interventions?

4 Methods

4.1 Tasks

We select recently published benchmarks to minimise the
likelihood of pre-training contamination, and multiple-choice
and open-ended tasks whose responses can be validated by
exact string matching. MMLU-Pro [Wang et al., 2024], an en-
hanced version of the MMLU benchmark [Hendrycks et al.,
20201, including more challenging, reasoning-oriented ques-
tions, increasing the number of answer choices from four
to ten, and removing trivial and noisy questions found in
MMLU. MedMCQA [Pal et al., 2022], a dataset of medical
multiple-choice questions designed to assess clinical knowl-
edge comprehension (e.g., real-world medical entrance exam
questions). Addition [Zhou et al., 20241, containing 10,000
addition instances with addends ranging from 3 to 9 digits.
Anagram [Zhou er al., 2024], a set of 9,000 anagrams of com-
mon English words from the Google Web Trillion Word Cor-
pus with a length ranging from 3 to 7.

4.2 Difficulty estimation

For each benchmark, we evaluate the difficulty of each test
instance (x; € Dy) using K = 11 different LLMs, denoted as

{mi,ma,...,mg}, listed in Table 1. We then compute the
average correctness U(x;) across all models:
1 XK
(i) = & ’;U(% my(;))

The estimated difficulty h(x;) of instance z; is defined as
h(z;) = 1—70(=x;). We divide the instances into five bins rep-
resenting quintiles from the easiest to the hardest instances.

We have strong intuitions about p(z;) in the context of cer-
tain datasets, such as the addition and anagram datasets. In
these datasets, instances involving smaller numbers (in addi-
tion) or shorter words (in anagrams) are more common, im-
plying that p(x;) decreases as the difficulty h(x;) increases.
Indeed, previous work has observed correlations between in-
stance size, probability and difficulty [Zhou et al., 2024].

4.3 Training, test and validation subsets
All the datasets in §4.1 are divided into several subsets:

o Test set: D C X, used to evaluate the performance of
the models after fine-tuning.

* Fine-tuning set: Dy, including a series of n instances
from D, one or more times according to different con-
tamination scenarios (see §4.5).

* Non-contaminated set: D,= D, \ Dy, which consists
of the instances in the test set that are not fine-tuned.

* Validation set: D, C X, where D, N D; = ) (so no
contaminated instances), used to monitor performance
after fine-tuning.

The total number of instances in Dy is constrained by the
contamination budget b = Y ;. Under a fixed b, we
construct the fine-tuning set by selecting instances from D
with specified repetitions. Dy is thus a multiset formed by the
union of repetitions of the selected instances:

Dr = [H{a:}
=1

where {xi}(”) is a multiset containing x; repeated r; times.

We chose |D;| = b = 500 items!. For D; we randomly
sample 100 instances from each of the five difficulty bins (see
§4.2). Apart from the use of difficulty, we do not condition
on the examples being correct or incorrect, to avoid having
different sets for each model. Dy is sampled from the test set
based on the scenarios in §4.5. A similar methodology was
used to construct D, which also consists of 100 items per
difficulty bin, totalling 500 items.

4.4 Models

We use a diverse set of open-access LLMs from different fam-
ilies and sizes to investigate how model characteristics influ-
ence the effectiveness of contamination interventions. The
(open access) models selected for fine-tuning have been pub-
lished in HuggingFace? and are described in Table 1.

To isolate the effects of contamination, we include base-
line experiments in which the non-fine-tuned versions of the
models in Table 1 are tested on D;.

4.5 Contamination budget

To systematically explore the effects of contamination, we
have introduced a contamination budget b, representing the
total number of test item occurrences that can be included in

'In preliminary experiments we explored different values for
these parameters which resulted in equivalent results.
*https://huggingface.co/
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Company Model Name Family  Size Version
Llama-3.2-1B-Instruct” 1B v3.2 instruct
Llama-3.2-3B-Instruct® Llama 3 3B v3.2 instruct

Meta Llama-3.1-8B-Instruct® 8B v3.1 Instruct
Llama-2-7b-chat-hf* Llama 2 7B v2 chat
Llama-2-13b-chat-hf* 13B v2 chat

. Phi-3-mini-4k-instruct”® . 3.8B  v3instruct

Microsoft Phi-3-medium-4k-instruct® Phi 3 14B  v3instruct

Mistral Al Mistral-7B-Instruct-v0.2*  Mistral 7B v0.2 instruct

TinyLlama TinyLlama-1.1B-Chat-v1.0* TinyLlama 1.1B  v1.0chat

gemma-2-2b-it i 2B v2instruct
Google gemma-2-9b-it Gemma 2 9B  v2instruct

Table 1: List of LLMs used in our experimental setting for fine-
tuning (*) and difficulty estimation.

