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Abstract
Inferring causal protein signaling networks from
human immune system cellular data is an impor-
tant approach to reveal underlying tissue signaling
biology and dysfunction in diseased cells. In recent
years, reinforcement learning (RL) methods have
shown excellent performance in the field of causal
protein signaling network inference. However, the
complexity of RL models and the need for man-
ual hyperparameter tuning can hinder performance.
In this paper, we propose an actor-critic RL model
via artificial bee colony (ABC) neural architecture
search, called ABCNAS-RL. Specifically, the en-
tire method is divided into two phases: ABC neural
architecture search and actor-critic RL search. In
phase one, we represent each bee as a set of hyper-
parameter, utilizing the ABC algorithm searching
for optimal hyperparameters of the actor-critic RL
model on the training set. In phase two, we use
the actor-critic RL model to infer the causal pro-
tein signaling network on the test set. The actor
network consists of an encoder-decoder architec-
ture, composed of a transformer and a bidirectional
gated recurrent unit (BiGRU) with an integrated at-
tention mechanism. The critic network consists of
a fully connected neural network that estimates the
output state of the actor network. By maximizing
cumulative rewards, we ultimately derive the causal
protein signaling network. Extensive experimental
results on simulated and real datasets verify that
ABCNAS-RL outperforms the comparison meth-
ods and has superior performance.

1 Introduction
Causal protein signaling networks represent the impact of
pathway components on different biomolecules [Sachs et al.,
2005a], reflecting the complex stochastic relationships among
multiple interacting molecules derived from biological data
[Western et al., 2024; Cai et al., 2024]. The creation of intra-
cellular multicolor flow cytometry allows more quantitative
simultaneous observations of multiple signaling molecules

∗Corresponding Author

in many thousands of individual cells and making it eas-
ier to infer causal protein signaling network among protein
biomolecules [Shah et al., 2024]. The inference of causal pro-
tein signaling network from human immune system cell data
has gained significant attention in bioinformatics, as it facil-
itates the proper understanding of normal cellular responses
and their potential disruption in disease.

In recent years, numerous methods have been proposed
for inferring causal protein signaling network, which can be
broadly classified into two categories, one based on tradi-
tional machine learning and the other on deep learning meth-
ods with complex model structures. For example, the greedy
equivalence search (GES) [Chickering, 2002] is a widely uti-
lized score-based method that explores equivalence classes of
directed acyclic graphs [Liu et al., 2022]. Zheng et al. [Zheng
et al., 2018] first transformed the causal discovery problem
from a combinatorial optimization problem to a continuous
optimization problem by proposing a continuous optimiza-
tion structure approach (NoTears) and successfully used it for
learning causal protein signaling network. Liu et al. [Liu et
al., 2024b] utilized a parallel discrete ABC algorithm for in-
ferring causal protein signaling network from single-cell data.
Guo et al. [Guo et al., 2024] proposed FedCSL, a scalable
and accurate method for federated causal protein signaling
network learning. This group of methods has simple model
structures and runs efficiently, but the accuracy of the inferred
causal protein signaling network needs to be improved.

For deep learning methods, Zhu et al. [Zhu et al., 2019]
developed a causal learning model based on RL that employs
a RL framework for the learning of causal protein signaling
network. Löwe et al. [Löwe et al., 2022] introduced a new
framework called amortized causal discovery, which utilizes
shared dynamics to facilitate the learning of causal relation-
ships from data. Tristan et al. [Deleu et al., 2022] proposed
a deep generative model that uses a flow network generation
method and employs a structural constraint variant to learn
causal protein signaling network. Sanchez [Sanchez et al.,
2023] proposed DiffAN, a novel identifiable algorithm that
utilizes a diffusion probabilistic model to establish a topolog-
ical ordering, enabling causal discovery under the assumption
of an additive noise model. These types of methods can more
accurately infer causal protein signaling network, but they
typically have higher time complexity and longer run times
due to their complex neural network model structures.
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In this paper, we propose an actor-critic RL via ABC neu-
ral architecture search to infer causal protein signaling net-
work, called ABCNAS-RL. Specifically, we first use the ABC
algorithm and cross-entropy loss function to automatically
optimize the optimal hyperparameters of the actor-critic RL
model, and the optimization process consists of three phases
of employed bee search, onlooker bee search, and scout bee
search, and each bee corresponds to a set of hyperparameter
combinations. Then we use the actor-critic RL model to in-
fer the network structure, the actor adopts a encoder-decoder
structure, the encoder adopts a transformer model structure,
and the decoder adopts a BiGRU incorporating an attention
mechanism. The critic network uses a fully connected layer
neural network to estimate the output state of the actor net-
work to output the causal protein signaling network with the
highest reward score. Extensive experimental results on sim-
ulated and real datasets verify that ABCNAS-RL outperforms
the comparison methods and has superior performance.

