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Abstract
Federated learning (FL) enables collaborative
model training without exposing raw data, offering
a privacy-aware alternative to centralized learning.
However, FL remains vulnerable to various privacy
attacks that exploit shared model updates, includ-
ing membership inference, property inference, and
gradient inversion. Source inference attacks further
threaten FL by identifying which client contributed
a specific training sample, posing severe risks to
user and institutional privacy. Existing source in-
ference attacks mainly assume passive adversaries
and overlook more realistic scenarios where the
server actively manipulates the training process.
In this paper, we present an enhanced source in-
ference attack that demonstrates how a malicious
server can amplify behavioral differences between
clients to more accurately infer data origin. Our ap-
proach introduces active training manipulation and
data augmentation to expose client-specific pat-
terns. Experimental results across five representa-
tive FL algorithms and multiple datasets show that
our method significantly outperforms prior passive
attacks. These findings reveal a deeper level of pri-
vacy vulnerability in FL and call for stronger de-
fense mechanisms under active threat models.

1 Introduction
Federated learning (FL) is a distributed machine learning
paradigm that enables multiple clients to collaboratively train
a shared model without exposing their raw data [McMahan
et al., 2017]. This approach is motivated by growing con-
cerns over data privacy, regulatory constraints, and the need

∗Corresponding Author

to leverage decentralized data sources. By keeping data local
and only exchanging model updates, FL significantly reduces
privacy risks and communication overhead [Li et al., 2020b;
Li et al., 2021b]. It has gained widespread adoption in various
domains, including mobile device personalization, health-
care, finance, and smart manufacturing. The decentralized
and privacy-aware nature of FL makes it a promising solution
for learning in sensitive and data-siloed environments [Li et
al., 2020a; Khodak et al., 2021].

Despite its privacy-preserving design, federated learning
remains vulnerable to various privacy attacks that exploit
shared model updates [Lyu et al., 2022; Geiping et al., 2020;
Wang et al., 2022; Jin et al., 2025; Zhang and Xia, 2024;
Zhou et al., 2022]. These attacks can infer sensitive infor-
mation about individual participants or their local datasets,
undermining the core privacy guarantees of FL. A key reason
for such vulnerabilities is that gradient updates and model pa-
rameters often leak unintended data patterns, especially when
models are overparameterized or updates are sparsely aggre-
gated. One prominent type of privacy attack is the member-
ship inference attack, where an adversary aims to determine
whether a particular data sample was part of a client’s local
training set [Shokri et al., 2017]. In the context of federated
learning, such attacks can be launched by malicious servers or
clients, leveraging access to intermediate model states or up-
dates to infer the privacy of training data [Nasr et al., 2019].

In federated learning, source inference attacks [Hu et al.,
2021; Hu et al., 2023; Li et al., 2025] go a step beyond mem-
bership inference by aiming to identify which client a spe-
cific training sample originated from. By correlating model
updates with client-specific data patterns, adversaries can de-
anonymize participants in the federation, which poses seri-
ous privacy risks. For example, in a federated learning sys-
tem for disease prediction, revealing that a particular hospital
contributed data for a rare condition could expose the hospi-
tal’s patient demographics or even individual patient identi-
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ties. Such attacks compromise not only data privacy but also
institutional confidentiality and trust in collaborative learn-
ing frameworks [Devakumar et al., 2020; Xu et al., 2020].
To launch such attacks, existing attacks [Hu et al., 2021;
Hu et al., 2023] leverage the observation that the local model
from the source client will produce higher prediction confi-
dences in predicting the target sample than the local models
from other clients, because the local model was trained to
minimize prediction loss on the target sample directly. Thus,
by identifying which client’s model has the smallest predic-
tion loss on the target sample, the server can infer its source
private information.

