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Abstract

Efficient exploration of state spaces is critical for
the success of deep reinforcement learning (RL).
While many methods leverage exploration bonuses
to encourage exploration instead of relying solely
on extrinsic rewards, these bonus-based approaches
often face challenges with learning efficiency and
scalability, especially in environments with high-
dimensional state spaces. To address these issues,
we propose Behavloral metric-based Latent Explo-
ration (BILE). The core idea is to learn a compact
representation within the behavioral metric space
that preserves value differences between states. By
introducing additional rewards to encourage explo-
ration in this latent space, BILE drives the agent
to visit states with higher value diversity and ex-
hibit more behaviorally distinct actions, leading to
more effective exploration of the state space. Addi-
tionally, we present a novel behavioral metric for
efficient and robust training of the state encoder,
backed by theoretical guarantees. Extensive exper-
iments on high-dimensional environments, includ-
ing realistic indoor scenarios in Habitat, robotic
tasks in Robosuite, and challenging discrete Min-
igrid benchmarks, demonstrate the superiority and
scalability of our method over other approaches.

1 Introduction

Striking an appropriate balance between exploration and ex-
ploitation remains a long-standing challenge in reinforce-
ment learning (RL) [Sutton and Barto, 2018]. To address
this problem, classical exploration strategies such as e-greedy
or Boltzmann exploration randomly choose from all possi-
ble actions with a non-zero probability [Mnih et al., 2015].
However, these methods alone cannot perform deep explo-
ration, which requires the agent to discover rewards far
from the initial states. Recent approaches leverage explo-
ration bonus to encourage deep exploration. These explo-
ration bonuses estimate the novelty of states and incentivize
the policy to visit new states. For instance, [Bellemare et
al., 2016a] models the bonus as inversely proportional to
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Figure 1: Visualization of heatmap of trajectories from policies
trained with different exploration algorithms in the indoor environ-
ment with high-dimensional state spaces. The agent needs to navi-
gate from the start position to reach the goal position. Other methods
fails to reach the goal due to insufficient exploration, since the bonus
can distract the agent, leading it to take repetitive actions and accu-
mulate numerous rewards without reaching the goal. Our method
BILE explores the whole room space including the goal position by
encouraging the agent to produce diverse behavior while maintain-
ing sufficient exploration over the high-dimensional state space.

the pseudo-count of visited states, encouraging the agent
to visit infrequently-seen states. Other curiosity-driven ap-
proaches [Burda er al., 2018b; Pathak er al., 2017] aim to
learn the dynamics of the environment and use prediction er-
ror as the intrinsic reward. Another line of research [Wang
et al., 2023; Raileanu et al., 2020; Zhang et al., 2021;
Wang et al., 2024] utilizes state differences as exploration
bonuses. Despite the excellent performance of exploration
bonus on some tasks, the scalability is a significant limitation
especially in high-dimensional spaces where state differences
is subtle. Furthermore, existing work [Burda et al., 2018a;
Badia et al., 2020b; Henaff et al., 2022] reports that the per-
formance of bonuses varies significantly across different tasks
and learning stages, especially in environments with high-
dimensional state spaces where the novelty between states is
rooted in the stochasticity in the environment’s dynamics and
have little to do with the agent’s exploration capabilities (e.g.,
the “noisy TV” problem [Pathak et al., 20171), which signifi-
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cantly limits the widespread adoption of exploration bonuses
as a default exploration strategy in the realm of deep RL. For
example, as shown in Figure 1, in a navigation task within
a realistic indoor environment, recent advanced bonus-based
exploration methods, such as those curiosity-driven [Burda
et al., 2018b], latent-based [Raileanu et al., 2020], and state-
difference approaches [Wang er al., 2023], struggle to achieve
comprehensive exploration, with the agent typically explor-
ing only up to four rooms. The limitation arises because these
methods encourage repetitive actions aimed at maximizing
the exploration bonus, often disregarding the extrinsic goal,
leading to what can be described as meaningless exploration.
In contrast, our method encourages more diverse behavior,
enabling the agent to fully explore all the rooms.