The key contributions of this paper are summarized below:

• This is the first study to infer causal protein signaling
network with RL via ABC neural architecture search,
which will provide a significant reference for the causal
discovery and bioinformatics fields.

• To minimize the performance impact due to manual hy-
perparameter selection, we design an ABC neural archi-
tecture to adaptively search for optimal hyperparameters
of actor-critic RL models.

• To better infer the causal structures and increase fea-
ture extraction capability, we add BiGRU with attention
mechanism into the RL framework.

• Extensive experiments demonstrate that ABCNAS-RL
can infer causal protein signaling networks more accu-
rately, which has significant implications for understand-
ing the underlying causal relationships in biological sys-
tems.

2 Related Work
2.1 Causal Protein Signaling Networks
Causal protein signaling network consist of multiple protein
biomolecule nodes and causal relationships between differ-
ent nodes. Inferring causal protein signaling network accu-
rately from Single-cell data is important for understanding
the causal relationships of biomolecules in cells and for gain-
ing insight into the pathogenesis of cell-based diseases [Wang
et al., 2024]. Recently, Zhang et al. [Zhang et al., 2023] de-
veloped a method for learning causal protein signaling net-
work from observed numerical data. Their approach utilizes
a regression-based conditional independence test (RCIT) that
combines kernel ridge regression and the Hilbert-Schmidt in-
dependence criterion with permutation approximation.

2.2 Reinforcement Learning
Reinforcement learning (RL) utilizes neural networks to
model the policy and value functions, using backpropaga-
tion to optimize the objective. It also employs RL’s decision-
making ability to define and optimize goals [Lee et al., 2024].
The Actor-Critic algorithm [Konda and Tsitsiklis, 1999] is

a popular reinforcement learning framework that combines
policy-based and value-based methods. The Actor selects ac-
tions based on a policy, while the Critic evaluates the chosen
actions and provides feedback. The Actor updates the policy
using this feedback to improve action selection, enabling the
agent to converge toward optimal behavior. RL methods have
been applied in different real-world applications. Zhou et al.
[Zhou et al., 2024] proposed a natural Actor-Critic frame-
work for robust RL with function approximation. Zhang et
al. [Zhang et al., 2024] proposed a novel brain effective con-
nectivity discovery method based on meta-RL.

2.3 Neural Architecture Search based Artificial
Bee Colony

Despite the impressive progress in neural network architec-
ture design, improving the performance of the existing state-
of-the-art models has become increasingly challenging [Fu
et al., 2024; Benmeziane et al., 2024]. The emergence and
development of neural architecture search (NAS) technology
can to some extent solve the problem of difficult manual de-
sign of network architecture. The NAS method can auto-
matically search for the optimal architecture for the current
task within a pre-defined search space and has been rapidly
applied in many fields. Martin et al. [Martin et al., 2024]
proposed an ABC optimization of deep convolutional neural
networks in the context of biomedical imaging. Asaad et al.
[Asaad et al., 2024] employed ABC algorithm to optimize the
artificial neural network in heart disease prediction.

3 Prelimiary
3.1 Notation and Problem Formulation
Causal protein signaling networks are complex network
structures formed by intricate interactions between proteins
involved in intracellular signaling. These networks are
crucial in cell function, and studying them can enhance
our understanding of the signaling mechanisms within cells
[Barkhuizen et al., 2022]. In this paper, the vectors (tensors
of order one) are denoted by boldface lowercase letters.
Matrices (tensors of order two) are denoted by boldface
capital letters. a causal protein signaling network is denoted
as G =< V,E >, where V is a set of nodes with each node
Xi ∈ V representing a a protein molecule; and E is a set of
edges with each edge Xi → Xj ∈ E describing an signaling
pathway from protein molecule Xi to Xj . Single-cell data is
in the form of a two-dimensional matrix I with m columns
and g rows:

I =

a11 · · · a1m
...

. . .
...

ag1 · · · agm

 , (1)

where aij (1 ≤ i ≤ g, 1 ≤ j ≤ m) is the expression level
of the i-th protein biomolecule in the j-th cell. Our task is to
reconstruct causal protein signaling network G based on pro-
tein biomolecule expression levels in single-cell data X and
infer signaling pathways between proteins in order to reveal
cellular signaling processes.
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Figure 1: The flowchart of the ABCNAS-RL algorithm, which includes two phases: ABC neural architecture search and actor-critic RL.