Although existing research on source inference attacks [Hu
et al., 2021; Hu et al., 2023] has demonstrated their fea-
sibility, most approaches focus on passive adversaries that
observe model updates without influencing the training pro-
cess. However, in practical federated learning deployments,
the server, often assumed to be semi-honest or even mali-
cious, can actively manipulate training dynamics to enhance
its attack capabilities [Nasr et al., 2019; Kumar et al., 2023;
Xie et al., 2022]. In fact, active server-side attacks are
common in many federated learning threat models, includ-
ing backdoor attacks [Bagdasaryan et al., 2020], poisoning
attacks [Tolpegin et al., 2020], and gradient inversion at-
tacks [Wei et al., 2025]. However, the impact of actively
launched source inference attacks by the server remains un-
derexplored. Investigating such active strategies can reveal
more severe and realistic privacy vulnerabilities that better re-
flect real-world risks. This highlights a critical research gap
in understanding the full extent of source leakage in federated
learning systems.

In this paper, we propose an enhanced source inference
attack in federated learning, demonstrating that a malicious
server can actively amplify the behavioral differences be-
tween the source client and other clients to more accurately
infer the origin of a specific training sample. Given a tar-
get sample, the server leverages gradient ascent to intention-
ally reduce the global model’s prediction confidence on that
sample during training. As a result, the source client’s local
model trained directly on the target sample to minimize its
loss continues to exhibit high prediction confidence. In con-
trast, other clients, which do not possess the target sample,
adapt their models based on the manipulated global model
and consequently produce much lower confidence scores. To
further enlarge this discrepancy, we apply data augmentation
techniques to generate multiple variants of the target sample,
which serve two purposes: guiding the global model to con-
sistently suppress prediction confidence across diverse inputs
and helping reveal more stable and distinguishable responses
from the source client. The motivation behind using data aug-
mentation is to enhance the model’s sensitivity to the pres-
ence or absence of the target sample in a client’s training data,
thereby increasing the effectiveness of the source inference.
Contributions. The main contributions are as follows:
• We propose an enhanced source inference attack in fed-

erated learning, demonstrating that a malicious server can
actively infer the source of data samples used during fed-
erated training. This active attack model reveals a more
severe privacy vulnerability in federated learning systems,

where the server, often assumed to be semi-trusted, can
deliberately manipulate training dynamics to compromise
client-level data anonymity.

• Our attack method introduces a novel combination of gra-
dient ascent and data augmentation to deliberately amplify
behavioral differences between the source client and non-
source clients, significantly outperforming existing passive
source inference attacks.

• We conduct extensive experiments across five representa-
tive federated learning frameworks using diverse datasets
and settings, and the results consistently validate the effec-
tiveness and superiority of our method compared to base-
line attacks, with our experimental findings demonstrating
superior results.

2 Related Work
Federated Learning. FL is a decentralized machine learn-
ing paradigm that enables multiple clients to collaboratively
train a global model without sharing their raw data [McMa-
han et al., 2017]. This design is motivated by increasing con-
cerns over data privacy, security regulations, and the need to
utilize sensitive data distributed across different sources [Li
et al., 2021a]. In a typical FL process, each client trains a
local model on its private dataset and sends model updates,
such as gradients or model parameters, to a central server.
The server then aggregates these updates to produce a new
global model, which is broadcast back to the clients for the
next training round. This process is repeated iteratively un-
til the global model converges. Communication is typically
structured in synchronous rounds, and only model updates,
not raw data, are exchanged. Various federated learning al-
gorithms have been proposed to improve convergence and
robustness, such as FedAvg [McMahan et al., 2017], which
performs weighted averaging of client updates; FedProx [Li
et al., 2020b], which addresses data heterogeneity by adding
a proximal term to the loss function; and FedNova [Wang et
al., 2020], which normalizes updates to handle varying local
training epochs. Other frameworks like SCAFFOLD [Karim-
ireddy et al., 2020] and FedDyn [Durmus et al., 2021] aim to
mitigate client drift and improve stability in non-IID settings.
Despite its privacy-preserving intent, FL remains vulnerable
to various attacks due to the exposure of model updates dur-
ing training.
Privacy Attacks. Although federated learning is designed
to protect raw data by keeping it on local devices, it remains
vulnerable to privacy attacks due to the exposure of model
updates during training [Lyu et al., 2020; Feng et al., 2024].
These updates can inadvertently leak sensitive information
about the underlying data, especially when models are over-
parameterized or data is non-IID. Membership inference at-
tacks aim to determine whether a specific data sample was
part of a client’s training set, potentially exposing participa-
tion in sensitive activities [Nasr et al., 2019]. Property in-
ference attacks go further by inferring statistical or seman-
tic properties of a client’s local dataset that are unrelated to
the main learning task, such as demographics or data dis-
tribution [Melis et al., 2019]. Gradient inversion attacks
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Figure 1: Overview of the proposed source inference attacks in federated learning. Given a data sample, the malicious server first uses data
augmentation techniques to create different augmented versions of the sample. Then, the server updates the global model with these samples
using gradient ascent. Last, the server sends back the updated global model to each of the clients.