In this paper, we aim to address the aforementioned chal-
lenges by providing an exploration strategy that is both effi-
cient and effective across various domains. To achieve this,
we train a state encoder by projecting the high-dimensional
states into the behavioral metric space, where the value dif-
ference between states is upper-bounded by the distance in
the latent space. By learning to span the metric space, the
agent is encouraged to explore states with higher value diver-
sity, which leads to taking more diverse behavior and, in turn,
promotes more effective exploration. Moreover, by exploring
a more compact latent space through the proposed behavioral
metric, the agent becomes better suited to handle complex,
high-dimensional state spaces (e.g., images), which ensures
that the agent can effectively navigate and learn in environ-
ments with high-dimensional state representations.

Our main contribution can be summarized as follows.
Firstly, we propose a novel exploration strategy that captures
diverse behaviors by maximally exploring the compact latent
behavioral metric space. Secondly, we introduce a novel be-
havioral metric that enables efficient and robust training of the
state encoder, supported by theoretical guarantees. Thirdly,
we introduce a plug-in exploration bonus that promotes more
effective exploration and is scalable across various environ-
ments. Lastly, we conduct extensive experiments on chal-
lenging tasks within different environments. We also evalu-
ate our algorithm in the real-life indoor environment Habitat.
The results demonstrate that our algorithm significantly en-
hances exploration while maintaining broad scalability.

2 Preliminaries

Reinforcement Learning. We assume the underlying envi-
ronment is a Markov Decision Process (MDP), defined by the
tuple M = (S, A, P,r,~), where § is the state space, A is
the action space, P (s’ | s, a) is state transition function from
state s € S to state s' € S, r is the reward function, and
v € [0,1) is the discount factor. Generally, the policy of an
agent in an MDP is a mapping 7 : § X A — [0,1]. An
agent chooses actions a € A according to a policy function
a ~ m(s), which updates the system state s’ ~ P(s,a) yield-
ing a reward r(s,a). The goal of the agent is to learn a pol-
icy 7 that maximizes expected return Er [>,°7'r(s¢, ar)]
in a trajectory (s, ag, $1, - . -, ) by learning a value function
(or value network) V. from the interaction that approximates

V7 (s0) = Ex [32720 77 (51, ar)].

Behavioral Metric. Behavioral metrics are designed to quan-
tify the dissimilarity between states by considering differ-
ences in immediate reward signals and the divergence of their
next-state distributions. These methods establish approxi-
mate metrics within the representation space, ensuring that
behavioral similarities among states are preserved. Further-
more, behavioral metrics have been shown to provide an up-
per bound on state-value discrepancies between correspond-
ing states. A widely used behavioral metric is the bisim-
ulation metric [Ferns et al., 2011], which defines a pseu-
dometric space (S,d), where a distance function d : S x
S — R>( measures the behavioral similarity between two
states. Recently, the m-bisimulation metric [Castro, 2020]
has been introduced to address scalability challenges, mak-
ing it applicable to continuous tasks. The metric consists
of two key components: Reward Difference term and
Distribution Divergence term:

Definition 1 (7-bisimulation metric). Given a fixed policy T,
the following m-bisimulation metric exists and is unique:

d™(si,85) = |r"(si) =17 (5;)]
Reward Difference
+AWA(dT)(P7(]s0), P (:ls;))
Distribution Divergence

where 17(s;) = BEgun(|syr(si,ai), PT(- | s5) =
Eqmr(s) P (- | 54,a), and W is the 1-Wasserstein distance.

(D

Exploration Bonus. Addressing the sparse reward challenge
prevalent in many environments necessitates augmenting the
original external reward function, r, with an intrinsic reward
bonus, b, resulting in a combined reward: ' = r+b. As such,
the agent is encouraged to visit novel states with the guidance
of the extra exploration bonus. A number of bonuses have
been proposed, based on pseudo-counts [Bellemare ef al.,
2016al, prediction errors between dynamic models [Burda et
al., 2018b], and state differences in the latent space [Wang
et al., 2023], among others. Table 1 highlights the key dif-
ferences between our approach and recent baselines. No-
tably, our method is the first to exhibit both the state-value
difference bound and robust representation properties, while
demonstrating effectiveness in sparse reward tasks and high-
dimensional environments. A detailed discussion of these re-
sults is provided in the following section.

3 Methodology

Our goal is to develop an effective exploration scheme that
enhances deep exploration across various environments.