3.2 Motivation
Traditional machine learning methods can rapidly infer
causal protein signaling network due to their simple struc-
ture, but the difficulty in capturing potentially complex sig-
naling pathways leads to poor performance. In recent years,
RL methods have shown significant advantages due to the
fact that they do not need to rely on various local heuristic
information when inferring causal protein signaling network.
However, RL models have many hyperparameters and rely
on manual settings, leading to poor performance in causal
protein signaling network recognition. Luckily, ABC has
balanced exploration-exploitation dynamics. ABC employs
global search (employed bees), local refinement (onlookers),
and random exploration (scouts) to escape local optima ef-
ficiently. Therefore, it is a promising attempt to combine
the NAS ideology with the tuning of hyperparameter opti-
mization and microstructure of reinforcement learning model
based on ABC for causal protein signaling networks.

4 Method
4.1 Main Idea
ABCNAS-RL consists of two phases. In phase one, we rep-
resent each bee as a unique set of hyperparameter combi-
nations, utilizing the ABC algorithm and cross-entropy loss
function to automatically search for optimal hyperparameters
for the RL model on the training set. The optimization pro-
cess consists of three phases of employed bees’ search, on-
looker bees’ search, and scout bees’ search. In phase two,
we use the RL model with hyperparameters optimized by the
ABC algorithm to infer the causal protein signaling network
on the test set. The model follows an actor-critic architecture.
The actor network consists of an encoder-decoder architec-
ture, composed of a transformer and a BiGRU with an inte-
grated attention mechanism. The critic network consists of a

fully connected neural network that estimates the output state
of the actor network. By maximizing cumulative rewards, we
ultimately derive the causal protein signaling network. Figure
1 illustrates the flowchart of the ABCNAS-RL algorithm.

4.2 ABC Neural Architecture Search
We divide the input dataset into a training set and a test set,
and first search for the optimal hyperparameters of the RL
model on the training set using the ABC algorithm and the
cross-entropy loss function. The hyperparameters of the RL
model are chosen as epoch, lr and nlayer, where epoch is the
number of times the entire training dataset is completely tra-
versed by the neural network, lr denotes the learning rate, and
nlayer is the number of layers of the fully-connected network
in the Critic network. We define the search space and step
size of these three hyperparameters respectively. Each bee
corresponds to a set of hyperparameter combinations, and the
cross-entropy loss function is defined as follows:

H(p, q) = −
∑

(p(x)× log(q(x))), (2)

where p(x) represents the causal distribution of the true
causal protein signaling network and q(x) represents the
causal distribution predicted by the model. This formula
measures the difference between the true distribution and
the model-predicted distribution; the smaller the difference
H(p, q), the closer the two distributions are, i.e., the better
the model’s prediction matches the true situation, and thus the
better the model performs. The optimization search process
consists of three phases: employed bee search, onlooker bee
search and scout bee search. This method combines global
search, local search, and random search to effectively avoid
local optima. The specific steps are as follows:

Employed Bee Phase
First, initialize N employed bees in the training dataset, each
corresponding to a hyperparameter combination, with the
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search space being the global space R. Assuming the search
space is d-dimensional, the hyperparameter combination Pi

can be expressed as:

Pi = [pi1, pi2, . . . , pid], (3)

where pij is the j-th hyperparameter of the i-th employed bee
and d is 3.

Onlooker Bee Phase
The top 50% of the employed bees proceed to the onlooker
bee phase. In the onlooker bee phase, the search space is
compressed based on information from the previous phase,
resulting in the local search space L. The local search space
is defined as:

L = [l1, l2, . . . , ld], (4)
where li is the local search range of the i-th hyperparameter,
and d is the number of hyperparameters.

Each onlooker bee performs local optimization within the
neighborhood of the hyperparameters. The new hyperparam-
eter combination Pnew can be expressed as:

Pnew = Pbest + ϕ · (Pbest −Pi), (5)

where ϕ is a random number,−1 ≤ ϕ ≤ 1, Pi is the hyperpa-
rameter combination of the current onlooker bee, and Pbest

is the best solution in the current iteration.
After the onlooker bee search phase, the new hyperparam-

eter combinations are sorted based on the cross-entropy loss
function, and the bottom 50% are converted to scout bees.

Scout Bee Phase
In the scout bee phase, scout bees perform random searches
outside the current search space to reduce the probability of
falling into local optima. The global search space is defined
as R, and scout bees randomly generate new hyperparameter
combinations Prandom outside the current search space L.
The formula is:

Prandom = Pmin + rand · (Pmax −Pmin), (6)

where Pmin and Pmax are the minimum and maximum val-
ues of the global search space, respectively, and rand is a
random number, 0 ≤ rand ≤ 1.