attempt to reconstruct original input data from shared gra-
dients, often recovering surprisingly accurate visual or tex-
tual representations [Zhu et al., 2019; Zhao et al., 2020;
Geiping et al., 2020]. These attacks exploit the correlation
between gradient updates and the input samples that gener-
ated them.

Source inference attacks (SIAs) [Hu et al., 2021; Hu et al.,
2023; Li et al., 2025] build on the foundation of member-
ship inference attacks by not only identifying whether a sam-
ple was used in training but also determining which client
it came from. While membership inference focuses on data
presence, source inference shifts attention to data origin, re-
vealing a new dimension of privacy risk in federated learn-
ing. This source-level perspective has the potential to connect
with other privacy attacks, as knowing the source client can
enhance the precision or impact of attacks like property infer-
ence or gradient inversion. In fact, a stronger source inference
signal may serve as an indicator or enabler of stronger attacks
in other categories. Therefore, studying source inference at-
tacks provides a broader understanding of privacy vulnerabil-
ities and their interdependencies in FL systems.

3 Threat Model and Our Attack
3.1 Threat Model
Target FL Systems. We focus on horizontal FL frameworks,
where each client holds a complete set of features for differ-
ent data instances and collaboratively trains a global model.
In this setting, the training task is shared across clients with
similar feature spaces but different data samples. This aligns
with most existing works [Hu et al., 2021; Hu et al., 2023;
Li et al., 2025] on source inference attacks and is widely
adopted in real-world FL deployments. Although our work
centers on horizontal FL, vertical FL, where clients hold dif-
ferent features of the same data instances, is also a compelling
direction. In such cases, identifying which client owns a par-
ticular feature of a sample would present a different form of
source inference, which we leave for future exploration.
Attack Goal. The goal of a source inference attacker in FL
is to determine which client owns a specific training sample.

This threat is particularly concerning in applications where
the origin of the data carries sensitive or identifying infor-
mation. For example, in an FL-based image classification
task, revealing which client holds a sensitive image can di-
rectly compromise user privacy, especially when the image
content relates to personal identity, health, or location [Melis
et al., 2019]. Such attacks not only expose individual users
but can also breach organizational confidentiality in domains
like healthcare or finance.
Attack Knowledge. We assume the central server acts as the
adversary conducting SIAs in FL. While performing its stan-
dard role in coordinating the FL protocol and aggregating up-
dates to train the global model, the server simultaneously at-
tempts to infer the source client of specific training data based
on legitimate communications from the clients. These com-
munications may include gradient updates [McMahan et al.,
2017], model parameters [McMahan et al., 2017], or predic-
tion outputs on unlabeled data [Li and Wang, 2019]. The
server is also allowed to actively manipulate the training pro-
cess, such as altering model updates or objectives, to amplify
client, specific signals, provided that such manipulations do
not significantly degrade the final model utility.

In the SIA setting, the attacker is given a specific data in-
stance—referred to as the target record—which is assumed to
have already been identified as part of the training set through
a prior membership inference attack. Importantly, this work
does not focus on how the attacker obtains the target record,
which may be achieved through methods like gradient inver-
sion [Zhu et al., 2019; Geiping et al., 2020]; instead, we
investigate whether and how the source identity of such a
record can be inferred. An SIA is considered successful if
the server can correctly identify the client that contributed the
target record to the training process.