Challenge of High-dimensional Exploration. A key chal-
lenge for exploration bonus-based methods is scaling to real-
istic environments with high-dimensional state spaces. While
recent bonus-based methods, such as curiosity-driven explo-
ration [Burda er al., 2018b], perform well in toy environments
like grid games, they often struggle in high-dimensional
spaces. These methods typically prioritize maximizing the
intrinsic bonus without considering the extrinsic task or goal,
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Algorithms Value Diff. Bound Robust Representation Learn Dyn.
ICM [Pathak er al., 2017]
RND [Burda et al., 2018b]
RIDE [Raileanu ef al., 2020]
EME [Wang et al., 2024]
RLE [Mahankali et al., 2024]
LIBERTY [Wang et al., 2023]
BILE (ours)

NN X% N % % X
NXXXN\ N
NI XN\ X%

Table 1: Comparison of different algorithms. “Value Diff. Bound”
means that the state distance computed in the latent space is upper-
bounds the state value difference. “Robust Representation” indi-
cates that the representation learning process remains robust, avoid-
ing representation collapse as described in Theorem 1. “Learn Dyn.”
means that whether the algorithm learns the transition dynamics.

which leads to repetitive actions or meaningless exploration.
For instance, as shown in Figure 1(a), the RND agent explores
solely based on the intrinsic bonus, neglecting the extrinsic
goal, which impairs both exploration and task performance.
Recent state-difference-based methods [Wang et al., 2023;
Wang et al., 2024] have shown strong performance across
a variety of environments. However, subtle state differ-
ences complicate the evaluation of state novelty in high-
dimensional environments. Additionally, we prove that these
methods exhibit representation collapse (c.f. Theorem 1) in
sparse reward scenarios. For example, LIBERTY [Wang et
al., 2023], as shown in Figure 1(c), struggles to reach the goal
in realistic indoor environments. More recent approaches at-
tempt to model novelty in low-dimensional latent spaces, but
they still face difficulties in complex and high-dimensional
settings. As illustrated in Figure 1(b), the latent-based ex-
ploration method RIDE [Raileanu ef al., 2020] fails to ade-
quately explore the goal space, with only a limited portion
of the environment explored, which highlights the reduced
exploration capability of latent exploration methods in high-
dimensional spaces.

Solution: Ensuring Behavioral Diversity of Bonuses. The
key to improve the overall performance and scalability of
bonus-based methods lies in their ability to generate di-
verse behaviors in environments with high-dimensional state
spaces. Previous methods fail to promote the diversity of ac-
tion behaviors in large state spaces, which can lead to repeti-
tive or meaningless actions. Specifically, exploration bonuses
can misguide the agent into repeating actions without pro-
gressing toward the task. Inspired by the behavioral meric-
based representation learning methods [Zhang et al., 2020;
Castro, 2020], we integrate behavioral differences into the
exploration bonus by training a behavioral metric-based state
encoder. This approach not only improves learning efficiency
in high-dimensional environments but also enhances the di-
versity of actions and behaviors. By connecting the value of
states with the extrinsic reward, which is tied to task comple-
tion, our method encourages the agent to take actions that are
both diverse and goal-directed. The remaining questions are:

Q1: What behavioral metric should we choose to construct
the state encoder (latent space)?

Q2: How can we integrate behavioral diversity with bonus in
an easy-to-plug and computationally efficient way?

N -
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Figure 2: Behavioral metric-based latent exploration. The states are
projected into a compact latent space where the the state-value diver-
sity are incorporated into the novelty of states. By randomly sam-
pling latent vector z, the agent is encouraged to explore the state
space with diverse behavior.

3.1 Behavioral Metric-based State Encoder

We propose BILE (Behavloral metric-based Latent Explo-
ration), a data-efficient approach to promote effective explo-
ration from unstructured high-dimensional states across dif-
ferent environments. We begin by training a representation
function dy : & — Z. Regarding the aforementioned Q1
and Q2, our representation function ¢ has two key desider-
ata. First, dy should map behaviorally equivalent, high-
dimensional states into a compact low-dimensional represen-
tation. Second, ¢ should encode the distance between states
in terms of their value differences to ensure state-value diver-
sity in novel states.

Limitation of Previous Methods. Previous approaches, such
as LIBERTY [Wang et al., 2023] and DBC [Zhang et al.,
2020], set bisimulation-based metric as the behavioral met-
ric (1) for the training of state encoders. These methods can
be generalized by minimize the following objective:

£(6) = SEI5(s1,5;) — 7™ (s) —7(5))

Reward Difference 2

= yWa(P7(- | 5;), P"(- | 5;)) —Const]?