After multiple iterations and updating the rank table, the
optimal hyperparameter combination is selected as the neural
network structure and hyperparameters for the actor-critic RL
model.

4.3 Actor-Critic Reinforcement Learning
After searching for the optimal actor-critic RL model hyper-
parameters on the training set, we use the actor-critic RL
model to perform causal protein signaling network inference
on the test set. The modules of Actor-Critic Reinforcement
Learning are described in detail below.

Actor
Transformer-based Encoder: a common way is to use

I as input to the network directly. However, the high noise
characteristic of single-cell data presents a great challenge
for general feed-forward neural networks to capture the un-
derlying causal relationships directly using I as states. Con-
sequently, incorporating an encoder module to preprocess the

single-cell data proves beneficial in extracting useful infor-
mation and finding better causal protein signaling network.

For the model design of the encoder, we utilize the Trans-
former, which involves first embedding the inputs via a linear
layer, followed by processing them through multiple iden-
tical encoder blocks comprising a multi-head self-attention
layer and a feed-forward layer; we posit that multi-head self-
attention is well-suited for extracting temporal features from
single-cell data, as it reduces reliance on external information
and better captures internal correlations within the single-cell
data. the encoder block operations are as follows:

X ′ = Linear(Xm) ∈ Rm×n×h,

Ql = WQX ′l + ϵQ,

Kl = WKX ′l + ϵK ,

Vl = WV X ′ll + ϵV ,

(7)

where Xm denotes the embedded input, Linear is a fully
connected linear layer that provides a linear transformation
of the input X ′, h denotes the number of hidden layer nodes
of the fully connected linear layer, X ′l expresses the l-th in-
put after dividing the embedding X ′ into L head self-attention
layer. WQ,WK and WV denote the network parameters for
the self-attention layer respectively, ϵQ, ϵK and ϵV are the
bias vector. Then, we can get Ql,Kl and Vl which denote the
query, key, and value vector of the self-attention layer respec-
tively, So the self-attention can be calculated as follows:

Attnl = softmax

(
QlK

T
l√

dKl

)
Vl,

Senc = Concat (Attn1, Attn2, ..., AttnL) ,

(8)

where d denotes the number of elements in the last dimension
of the query, key, and value vector Ql,Kl, and Vl, Attnl de-
scribes the l-th head attention vector. Then, we can collect all
L heads of the self-attention vectors. and get the embedded
state Senc.

BiGRU-based Decoder: the decoder is responsible for
generating the output sequence from the encoded state Senc.
In our model, we use a bidirectional GRU to enhance the de-
coding process by capturing dependencies in both forward
and backward directions, which provides a more comprehen-
sive context for generating accurate outputs.

A GRU cell is defined by the following equations:

zt = σ(Wzxt +Uzht−1 + bz), (9)
rt = σ(Wrxt +Urht−1 + br), (10)

h̃t = tanh(Whxt +Uh(rt ⊙ ht−1) + bh), (11)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t, (12)

where zt is the update gate vector, rt is the reset gate vector,
h̃t is the candidate hidden state vector, ht is the final hidden
state vector, σ is the sigmoid activation function, tanh is the
hyperbolic tangent activation function, Wz , Wr, and Wh

are the weight matrices for the input xt, Uz , Ur, and Uh are
the weight matrices for the hidden state ht−1, and bz , br, and
bh are the bias vectors.
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In the BiGRU, we have two GRUs: one processes the input
sequence in the forward direction and the other in the back-
ward direction. The hidden states from both directions are
concatenated to form the final hidden state:

ht = [
−→
h t;
←−
h t], (13)

where
−→
h t is the hidden state of the forward GRU and

←−
h t is

the hidden state of the backward GRU.
To further enhance the decoder, we incorporate an attention

mechanism that allows the model to focus on different parts
of the input sequence when generating each output token. The
attention score for each encoder hidden state is computed as:

eij = v⊤ tanh(W1hi +W2sj−1), (14)

where eij is the attention score, hi is the encoder hidden state
at time step i, sj−1 is the decoder hidden state from the previ-
ous time step j−1, v is the attention vector, W1 and W2 are
the weight matrices for the encoder hidden state and decoder
hidden state respectively.

The attention weights are obtained by normalizing the
scores using a softmax function:

αij =
exp(eij)∑
k exp(eik)

, (15)

where αij is the attention weight for the i-th encoder hidden
state at time step j.