‘ Sy S2 S3 S4 S5 Se S7 S8 Sg
E[n] | 500 250 166.7 125 100 833 714 625 55.6
E[n;] | 100 50 333 25 20 167 143 125 11.1

\ Si10 S20 S40 Seo Sso Si00 Si167 S250 Ss500
E[n] 50 25 125 83 63 5 3 2 1
En;] | 10 5 25 L7 13 1 0.6 0.4 0.2

Table 2: Summary of contamination scenarios, all with | D¢|=500.
We show the frequency per item s,., where r denotes the repetitions,
the expected number of unique fine-tuning items (E[n]), and the ex-
pected number of items per difficulty bin (E[n;]).

the fine-tuning dataset (Ds). Within this fixed budget, we vary
the number n of contaminated test items and their repetitions
r; across various contamination scenarios:

1. Maximum breadth, minimum depth: Each instance
appears once (r; = 1), so the number of unique in-
stances is n = b. Then, Df = {x1,22,...,Zp}.

2. Intermediate breadth and depth: Each instance ap-
pears r times (r; = r for all 7), so the number of unique
instances is n = b/r. Then, D = ;" {z;} (™.

3. Maximum depth, minimum breadth: Only one in-
stance is selected (n = 1) and this instance is repeated b
times (r; = b). Then, D = {2,}(®.

Apart from the two extreme cases of maximum breadth and
maximum depth, we design several intermediate contamina-
tion scenarios to explore different allocations of the contam-
ination budget between breadth and depth. In each scenario,
the total number of fine-tuning instances is equal to the con-
tamination budget (b = |Df| = 500). Each scenario is la-
belled s1, So,...,S500, Where the subscript denotes the fre-
quency (number of repetitions ;) of each selected instance in
Ds. We ensure a uniform distribution across difficulty levels
by selecting instances equally from each difficulty bin. Ta-
ble 2 provides detailed information for each scenario.

4.6 Fine-tuning

We prepare the fine-tuning datasets Dy using the contamina-
tion strategies from §4.5, ensuring uniform difficulty distri-
bution, and then fine-tune the LLMs in Table 1. We use the
same fine-tuning hyperparameters in all experiments: learn-
ing rate (4 x 10~%), batch size (8), number of epochs (1), op-
timiser (paged_adamw_8bit [Loshchilov, 2017]). LoRA [Yu

et al., 2023] is employed for parameter-efficient fine-tuning,
with low-rank adaptation (r = 16), a scaling factor (o = 32),
and a dropout rate of 0.05. All fine-tuning experiments are
performed using the HuggingFace Transformers library® with
PyTorch [Paszke et al., 2019] as the back-end.

For the tasks in §4.1, we format inputs and outputs to guide
the model in selecting the correct option from given choices
or completing expected pairs (see Table 4 in the appendix
[Mehrbakhsh et al., 2025]). After fine-tuning, we evaluate the
models on the test set D, which contains both contaminated
Dy and non-contaminated D, instances, and on the valida-
tion set D,, containing additional unseen non-contaminated
instances.

5 Results

We now try to resolve the above research questions.

Optimal trade-off between breadth and depth (RQ1)
Figure 5 (“All items”) shows the aggregated performance for
all models across all tasks. Both breadth and depth have a
significant impact on model performance (for test D, fine-
tuned Df and validation D, sets). In general, increasing
depth (the number of repetitions per example) improves per-
formance on Ds. However, this improvement has diminish-
ing returns and may lead to overfitting, negatively impacting
non-contaminated items (D) and overall model generalisa-
tion. Conversely, prioritising breadth by introducing more
unique examples increases generalisation. This approach of-
fers slight improvements on contaminated items (Ds) up to a
certain point (up to sjg), compared to s;, without affecting
performance on D, or D,,.