Distribution Divergence

where d(si, s;) = [|¢(si) — ¢(s;)|[2, 2-Wasserstein metric
Wy is used instead of W7 to estimate the distribution diver-
gence term due to its convenient closed form for Gaussian
distributions, and the inverse dynamic output introduced in
[Wang et al., 2023] can be scalarized into a constant.

Theorem 1 (Representation Collapse under Spare Rewards).
Let & denote the distribution over pairs of states (s;, s;) sam-
pled from £. Assume deterministic transitions and the exis-
tence of a stationary distribution over states. Given a bisim-
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ulation metric d™ of the form (1), we have:

1
E(%%‘)Nf [dg(si’sj)] = mE(Si»Sj)Nf [|T79rz o ngﬂ
3
Under sparse rewards, the right-hand side (RHS) of Equa-
tion (3), i.e, Eg, s )~ellrs, — 171 &~ 0 for most cases.
Consequently, the learned embedding collapses to a constant
value: dA¢(si) =dg,.

Proof in Appendix A. Based on Theorem 1, in environ-
ments with sparse rewards, the leaned embedding under the
loss (2) collapses to a constant value, effectively discarding
all state information. Such a collapse significantly impairs
exploration performance, as the embedding fails to distin-
guish between states. The issue is still prevalent even in
the latest bisimulation-based approaches [Wang et al., 2024;
Zang et al., 2023], which highlights a fundamental limitation
in their ability to handle sparse reward scenarios.

Behavioral Metric of BILE. Our goal is to learn a robust rep-
resentations Z using the behavioral metric-based encoder d,
even in sparse reward environments and then use these rep-
resentations to improve exploration. To address the represen-
tation collapse issue highlighted in Theorem 1, we introduce
the BILE operator for the behavioral metric:

Definition 2. Given a policy m, the probabilistic transition
dynamics model P, (-|s) = N (p,, 0y), BILE operator is up-
dated as :
@
F(,m) = 7, — 15+ 5 7 o)

Si,Sj

Reward Difference (4)

+ By py 1 (555 55)

Distribution Divergence
where 15:(s) = ||Py(s,a) — &'||a, P,(s,a) represents the
predicted next state from the learned probabilistic transition
dynamics model, and o is a scaling hyperparameter.

For the Reward Difference term, to address the
sparse reward issue faced by previous methods, we incorpo-
rate the prediction error of the probabilistic transition dynam-
ics model, 75;(s), as an extra reward into the state encoder
learning objective. This ensures the reward signal remains
informative during encoder training, preventing it from van-
ishing. Since the transition dynamics model is already trained
for the encoder loss, the additional computational cost of this
approach is negligible. Over time, as the agent explores and
becomes better at predicting its environment, the prediction
error diminishes, naturally reducing its impact on the metric
learning process.

Furthermore, for the Distribution Divergence
term, unlike previous bisimulation-based approaches that rely
on the Wasserstein distance which is computationally in-
tractable and requires relaxation, we replace it with a sample-
based next-state distribution divergence. Our approach re-
quires only sampling, making it significantly more computa-
tionally efficient without loss of theoretical integrity.

Theoretical Guarantee. The BILE metric operator preserves
the following theoretical properties as a behavioral metric:

Theorem 2 (Convergence Guarantee). Given a policy m, with
the convergence of the latent transition dynamic model, the
BILE operator F (ngLE , ) has a fixed-point.

Theorem 3 (State-Value Difference Upper-bound). For any
two states s; and s;, a given policy m and the BILE metric
encoder df;ILE, we have:

V™ (s:) = V7™ (s5)| < 5™ (s4, ) S

Proof in Appendix A. Theorem 2 establishes the conver-
gence guarantee for the BILE metric-based encoder. Mean-
while, Theorem 3 shows that the value difference between
states is upper-bounded by their distance in the BILE behav-
ioral metric space, similar to bisimulation-based approaches.
As depicted in Figure 2, states with higher novelty retain
greater value diversity, encouraging the agent to explore novel
states with larger value differences, which drives the agent to
exhibit more diverse behaviors and facilitates more effective
exploration. Additionally, as the bonus increases, it results
in larger temporal difference (TD) errors for adjacent state
pairs during learning, which will significantly enhance learn-
ing efficiency, as the BILE metric promotes the prioritization
of states that improve both novelty and learning efficacy.