The context vector cj is computed as a weighted sum of
the encoder hidden states:

cj =
∑
i

αijhi, (16)

where cj is the context vector at time step j.
The decoder hidden state is then updated using the context

vector and the previous hidden state:

sj = GRU(yj−1, [cj ; sj−1]), (17)

where sj is the decoder hidden state at time step j, yj−1 is
the previous output, and GRU is the gated recurrent unit func-
tion that updates the hidden state based on the concatenated
context vector and previous hidden state.

The updated decoder hidden state sj is then used to gener-
ate the final output of the sequence. By incorporating the bidi-
rectional GRU and attention mechanism, the decoder can ef-
fectively leverage the encoded information and generate more
accurate and context-aware outputs.

Critic
For critic we use a nlayer feed-forward neural network with
a ReLU activation function. The input of the critic network is
the decoder output (actions) and the rewards. To better assess
the value of the learning causal protein signaling network,
we use the Bayesian information criterion score (BIC) as the
reward function as follows:

SBIC(G) =
n∑

j=1

[
t∑

i=1

log p (xij | Pa (xij) ; θj)−
|θj |
2

log t

]
,

(18)

Where θj is the parameter associated with each likelihood,
and |θj | denotes the dimension of the parameter. BIC score
enables us to identify the optimal causal relationships that
best aligns with the single-cell data, which leads to improved
performance of the causal protein signaling network. So the
reward can be described as:

reward(G) = −[SBIC(G) + λA(G)], (19)

where λ ≥ 0 is a parameter that controls the sparsity of causal
protein signaling network and A(G) is the sparse penalty
function as A(G) = ∥G∥1. SBIC denotes the score for the
action (causal protein signaling network). By utilizing fully
connected layers, the critic network can effectively capture
the intricate relationship between actions and rewards. At the
same time, the output of the critic network provides a loss
Lcritic for the actor that trains actor network to produce more
highly rewarded actions (causal protein signaling networks).

The ABC phase has a complexity of O(N)(bees) and O(T )
(iterations). The RL training phase requires O(R) (epochs).
Complexity stems from ABC search and RL training. Total
complexity is O(N × T ×R).

5 Experimental Setting
In this section, we introduce the environment configura-
tion, datasets, evaluation metrics, baseline methods, and
parameter settings. The configuration comprises a pow-
erful NVIDIA GeForce RTX 3090, coupled with a high-
performance NVIDIA GeForce RTX 3080Ti GPU, alongside
the computational prowess of an AMD Ryzen 9 5950X 16-
Core Processor CPU. The code is available at https://github.
com/ZJH66/ABCNAS-RL.

5.1 Data Description
In this paper, we used simulated dataset and the real dataset.
We generated 4 simulated datasets Sim1 to Sim4 with ref-
erence to the [Zhu et al., 2019], and each dataset contains
a different number of nodes (v = 5, 10, 20, 50). The real
multi-parameter fluorescence-activated cell sortera data set
[Sachs et al., 2005b] to learn causal protein signaling network
based on expression levels of proteins and phospholipids, and
the data sets are available at https://www.science.org/doi/10.
1126/science.1105809#supplementary.

5.2 Evaluation Metrics
We compared the result learned to ground-truth network on
common graph metrics [Xiong et al., 2025; Liu et al., 2024a]:
(1) Precision; (2) Recall; (3) F1; (4) Accuracy; (5) Structural
Hamming Distance (SHD). A high-performing algorithm is
characterized by higher values of Precision, Recall, F1 and
Accuracy, as well as lower values of SHD.

5.3 Baseline Methods and Parameter Setting
The parameters of the comparison algorithms are chosen
based on the corresponding literature. For a more fair com-
parison, we conduct experiments on generated simulation
datasets with 5 to 50 node numbers and make appropriate
fine-tuning to the original parameters so that the comparison
algorithms can show the best performance.
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Data
(Nodes) Metrics Methods

NoTears RL GES FedCSL RCIT DiffAN ACD PDABC ABCNAS-RL

Sim1
(5)

Precision↑ 0.58 ± 0.00 0.56 ± 0.00 0.54 ± 0.00 0.55 ± 0.10 0.35 ± 0.13 0.57 ± 0.06 0.51 ± 0.05 0.64 ± 0.03 0.68 ± 0.03
Recall↑ 0.64 ± 0.00 0.52 ± 0.00 0.54 ± 0.00 0.35 ± 0.07 0.35 ± 0.10 0.62 ± 0.07 0.35 ± 0.08 0.64 ± 0.02 0.64 ± 0.03