3.2 Our Attack
Figure 1 outlines the pipeline of our proposed Enhanced
Source Inference Attacks (ESIAs). Consider a target record,
z, that is utilized in the federated training process. In each
training iteration t, the server initially applies data augmen-
tation to z, yielding an augmented sample set denoted as
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Zaug = {z(1), z(2), . . . , z(n)}. After aggregating the global
model (potentially from client updates in a preceding step),
the server performs gradient ascent specifically on the tar-
get record z and its augmented counterparts Zaug. This op-
eration is designed to amplify the discrepancies in gradients
attributable to z across different clients, while also intention-
ally degrading the aggregated model’s performance on z and
Zaug. Following this, the server disseminates the updated gra-
dients (or the modified model reflecting these changes) to the
clients. These clients, in turn, update their local models based
on the received information and subsequently upload their lo-
cal model updates back to the server. Finally, the server con-
ducts a source inference analysis on z and Zaug, potentially
leveraging the distinct client model updates. The weighted
results derived from this inference process are then used to
determine the source client of the record z. The detailed de-
scription of the data augmentation and gradient ascent imple-
mentation is as follows.
Data Augmentation. Traditional SIAs identify the owner of
a target record z by evaluating the loss of each client’s model
on z, hypothesizing that the client with the smallest loss is
the owner. However, this approach is vulnerable to noise and
incidental factors. For example, a client without z in their
training data might still achieve a low loss on z due to simi-
larities with other records, leading to misidentification. To ad-
dress this limitation, we enhance SIAs by incorporating data
augmentation, leveraging the insight that a client genuinely
possessing z will exhibit consistently low losses not only on
z but also on its augmented variants.

We employ standard data augmentation techniques, such
as rotation, flipping, cropping, scaling, and noise addi-
tion, to generate diverse yet faithful variations of z. These
transformations produce an augmented dataset Zaug =

{z(1), z(2), . . . , z(n)}, where each z(i) is a perturbed version
of z. To ensure relevance, we control the magnitude of these
perturbations, balancing diversity (to capture a range of trans-
formations) and fidelity (to preserve similarity to z). This ap-
proach enhances the robustness of SIAs by evaluating client
models across z and Zaug, reducing the likelihood of false
positives.

Building on prior work [Hu et al., 2023], we formalize the
SIA framework with the following definitions:

• Q(θk, z) = Eτ [σ (f(z, θk, pτ ) + µβ)]: Probability that z
belongs to client k with model θk.

• Lpτ
(z) = −α log

(∫
e−

1
α l(t,z)pτ (t) dt

)
: Expected loss of

a general model not trained on z, where pτ (t) is the poste-
rior distribution of model parameters excluding z.

• l(θk, z): Loss of client k’s model θk on z (e.g., cross-
entropy loss).

• f(z, θk, pτ ) = 1
α (Lpτ

(z)− l(θk, z)): Inference score
measuring the loss difference, where a higher value sug-
gests z was in client k’s local training dataset.

Here, σ(x) = 1
1+e−x is the sigmoid function, µβ is a bias

term reflecting prior ownership probability, and α is a tem-
perature parameter controlling model stochasticity.

With data augmentation, we replace l(θk, z) with an aver-
aged loss over z and its augmentations:

laug(θk, z) =
1

n+ 1
(l(θk, z) +

n∑
i=1

l(θk, z
(i))), (1)

where z(0) = z is implicitly included by defining the average
over n + 1 terms (the original record plus n augmentations).
Similarly, the expected loss becomes:

Laug,pτ
(z) =

1

n+ 1
(Lpτ

(z) +
n∑

i=1

Lpτ
(z(i))). (2)

The refined inference score is then:

faug(z, θk, pτ ) =
1

α
(Laug,pτ

(z)− laug(θk, z)) . (3)

This averaging reduces variance in loss estimates, stabilizing
Q(θk, z) and improving the reliability of source inference.
By evaluating performance across z and Zaug, the attack more
accurately identifies the source client.
Gradient Ascent. In standard federated learning, gradient
descent optimizes model parameters by minimizing a loss
function, typically expressed as:

θ ← θ − η∇θℓ(θ), (4)

where θ denotes the model parameters, η is the learning rate,
and∇θℓ(θ) is the gradient of the loss ℓ. This process updates
model parameters to minimize prediction errors.