3.2 Latent Exploration via BILE

Improvements over Previous Approaches. Previous latent
exploration methods define the exploration bonus using pre-
diction error [Pathak et al., 20171, randomized rewards [Ma-
hankali et al., 2024], and state differences [Wang et al., 2023].
However, these methods often struggle in environments with
high-dimensional state spaces. As the state differences be-
come subtle and the exploration space grows exponentially,
their performance degrades significantly in realistic environ-
ments with high-dimensional observation spaces. A detailed
comparison is provided in Table 1. To address these limita-
tions and build upon the conclusions of prior work, we iden-
tify key principles to ensure behavioral diversity and improve
exploration performance:

P1: First, the exploration bonus require correlating with
states; otherwise, they would appear as white noises,
which does not help exploration as shown by [Plappert
etal.,2017].

P2: Second, to ensure the bonus is fully observable and ac-
tionable by the policy, the bonus function must allow the
policy to condition on it (see Figure 10).

P3: Last, the exploration bonus should incorporate value di-
versity between states to encourage diverse and purpose-
ful behavior even in sparse reward setting.

To fulfill these principles, as illustrated in Figure 2, we assert
that encouraging the agent to effectively traverse the compact
latent space will facilitate exploration of the true state space.
We implement the bonus function (denoted as b) as

b(57 Z) NS f(S, S/) Tz (6)
where f(s,s') = d}'""(s,5') =< ¢(s) — ¢(s') >and 2z € Z
is a random sampled vector from the latent space (the anal-
ysis on z will be elaborated in Section 4 and Appendix B.
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As Equation (6) satisfies P1, we address P2 by augmenting
the input to the policy with the latent vector z, enabling the
latent-conditioned policy 7 (s, z) to be aware of both the state
and the random latent variable that factorizes the exploration
bonus function. For P3, recalling Theorem 3, we set ngLE(s)
as the state encoder, which encodes the value difference be-
tween states, encouraging the agent to visit novel states with
higher value diversity even in sparse reward setting.

Figure 3: Visualization of trajectories from a BILE agent midway
through training in an indoor environment, where each color denotes
a distinct trajectory under different z.

As shown in Figure 3 , changing the latent vector z in
BILE leads to diverse trajectories across all rooms. Since the
latent-conditioned policy (s, z) must maximize the reward
in Equation (6) for all randomly sampled vectors z, the agent
is able to explore the entire latent space. Consequently, the
agent is encouraged to produce diverse behavior while main-
taining sufficient exploration over the state space.

Based on Equation (4), we denote the state encoder by
dg'™ : & — R", the probability transition dynamic model
is parameterized by 7, and draw batches of state pairs, and
minimize the mean square error:

£(6) = BIdZ" (si,8) = 1T, =T, | = 5 Y Infi(s)

Si,Sj

- ’YESQNP;;(.|si),s’j~P777r(.|sj)(ngLE(827 s;))Q]

) @)
where ¢ is a copy of parameters for the target network. We
outline the full training procedure in Algorithm 1.

4 Experiment

To evaluate the performance of BILE, we conduct compre-
hensive experiments on various settings of different envi-
ronments to assess the effectiveness of our algorithm. The
project site is https://sites.google.com/view/ijcai25bile.

Baselines. We compare BILE with the following baselines:
(1) ICM [Pathak et al., 2017]: The widely adopted curiosity-
driven exploration method. (2) RND [Burda et al., 2018b]: A
representative baseline from the family of bonus-based explo-
ration methods. (3) RIDE [Raileanu e al., 2020]: An explo-
ration method that constructs the exploration bonus in the la-
tent space, modeled as the state difference within inverse and
forward dynamics representation spaces. (5) EME [Wang et
al., 2024]: A competitive dynamic bonus-based method de-

Algorithm 1 BILE

1: Initialize policy 7y, probability transition dynamic model
P, (-|s) and behavioral metric-based encoder dg'"

2: while not converged do

3:  Sample the latent vector z from distribution P(Z)
4 for t = 1 to MAX_STEP_PER_EPISODE do

5: Sample action a; ~ mg(- | s¢, ) and reach s;41
6: Record transition in the buffer D
7.
8
9
0
1

Compute bonus: 7, = r; + by (s, 2)

Train policy 7y (s, z) via policy gradient

Sample and permute mini batch B from the buffer
Update metric encoder Eg[L(¢)]  >Equation (7)
Update dynamic models by minimizing the predic-
tion error rfg(s)

12:  end for

13: end while

signed for high-dimensional environments, excelling in chal-
lenging exploration tasks. (6) RLE [Mahankali ez al., 2024]:
A recent exploration method that leverages randomized re-
wards in the latent space. (7) LIBERTY [Wang et al., 2023]:
An approach utilizing a bonus based on state differences eval-
vated via the bisimulation metric. (8) PPO [Schulman et al.,
2017]: the standard RL benchmark algorithm.