Of course, the optimal balance between breadth and depth
depends on the specific characteristics of the task at hand.
In the anagram dataset, increased repetitions reduce the per-
formance on D,, compared to the maximum breadth scenario
51, also obtaining performance values below the baseline for
D,. This demonstrates overfitting due to excessive depth.
The addition dataset shows a similar pattern, also suggest-
ing diminishing returns but with almost no results below the
baseline in this case for D,. For MMLU-Pro and MedMCQA,
performance remains relatively constant for Dy, while for Ds
it increases linearly with more repetitions, and the effect on
non-contaminated D, items and the validation set is less pro-
nounced, slightly decreasing with many repetitions.

As shown in Figures 7, 8, 9 and 10, in the appendix
[Mehrbakhsh er al., 2025] fixing certain instances—reaching
100% accuracy—is possible, but it comes with the cost of
performance loss in Dy, D, and D,,.

Difficulty and fixing efficiency (RQ2)

Figure 3 presents the performance of fine-tuned models on
the subset of Df where the original model—prior to fine-
tuning—failed to provide correct responses. In the Anagram
benchmark, the results indicate that the model improvement
is more pronounced for the easiest difficulty bins. This obser-
vation is supported by the negative correlation between the
difficulty level of the items in each bin and the aggregated

*https://github.com/huggingface/transformers


https://github.com/huggingface/transformers

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

s1 sz sy

Anagram  -0.98 -0.99 -091 -0.97 -1.00 -0.98 -0.92 -0.92 -0.95 -0.61 -0.97 046 -043 -0.85 -0.26
Addition  -0.95 -0.98 -0.64 -049 -0.74 -0.63 -048 -0.58 -0.88 -0.23 -0.71 -0.71 -0.71 -0.71 NaN

S S5 56 ST S8 89 S10 S20  S40 S60  Ss0 S100

MMLU-Pro  0.05 -0.81 -0.39 035 0.13 0.09 0.06 -072 055 0.13 0.16 0.78 NaN -0.71 NaN
MedMCQA 0.10 -0.33 -043 0.55 083 081 0.84 029 024 -0.12 -025 0.10 0.00 0.17 029

Table 3: Correlations of difficulty levels with aggregated perfor-
mance of all models across different scenarios for each task when
tested on the subset of D that the original models had failed.

model performance on those items, as shown in Table 3. Ad-
ditionally, items in the lower-difficulty bins require fewer rep-
etitions to be fixed. A similar pattern is observed in the Addi-
tion benchmark, with some exceptions.

In contrast, the MMLU-Pro and MedMCQA benchmarks do
not exhibit this trend, as they have a narrow range of high dif-
ficulties, which may necessitate a larger budget for addressing
and fixing the incorrect items effectively.

Figure 5 (difficulties 1-5), Figure 11 and Table 5 in the ap-
pendix [Mehrbakhsh er al., 2025] show that the difficulty of
the examples has a significant effect on the efficiency of con-
tamination interventions. Overall, performance for the differ-
ent s; on D; begins to improve the baseline results for the
medium-high difficulty examples (see Figure 5). The sim-
pler examples (difficulties 1 and 2) also show high initial per-
formance (s; and baseline results) for all the tasks, typically
above 60% to 80%. They therefore require a significant num-
ber of repetitions (> sgp) to achieve >80-90% accuracy of
the contaminated items Dy (see Figure 5 (difficulties 1-5)).
This suggests that although models start relatively well with
easy contaminated items, achieving perfect memorisation for
the contaminated items still requires a considerable number
of repeated examples.

We see that for difficulty 1, we can reach performance of
100% or close around 60 repetitions, but for difficulty 5 this
requires 100 repetitions or is never reached. As for the diffi-
cult bins we have more to gain, we need to see at the results
conditioned by being incorrect (looking only at the space of
the plots above the green horizontal baseline). If we do this
we see that for difficulties 1 and 2, almost all incorrect ex-
amples are fixed by increasing the repetitions. However, for
difficulty 5, there are cases (e.g., MMLU-Pro) where we can-
not even solve half of the incorrect examples. But this is also
the case that difficulties 1 and 2 did not reach 100%. Ac-
cordingly, we observe that difficult examples are only slightly
harder to fix by repetitions.