For ESIAs, we introduce gradient ascent on the global
model to amplify differences between clients with and with-
out the target sample z. Gradient ascent updates parameters
to increase the loss on specific data, formulated as:

θ ← θ + η∇θℓ(θ; z), (5)

where ℓ(θ; z) is the loss on z. After aggregating client up-
dates via FedAvg, the server applies gradient ascent on thetat
using both z and its augmented set Zaug:

θt ← θt + η∇θℓ(θt; z) + η′ · 1

|Zaug|
∑

z′∈Zaug

∇θℓ(θt; z
′). (6)

This adjustment deliberately degrades the global model’s per-
formance on z and its augmentations. The intent is to create
a contrast: clients lacking z in their training data receive a
global model ill-suited to z, while the client possessing z can
leverage local training to recover performance on z and Zaug.
In subsequent rounds, this client’s local model (θtk) exhibits
a lower average loss on z and Zaug, enhancing the attack’s
ability to identify them as the source.

3.3 ESIAs in FL Frameworks
We investigate ESIAs in five representative FL frameworks to
show the broader source privacy vulnerability in FL. Specif-
ically, we investigate SIAs in FedSGD [McMahan et al.,
2017], FedAvg [McMahan et al., 2017], FedMD [Li and
Wang, 2019], FedPer [Arivazhagan et al., 2019] and Fed-
Prox [Li et al., 2020b] where local clients upload gradients,
model parameters, or predictions on an unlabeled dataset to
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Algorithm 1 Enhanced SIAs in FedAvg

1: Server executes:
2: Initialize global model weights θ0
3: From target record z, generate augmented samples

Zaug = {z(1), z(2), . . . , z(n)}
4: for each round t = 1 to T do
5: for each client k ∈ {1, 2, . . . ,K} do
6: θtk ← ClientUpdate(θt−1)
7: end for
8: θt ←

∑K
k=1

n(k)

n θtk
9: θt ← θt+η·∇θℓ(θt; z)+η′· 1

|Zaug|
∑

z′∈Zaug
∇θℓ(θt; z

′)

10: for each client k ∈ {1, 2, . . . ,K} do
11: Compute ℓ̄tk = ℓ(θtk; z) +

1
|Zaug|

∑
z′∈Zaug

ℓ(θtk; z
′)

12: end for
13: i← argmink ℓ̄

T
k

14: end for
15: return θT , i
16: ClientUpdate(θ):
17: B ← Split local data Dk into batches of size B
18: for each local epoch i = 1 to E do
19: for each batch b ∈ B do
20: θ ← θ − η∇θℓ(b; θ)
21: end for
22: end for
23: return θ

the server. For clarity, we demonstrate the ESIAs algorithm
by taking the classic FedAvg framework, but the attack prin-
ciple applies to other FL frameworks.
Server Execution: At Line 2, the server randomly initializes
the global model weights θ0. At Line 3 it generates an aug-
mented sample set Zaug = {z(1), . . . , z(n)} from the target
record z. For each communication round t = 1, . . . , T , the
server first invokes ClientUpdate on each client (Lines 5–7)
to collect the local models {θtk}Kk=1. At Line 8 these are
aggregated via weighted averaging to form the new global
model θt. To perform the source inference attack, at Line 9
the server applies gradient ascent on θt with respect to both z
and all samples in Zaug, amplifying any differences in client-
specific gradient contributions. Finally, at Lines 10–12 the
server computes the average loss of each client’s local model
on z and Zaug, and at Line 13 identifies the source client
i = argmink ℓ̄

T
k . After T rounds, it returns the final global

model θT and the inferred client index i.
ClientUpdate(θ): Upon receiving parameters θ at Line 16,
each client k splits its local dataset Dk into mini-batches
of size B (Line 17). Over E local epochs (Lines 18–22),
it performs mini-batch SGD: for each batch b, it updates
θ ← θ − η∇θℓ(b; θ). After completing all epochs, at Line 23
the client returns the updated model parameters to the server.
Computational Complexity: Let D be the dimension of the
model, |Dk| the size of client k’s dataset, and n = |Zaug|.