Figure 4: Snapshot of the real indoor Habitat environment

High-dimensional Embodied Exploration on Habitat HM3D

LIBERTY
RIDE
EME
RLE
RND
ICM
BILE

[
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Figure 5: Averaged explored portion of map (%)

4.1 Real Indoor Habitat Environment

Habitat is a platform for embodied Al research which pro-
vides an interface for agents to navigate and act in photore-
alistic simulations of real indoor environments. As shown in
Figure 4, at each episode, the agent finds itself in a different
indoor space. Full details can be found in Appendix C.

High-dimensional Exploration. We assess the exploration
capability of different algorithms by measuring how much of
the environment is revealed by the agent’s line of sight over
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Figure 6: Comparison results for various exploration tasks from Robosuite. The solid lines and shaded areas in the plots represent the mean

values and the standard errors, respectively, over five different seeds.

the course of an episode. Quantitative results are presented in
Figure 5, where BILE reveals significantly more of the maps
than any other method. The heatmaps of trajectories for all
these methods can be found in Appendix B, which clearly
demonstrates that BILE explores a larger portion of the space
compared to other methods. These results provide strong evi-
dence of BILE’s scalability to high-dimensional observations
and reinforce its practical applicability.
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Figure 7: Ablation experiments on impact of latent vector

The Impact of Latent Vector. To evaluate the impact of z
on the induced policy’s behaviors. we sample different latent
vector z and rollout trajectories with the policy conditioning
on those latent vectors, plotting each trajectory in a differ-
ent color in Figure 3, indicating that altering the latent vector
z can produce diverse trajectories. We also investigate the
impact of different latent vector distributions on BILE’s per-
formance and how sensitive BILE is to the dimension of the
latent vector. Our study involves training BILE with various
distributions, including Uniform, Normal, Exp (Exponential),
Beta, and Gamma distributions. The dimension of the repre-
sentation, or the latent vector, is an important hyperparame-
ter. We test BILE with d € 4,8,16,32,64, where d = 16
is the default setting in Habitat environments. As shown in
Figure 7, BILE outperforms the baseline PPO across differ-
ent latent vector distributions, suggesting that BILE’s perfor-
mance is robust to the choice of distributions. However, the
performance of d = 4 and d = 8 lags behind, while d = 16
and d = 32 yield comparable results. When the dimension
increases further, performance declines. Overall, BILE’s per-
formance with different dimensions remains superior to the
baseline method PPO, indicating that BILE’s performance is
not highly sensitive to the choice of dimension.

Figure 8: Continuous control tasks from Robosuite: Nut Assembly,
Door Opening, Table Wiping and Pick-and-Place.

4.2 Robotic Continuous Control

Overall Performance of Continuous Control. In our con-
tinuous control experiments conducted on the realistic robotic
platform [Zhu et al., 20201, we evaluate agents across a va-
riety of challenging tasks, including Nut Assembly, Door
Opening, Table Wiping, and Pick-and-Place, as illustrated in
Figure 8. The overall results, shown in Figure 6, demonstrate
that our method consistently outperforms the baselines, high-
lighting its superiority in handling continuous control tasks.
Among the baselines, EME achieves the second-best perfor-
mance across all four tasks, underscoring the advantages of
using a dynamic bonus. In contrast, episodic count-based
methods such as RIDE and randomized bonus methods like
RLE perform less effectively, as episodic counts and ran-
domized bonuses lose their effectiveness in high-dimensional
environments. Similarly, for the bisimulation metric-based
method LIBERTY, performance declines in high-dimensional
environments due to the increasingly subtle state differences.
Curiosity-driven approaches such as ICM and RND struggle
with insufficient exploration, leading to bad performance.

The Importance of Latent Vector Conditioning. As stated
in P2 of Section 3.1, we emphasized the necessity for the pol-
icy to be conditioned on the latent vector. In order to ver-
ify the statement, we compare BILE with and without latent-
conditioned policy network. As depicted in Figure 10, the
performance of BILE exhibits a decline in the Pick-and-Place
task (full results in Appendix B). The absence of latent vec-
tor conditioning results in limited behavioral variability in the
policy network, which leads to failures in more challenging
exploration tasks that necessitate a diverse behavior.