F1↑ 0.60 ± 0.00 0.54 ± 0.00 0.54 ± 0.00 0.45 ± 0.12 0.35 ± 0.08 0.59 ± 0.04 0.43 ± 0.07 0.64 ± 0.03 0.66 ± 0.02
Accuracy↑ 0.83 ± 0.00 0.82 ± 0.00 0.81 ± 0.00 0.81 ± 0.07 0.78 ± 0.08 0.82 ± 0.04 0.79 ± 0.07 0.84 ± 0.03 0.85 ± 0.03

SHD↓ 3.00 ± 0.00 4.00 ± 0.00 4.00 ± 0.00 5.15 ± 1.10 7.12 ± 0.95 3.14 ± 1.22 5.46 ± 0.32 3.22 ± 0.74 2.13 ± 0.62

Sim2
(10)

Precision↑ 0.43 ± 0.00 0.45 ± 0.00 0.24 ± 0.00 0.46 ± 0.01 0.58 ± 0.04 0.54 ± 0.04 0.50 ± 0.02 0.76 ± 0.01 0.79 ± 0.01
Recall↑ 0.54 ± 0.00 0.66 ± 0.00 0.38 ± 0.00 0.46 ± 0.01 0.65 ± 0.05 0.29 ± 0.02 0.59 ± 0.01 0.72 ± 0.01 0.70 ± 0.01

F1↑ 0.47 ± 0.00 0.54 ± 0.00 0.27 ± 0.00 0.46 ± 0.01 0.62 ± 0.04 0.37 ± 0.03 0.54 ± 0.02 0.74 ± 0.01 0.75 ± 0.01
Accuracy↑ 0.78 ± 0.00 0.81 ± 0.00 0.76 ± 0.00 0.63 ± 0.08 0.81 ± 0.04 0.74 ± 0.05 0.81 ± 0.02 0.86 ± 0.01 0.87 ± 0.01

SHD↓ 9.00 ± 0.00 8.00 ± 0.00 13.00 ± 0.00 20.50 ± 4.20 9.15 ± 0.91 11.65 ± 0.85 9.21 ± 2.45 6.15 ± 1.85 5.05 ± 1.13

Sim3
(20)

Precision↑ 0.53 ± 0.00 0.57 ± 0.00 0.62 ± 0.00 0.60 ± 0.04 0.44 ± 0.03 0.41 ± 0.03 0.62 ± 0.06 0.65 ± 0.06 0.71 ± 0.09
Recall↑ 0.53 ± 0.00 0.57 ± 0.00 0.53 ± 0.00 0.14 ± 0.03 0.41 ± 0.02 0.81 ± 0.06 0.61 ± 0.06 0.62 ± 0.06 0.68 ± 0.08

F1↑ 0.53 ± 0.00 0.57 ± 0.00 0.57 ± 0.00 0.23 ± 0.03 0.42 ± 0.03 0.54 ± 0.04 0.62 ± 0.06 0.63 ± 0.05 0.69 ± 0.08
Accuracy↑ 0.82 ± 0.00 0.85 ± 0.00 0.83 ± 0.00 0.78 ± 0.04 0.71 ± 0.09 0.82 ± 0.01 0.84 ± 0.01 0.85 ± 0.02 0.87 ± 0.01

SHD ↓ 12.00 ± 0.00 10.00 ± 0.00 11.00 ± 0.00 19.15 ± 1.12 15.12 ± 2.15 12.40 ± 1.07 13.50 ± 3.21 13.51 ± 2.58 11.40 ± 3.06

Sim4
(50)

Precision↑ 0.46 ± 0.00 0.55 ± 0.00 0.59 ± 0.00 0.48 ± 0.02 0.59 ± 0.03 0.49 ± 0.02 0.57 ± 0.02 0.63 ± 0.01 0.73 ± 0.01
Recall↑ 0.48 ± 0.00 0.55 ± 0.00 0.54 ± 0.00 0.67 ± 0.01 0.57 ± 0.03 0.51 ± 0.02 0.59 ± 0.01 0.63 ± 0.01 0.71 ± 0.01

F1↑ 0.47 ± 0.00 0.55 ± 0.00 0.56 ± 0.00 0.56 ± 0.01 0.58 ± 0.02 0.50 ± 0.02 0.58 ± 0.02 0.63 ± 0.01 0.72 ± 0.01
Accuracy↑ 0.78 ± 0.00 0.81 ± 0.00 0.83 ± 0.00 0.80 ± 0.02 0.75 ± 0.02 0.74 ± 0.03 0.83 ± 0.02 0.87 ± 0.01 0.89 ± 0.01

SHD↓ 49.00 ± 0.00 45.00 ± 0.00 45.00 ± 0.00 42.11 ± 2.14 42.62 ± 2.11 47.13 ± 1.34 37.15 ± 1.85 33.25 ± 1.56 25.37 ± 1.26

Table 1: The results of 9 methods on simulated dataset. The gray values indicate that the method achieved the best results.