• Local cost per client per round = O(E × |Dk|
B ×D),

• Server augmentation cost per round = O ((n+ 1)×D),
• Server loss-evaluation cost per round = O(K×(n+1)×D).

Over T rounds, the total time complexity is
O(T

[
KE |Dk|

B D + (n + 1)D + K(n + 1)D
]
).

Space complexity is dominated by storing the model (O(D))
and the augmented samples (O(n · dim(z))).

4 Experiment
In this section, we conduct a comprehensive evaluation of the
ESIAs across various FL frameworks. Our experiments aim
to assess the effectiveness, robustness, and generalizability of
ESIAs in different settings. We compare our approach with
baseline attacks in existing works, analyzing performance
based on key evaluation metrics to demonstrate its advantages
and practical implications.

4.1 Experiment Settings

Dataset # of Records # of Classes Dimension of records
Synthetic 100k 10 60
MNIST 70k 10 1x28x28
CIFAR-10 60k 10 3x32x32
FEMNIST 80k 62 1x28x28
CIFAR-100 60k 100 3x32x32
Purchase 197.3k 100 600

Table 1: Summary of datasets used in experiments.

We follow the experimental setup with previous work [Hu
et al., 2021; Hu et al., 2023], adopting standard configura-
tions for datasets, models, and metrics to ensure consistency
and comparability.
Datasets. The datasets used in our experiments are summa-
rized in Table 1. To precisely control data heterogeneity, we
create an independent and identically distributed (IID) syn-
thetic dataset. Additionally, we use widely adopted datasets,
including MNIST [McMahan et al., 2017], CIFAR-10 [Smith
et al., 2017], FEMNIST [Caldas et al., 2018], and CIFAR-
100 [Bonawitz et al., 2019], which serve as standard bench-
marks to evaluate privacy leakage in federated learning.
Metrics. We evaluate ESIAs using the attack success rate
(ASR), defined as the ratio of successful attacks to the total
number of attacks, which quantifies the attack effectiveness.
Hyperparameter Settings. We configure the experiments as
follows. For optimizer, we use Stochastic Gradient Descent
with a learning rate of 0.01. We simulate 10 clients in fed-
erated learning, each with 100 target records for ESIAs. The
communication rounds is set to 20, which is sufficient for en-
suring global model convergence.
Factors Influencing ESIAs. Two key factors impact the ef-
fectiveness of ESIAs: the degree of data distribution hetero-
geneity and the number of local training epochs.
• Data Distribution α. In FL, client data is often non-IID. To
simulate this, we use a Dirichlet distribution parameterized
by α. Larger α values (e.g., 100) result in more homoge-
neous client data distributions, while smaller α values (e.g.,
0.1) lead to highly skewed distributions.
• Local Training Epochs E. The number of local training
epochs affects model retention. For FedSGD, we set E = 1,
meaning only one local update per communication round. For
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The ASR (%)
Datasets α = 100 α = 1 α = 0.1

ESIAs ASI SIAs RG ESIAs ASI SIAs RG ESIAs ASI SIAs RG

FedSGD
Synthetic 21.3 20.2 19.1 10.0 37.8 33.5 30.9 10.0 67.4 60.2 55.9 10.0
Purchase 18.2 16.6 15.7 10.0 38.4 32.7 30.6 10.0 73.5 67.2 63.9 10.0
MNIST 14.5 13.1 12.7 10.0 30.8 22.8 23.1 10.0 68.5 55.7 50.2 10.0
CIFAR-10 19.6 16.8 17.6 10.0 33.7 31.4 28.5 10.0 71.4 63.8 58.3 10.0