4.3 Sparse Reward Minigrid Environment

To evaluate BILE in scenarios with sparse rewards and dis-
crete actions, we test our method on hard exploration tasks
in the MiniGrid [Chevalier-Boisvert et al., 2024] benchmark.
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Figure 10: Learning curves of BILE with (w LCP) and without (w/o
LCP) the Latent vector Conditioned Policy (LCP).

This benchmark includes grid-world exploration games with
varying room layouts, interactive objects, and goals. In these
environments, the agent must learn a specific sequence of ac-
tions to reach the final goal while operating within a limited
view size. Valid actions include picking up a key, unlocking a
door, unpacking a box, and moving objects, with no extrinsic
reward provided until the goal is reached. We select four rep-
resentative settings from MiniGrid: FourRooms, MultiRoom-
N7, DoorKey-16x16, and KeyCorridorS6R3. Details on the
specific environmental settings are provided in Appendix C.
BILE successfully solves all hard-level exploration environ-
ments, achieving the best performance across all settings.

Noisy TV Problem. In addition to the standard tasks, we
assess the model’s robustness to environmental stochasticity
by incorporating a manually-created Noisy TV setting intro-
duced in [Raileanu er al., 2020]. We also test the performance
of our method as the room size and number of rooms increase.
Results are detailed in Appendix B, showing that BILE con-
sistently outperforms other baselines, further demonstrating
the effectiveness and scalability of our approach.

5 Related Work

Exploration remains a long-standing problem in RL. Com-
mon approaches include e-greedy [Sutton and Barto, 2018],
count-based exploration [Bellemare et al., 2016b; Ostrovski
et al., 2017a; Zhao et al., 2024], and curiosity-based explo-
ration [Stanton and Clune, 2016; Stanton and Clune, 2018;
Burda er al., 2018al. Several exploration strategies use a
dynamics model to provide intrinsic rewards [Pathak et al.,

2017; Burda et al., 2018b; Houthooft et al., 2016; Pathak et
al., 2019]. Latent variable dynamics have also been studied
for exploration [Bai et al., 2021; Tao et al., 2020; Seo et al.,
2021; Raileanu et al., 2020; Yang et al., 2024]. Maximum en-
tropy in the state representation has been used for exploration,
through random encoders, in RE3 [Seo er al., 2021], and
prototypical representations [Yarats er al., 2021]. Attention-
based intrinsic reward is used to improve communication in
traffic flow control [Yang et al., 2023b; Yang et al., 2023al.
Alternative approaches to modelling the environment’s dy-
namics are based on pseudo-counts [Bellemare e al., 2016a;
Ostrovski et al., 2017b; Tang et al., 20171, which use density
estimations techniques to explore less seen areas of the envi-
ronment. Some methods combine model-based intrinsic mo-
tivation with pseudo-counts, such as RIDE [Raileanu et al.,
2020], which rewards the agent with for transitions that have
an impact on the state representation, and NGU [Badia et al.,
2020b] and agent57 [Badia er al., 2020al, which modulates
a pseudo-count bonus with the intrinsic rewards provided by
RND. Another line of research try to model the difference
between states as bonuses to incentive exploration [Wang et
al., 2023; Zhang et al., 2021; Henaff er al., 2022]. Other
unsupervised learning approaches [Eysenbach et al., 2018;
Park et al., 2023; Park et al., 2022] propose unsupervised
frameworks to induce diverse skills or long-horizon behav-
iors. Recent breakthroughs concerning exploration in RL
have also focused on using the learned environment dynamics
to plan to explore [Shyam et al., 2019; Ratzlaff et al., 2020;
Hafner ef al., 2019], where they use imaginary rollouts from
their dynamics models to plan exploratory behaviors.

6 Conclusion

In this work, we identify the limitations of previous ex-
ploration methods, particularly in environments with high-
dimensional state spaces. To address these challenges, we
propose a novel exploration strategy that captures diverse be-
haviors by maximally exploring the compact latent behavioral
metric space. We introduce a new behavioral metric that fa-
cilitates efficient and robust training of the state encoder, sup-
ported by theoretical guarantees. Additionally, we encourage
agents to explore the latent space by providing exploration
bonuses based on randomized latent vectors. Extensive ex-
periments across various challenging tasks, including con-
tinuous control, minigrid games, and realistic environments,
demonstrate the effectiveness and scalability of our method.
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