To demonstrate the competitiveness of our ABCNAS-RL
in an intuitive way, we compare with eight other state-of-
the-art or classic algorithms. These algorithms include:
continuous optimization for structure learning (NoTears)
[Zheng et al., 2018], reinforcement learning (RL) [Zhu et
al., 2019] ,greedy equivalence search (GES) [Chickering,
2002], federal causal structure learning (FedCSL) [Guo et
al., 2024], regression-based conditional independence test
(RCIT) [Zhang et al., 2023], diffusion models for causal dis-
covery via topological ordering (DiffAN) [Sanchez et al.,
2023], amortized causal discovery (ACD)[Löwe et al., 2022]
and parallel discrete ABC algorithm (PDABC) [Liu et al.,
2024b]. We refer to the parameters of all comparative al-
gorithm source literature and optimize on the experimental
dataset to ensure fairness.

For ABCNAS-RL algorithm, We conducted a parameter
sensitivity analysis experiment on the first simulated dataset.
The ABC algorithm reached optimal performance when the
number of bees N and the number of iterations T were set
to 20 and 10, respectively, resulting in the minimum value of
the cross-entropy loss, as shown in Figure 2. Increasing these
values further led to higher computational time costs, but the
performance remained stable. Subsequently, the parameters
for the reinforcement learning model were automatically de-
termined using the ABC algorithm.

6 Experimental Results and Discussions
6.1 Results on Simulated Dataset
We comprehensively test and compare the above 9 algorithms
on 4 simulated datasets. The detailed results on 4 simulated
datasets are shown in Table 1. For ABCNAS-RL, we take
the first 30% of all data sets as the training set, and the last
70% as the test set. From Table 1, we can find that ABCNAS-
RL outperforms the other 8 algorithms in all metrics on the 4
simulated datasets.

ABCNAS-RL consistently outperforms the other algo-
rithms in multiple metrics, particularly in Precision and F1
Score across all datasets. For instance, in Sim1, ABCNAS-
RL achieved a Precision of 0.68 and an F1 Score of 0.66,
indicating its effectiveness in correctly identifying relevant

Figure 2: Parameter Sensitivity Analysis.

connections while minimizing false positives. Similarly, in
Sim4, it maintained superior performance with a Precision
of 0.73, showcasing its robustness as the complexity of the
dataset increases. Moreover, ABCNAS-RL demonstrates a
notable advantage in SHD, achieving the lowest error rates
compared to other methods. This signifies that ABCNAS-
RL not only excels in precision and recall but also minimizes
the discrepancies in the learned structure, making it a reliable
choice for tasks requiring accurate causal inference.

6.2 Results on Real-world Dataset
We merged the 14 sub-datasets into a total dataset with a sam-
ple size of 11672 and treat the first 30% as the training set and
the last 70% as the test set. The results are shown in Table 2.

By Recall we can easily find that highlight the strengths
and weaknesses of each approach from Table 2. FedCSL
and RCIT, both of which identified 6 edges, displayed no-
tably lower performance metrics. This shortfall is likely due
to their assumption of acyclic graphs, which do not align
well with the inherently cyclic nature of biological protein
signaling networks, leading to reduced accuracy and effec-
tiveness. RL, DiffAN, and ACD each identified 7 edges cor-
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Methods Precision ↑ Recall↑ F1↑ Accuracy↑ SHD↓
NoTears 0.47 ± 0.00 0.47 ± 0.00 0.47 ± 0.00 0.85 ± 0.00 14.00 ± 0.00
RL 0.50 ± 0.00 0.41 ± 0.00 0.45 ± 0.00 0.86 ± 0.00 15.00 ± 0.00
GES 0.23 ± 0.00 0.47 ± 0.00 0.31 ± 0.00 0.70 ± 0.00 36.00 ± 0.00
FedCSL 0.50 ± 0.12 0.35 ± 0.15 0.41 ± 0.13 0.86 ± 0.12 15.15 ± 1.25
RCIT 0.46 ± 0.07 0.35 ± 0.12 0.39 ± 0.03 0.82 ± 0.04 16.13 ± 1.36
DiffAN 0.44 ± 0.13 0.41 ± 0.15 0.42 ± 0.14 0.84 ± 0.10 16.72 ± 0.79
ACD 0.41 ± 0.04 0.41 ± 0.05 0.41 ± 0.04 0.83 ± 0.03 17.30 ± 0.72
PDABC 0.53 ± 0.02 0.47 ± 0.02 0.50 ± 0.02 0.87 ± 0.03 14.35 ± 0.62
ABCNAS-RL 0.62 ± 0.03 0.47 ± 0.02 0.53 ± 0.02 0.88 ± 0.02 12.75 ± 0.55