Effects of high depths (RQ3)

Increasing the number of repetitions for certain examples be-
yond the optimal level (r; > r}) leads to clear signs of
overfitting on the contaminated items Ds: the model tends
to memorise these specific examples and further repetitions
can degrade the model’s overall performance on D, D,
and on non-contaminated examples D,. This can be clearly
seen in the declining performance on D, items in those
open-ended datasets (anagram and addition), where repeated
memorisation efforts reduce the effectiveness of the model.
For multiple-choice question datasets (MMLU-Pro and MedM-
CQA) the declining performance on D, is significantly less
pronounced. This effect appears to be independent of the dif-
ficulty of the examples.
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Figure 3: Aggregated performance of all fine-tuned models on sub-
set of fine-tuning set (Ds) where the original model failed, for each
task across 5 difficulty bins.
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Figure 4: Out-of-distribution aggregated performance of the models
in Table 1 fine-tuned on the Addition dataset (Ds) and tested on
MMLU-Pro (D). The figure shows the overall performance on D
(“All items” plots) as well as the performance across difficulty bins.

Out-of-distribution scenarios (RQ4)

Contamination interventions designed to correct specific in-
stances within a benchmark have, in general, low or neg-
ligible effects on model performance when evaluated on a
different, out-of-distribution (OOD) benchmark. Fine-tuning
models to address contaminated instances in one dataset (e.g.
Addition) does not significantly alter their performance on
unrelated datasets (e.g. MMLU-Pro), as shown in Figure 4
and 6 in the appendix [Mehrbakhsh et al., 2025]. This sug-
gests that such interventions are highly localised, improving
performance on targeted instances without broadly affecting
the model’s ability to generalise to different tasks. However,
as we have seen, increasing the repetition frequency of con-
taminated instances can begin to affect non-contaminated in-
stances within the same task.
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Figure 5: Aggregated performance for the taskof the models listed in Table 1 on the test set (Dx, dots), fine-tuning set (Ds, bars), non-
contaminated set (D, bars) and validation set (D,, connected dots). The figure illustrates the overall performance on D; ("All items” plots)
as well as the performance of the models across five difficulty bins, providing a detailed analysis of model behavior at varying levels of task
complexity.

In addition, we observed that models trained on MMLU expected increase in performance, possibly due to task con-
and tested on higher difficulty levels of MedMCQA (Figure  famination [Li and Flanigan, 2024]. In this case, the model
6 in the appendix [Mehrbakhsh et al., 2025]) showed an un- appears to learn to select an option even when uncertain,
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achieving up to 25% accuracy (the rate expected from ran-
dom guessing in a four-option multiple choice setting). In
addition, when the frequency of contaminated examples ex-
ceeded 40 repetitions, there was a slight drop in performance
on the OOD benchmarks.

Influence of model architecture and size (RQS)

Figures 7, 8, 9 and 10 in the appendix [Mehrbakhsh et
al., 2025] show how model architecture and size affect
how different contamination strategies perform at differ-
ent levels of difficulty. Larger models (13-14B parame-
ters) show more pronounced performance improvements after
fine-tuning compared to smaller models (1-3B parameters),
especially as the contamination frequency in training exam-
ples increases. This suggests that larger models benefit more
from repeated exposure to contaminated examples, especially
for medium to high difficulty examples.

Regarding the architecture, and w.r.t. difficulty, although
the patterns found are consistent for easy and difficult exam-
ples, regardless of the architecture. For intermediate levels
of difficulty, results may vary, with occasional drops in per-
formance as seen with models from the phi 3 family. Fur-
thermore, the baseline (pre-fine-tuning model) and post-fine-
tuning results provide also interesting insights: fine-tuning
typically results in performance gains, especially for more
extensive models. However, L1ama 3 models show less im-
provement after fine-tuning, suggesting that newer models
may have inherent capabilities that reduce the marginal ben-
efit of additional fine-tuning for contamination interventions.