Table 2: The result of 9 methods on Precision, Recall, F1, Accuracy
and SHD. The gray values indicate the best results.

rectly. While these algorithms performed better than FedCSL
and RCIT, their overall metrics were only moderate, indicat-
ing that while they provide a reasonable number of correct
edges, they lack exceptional performance across the board.
NoTears, GES, PDABC, and ABCNAS-NAS each success-
fully identified 8 correct edges. However, GES faced sig-
nificant issues with low Precision and Accuracy, primarily
due to generating a high number of redundant edges, which
detracted from its overall utility. NoTears, PDABC, and
ABCNAS-NAS demonstrated a more balanced performance,
though they did not surpass ABCNAS-RL in terms of metric
excellence. ABCNAS-RL emerged as the most proficient al-
gorithm, correctly identifying 8 edges while also achieving a
high Precision of 0.62. In summary, ABCNAS-RL can infer
causal protein signaling network stably and accurately.

The causal protein signaling network inferred by
ABCNAS-RL reveals a complex network of interconnected
signaling pathways, including key pathways such as (Pkc,
Jnk, P38, Pka), (PKA,P38, Akt) and calcium signaling
through Plc. Pkc, Pka, and Raf act as central regulators, ac-
tivating downstream effectors like Jnk, P38, and Akt through
both direct and indirect mechanisms. These signaling net-
works mediate crucial cellular processes such as prolifera-
tion, survival, differentiation, and stress responses, highlight-
ing the intricate crosstalk between pathways. This causal net-
work provides valuable insights into how cells integrate and
respond to various signals, offering potential implications for
understanding disease mechanisms and developing targeted
therapeutic strategies.

To clearly show the significant differences between these
algorithms, we use the Friedman test and T test to attest to
the significant difference between these algorithms. If the p-
value obtained from the test is less than 0.05, we consider
that a significant difference exists in the corresponding ex-
perimental results.The Friedman test indicates a significant
difference between the nine algorithms (p-value <0.05). Fur-
thermore, we perform the T test on the results, which rein-
force the conclusion that ABCNAS-RL provides a robust ad-
vantage in inferring the causal protein signaling network.

6.3 Ablation Analysis
In this ablation study of encoder and decoder configurations,
we compare the performance of several encoder and decoder
types on Sim1 data, including Transformer, Graph Attention
Network (GAT), BiLSTM and BiGRU, across multiple eval-
uation metrics. Figure 3 visualizes the results of the abla-
tion experiments. It is evident that the Transformer + BiGRU
configuration achieves the highest values in Precision (0.92),

Figure 3: Performance heatmap of different encoder-decoders.

Recall (0.89), F1 (0.90), Accuracy (0.90) and SHD (2). In
contrast, other encoder and decoder configurations, such as
Transformer + BiLSTM and GAT + BiGRU, show noticeably
lower performance on these metrics, highlighting the Trans-
former + BiGRU configuration’s strong ability to model se-
quential dependencies and capture important features from
the data. Moreover, Transformer + BiGRU achieves a SHD of
2, significantly lower than other models like GAT + BiLSTM
and Transformer + BiLSTM (both having SHD = 5). This
result indicates that Transformer + BiGRU provides more ac-
curate structural predictions in the context of inferring causal
protein signaling networks.

In summary, Transformer + BiGRU excels in both classifi-
cation accuracy and structural prediction tasks. Its combina-
tion of Transformer’s powerful feature extraction capabilities
and BiGRU’s bidirectional sequence modeling ability enables
it to capture both forward and backward dependencies, mak-
ing it the most effective configuration in this experiment.

7 Conclusion and Limitation
In this paper, we propose a novel method combining
ABC neural architecture search and reinforcement learning
(ABCNAS-RL) to infer causal protein signaling networks
from single-cell data. The algorithm optimizes hyperparame-
ters using ABC and applies the model to learn causal network
structures. Experiments show the method effectively identi-
fies causal protein relationships, which has significant impli-
cations for understanding the biological systems.

The main limitation of the current work is efficiency, with
relatively long search times. In future work, we plan to fur-
ther optimize the computational efficiency of the algorithm
to reduce training and inference time, especially when han-
dling large-scale datasets. To enhance ABCNAS-RL’s per-
formance, we will develop efficient parallel computing meth-
ods for faster training and inference, enabling better tools in
bioinformatics and systems biology.
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