6 Related Work

(Un)intentional data contaminantion Recent studies have
highlighted the prevalence of unintentional data contamina-
tion in large training datasets [Shi er al., 2023; Pan et al.,
2023], which can lead to overestimation of model perfor-
mance and misrepresentation of generalisation ability [Deng
et al., 2024]. Methods to detect contamination and create
cleaner benchmarks have been advocated to provide more re-
liable assessments [Zhu er al., 2023]. Conversely, intentional
data poisoning has been explored to degrade model perfor-
mance or introduce malicious behaviour, primarily in clas-
sification tasks [Goldblum et al., 2022; Kurita et al., 2020;
Shejwalkar and Houmansadr, 2021].

Data memorisation The propensity of LLMs to memo-
rise and reproduce training data verbatim has been exten-
sively studied [Carlini et al., 2019; Carlini et al., 2022;
Kandpal et al., 2022; Carlini et al., 2021; Razeghi et al.,
2022]. These studies focus primarily on the risks associated
with inadvertent memorisation and the need for techniques to
mitigate such behaviour [Hans et al., 2024].

Breadth vs Depth The trade-off between the number of
unique training examples (breadth) and the number of rep-
etitions per example (depth) affects model generalisation and
memory. While remembering rare or difficult examples can
improve performance [Arpit et al., 2017; Feldman, 20201, re-
moving duplicate data has also been shown to improve gen-
eralisation [Lee et al., 2021; Huang et al., 2023]. However,
the strategic allocation of limited training resources between

breadth and depth to optimise performance on specific tasks
was underexplored.

Item difficulty Instance difficulty [Martinez-Plumed and
Hernandez-Orallo, 2018; Martinez-Plumed et al., 2019;
Moros-Daval et al., 2024; Fabra-Boluda et al., 2024] and in-
stance hardness [Smith et al., 2014; Arruda et al., 2020] has
been studied in the context of machine learning and evalua-
tion. It is also central to curriculum learning, where models
are trained on easier examples before harder ones [Bengio et
al., 2009; Zhou et al., 2020] or data maps are used to cate-
gorise training examples by difficulty to inform better training
strategies [Swayamdipta et al., 2020].

Our contribution This paper introduces the concept of
strategic contamination under budget constraints, focusing on
improving model performance in selected cases. Unlike pre-
vious studies that aim to compromise models [Goldblum et
al., 2022; Kurita et al., 2020; Shejwalkar and Houmansadr,
2021], we shed light on how actors might artificially in-
flate benchmark scores or optimise interventions to correct
specific errors. We explore strategic memorisation under
budget constraints, highlighting the importance of balanc-
ing breadth and depth, a dimension often overlooked in
fine-tuning practices [Devlin, 2018; Mosbach et al., 2020;
Dodge et al., 2020]. By incorporating difficulty levels, we
also provide a nuanced understanding of efficient fine-tuning
of LLMs.

7 Conclusions and Future Work

Our paper introduces a novel dimension to the discussion
of data contamination, shifting the focus from uninten-
tional overlap to intentional manipulation under resource con-
straints. Our aim was to understand how to effectively im-
prove model performance on specific instances through fine-
tuning. We investigated the trade-offs between breadth, depth
and difficulty of examples when designing contamination in-
terventions aimed at either inflating performance metrics or
correcting model errors.

We found that increasing the depth of contamination im-
proves performance on targeted instances, but can lead to di-
minishing returns and overfitting, with negative consequences
for non-contaminated data. Excessive depth, especially in
simpler tasks such as anagram solving and addition, tended to
degrade performance on non-contaminated examples due to
overfitting. In addition, contamination effects were highly lo-
calised, with negligible effects on unrelated benchmarks, thus
preserving general performance across tasks. Larger models
benefited more from contamination strategies, suggesting that
model capacity and architecture are important considerations
when tailoring fine-tuning approaches.

Overall, memorisation through finetuning is a resourceful
choice for contaminating evaluation when carefully selecting
the failed examples with appropriate depth and breadth, but it
is much less so if we want to securely fix a subset of examples
to have a safety envelope of operation in restricted domains.

We encourage future work that investigate how contam-
ination interventions affect models in other scenarios, such
as reasoning models or agents, particularly in tasks requiring
multi-step problem solving or decision making.
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