FedAvg
Synthetic 24.8 22.4 18.9 10.0 34.3 30.1 28.5 10.0 65.7 54.6 51.7 10.0
Purchase 31.6 30.1 28.2 10.0 40.9 35.3 34.8 10.0 78.3 69.4 66.2 10.0
MNIST 17.3 15.2 13.5 10.0 28.2 23.2 22.1 10.0 63.7 53.8 42.3 10.0
CIFAR-10 56.7 53.6 51.1 10.0 62.8 57.3 55.8 10.0 74.3 66.1 62.5 10.0

Table 2: The comparison study with ASI, SIAs and RG.

other FL frameworks, we use multiple local epochs, allowing
models to capture local data patterns effectively.
Comparison Methods: To evaluate the effectiveness of the
proposed ESIAs, we compare it with three existing baseline
source inference methods: Randomly Guessing (RG), SIAs
and Active Source Inference (ASI) [Zhang and Xia, 2024].
• RG. This straightforward baseline operates by randomly se-
lecting a client as the source of a target record. Its expected
ASR is 1/K, where K represents the number of clients.
Although simple and rudimentary, RG establishes a lower
bound for attack performance. However, its effectiveness
diminishes significantly as the number of clients increases,
making it a minimal benchmark for comparison.
• SIAs. We adopt the approach proposed by Hu et al. [Hu et
al., 2023] as a foundational baseline. As a pioneering method
in source inference attacks, SIAs have gained widespread
adoption in related research. This technique provides a re-
liable and standard benchmark for evaluating attack perfor-
mance, offering a consistent point of reference across studies.
• ASI. The Active Source Inference combines label flipping
with supervised learning to exploit client-specific discrepan-
cies in federated learning. By deliberately corrupting a sub-
set of target data through label flips at the server, ASI trig-
gers distinct test loss patterns in the global model for the
source client. A supervised attack model, trained on these
loss patterns, delivers high-precision source inference with
minimal computational cost. While this approach introduces
slight degradation in model performance, ASI consistently
surpasses the other baselines, underscoring its superior effec-
tiveness in source inference tasks.

4.2 Comparison Study
As illustrated in Table 2, the ASR of SIAs consistently sur-
passes the 10% random guessing baseline across all commu-
nication rounds and datasets, underscoring their effectiveness
in deducing source information from training data records. In
contrast, our proposed ESIAs exhibit superior performance,
achieving elevated ASR across all evaluated scenarios. This
improvement is driven by the integration of data augmenta-
tion and gradient ascent techniques, which enhance the distin-
guishability of source signals in target records across distinct
clients, thereby strengthening the inference capabilities.

Moreover, ESIAs consistently outperforms the ASI method
across all datasets. While ASI employs a label-flipping ap-
proach that amplifies source signals to a certain extent, our

strategy, combining data augmentation with gradient ascent,
demonstrates greater efficacy in achieving this objective. A
key advantage of ESIAs lies in their adaptability, offering
precise control over the trade-off between attack success and
model utility. This is accomplished by adjusting the gradi-
ent ascent learning rate and the degree of data augmentation.
For example, within the FedAvg framework with α = 0.1 on
the Synthetic dataset, standard training yields a model accu-
racy of 91.65%. In comparison, our ESIA method achieves
an accuracy of 88.51%, while ASI records 86.32%. By fine-
tuning the gradient ascent learning rate and the scope of data
augmentation, ESIA can elevate model accuracy to 90.87%,
albeit with a reduction in ASR from 65.7% to 61.4%. Nev-
ertheless, this adjusted ASR still exceeds the performance
of ASI. Variations in ASR are observed across different FL
frameworks and datasets, primarily due to disparities in the
degree of local model overfitting to their respective training
data. These differences and their wider implications will be
elaborated upon in subsequent sections of this study.

4.3 Ablation Study
To systematically evaluate the influence of data distribution
and the number of local training epochs on the effective-
ness of ESIAs, we performed a comprehensive ablation study
across several FL frameworks: FedSGD, FedAvg, FedMD,
FedPer, and FedProx. Given that FedPer and FedProx are
specifically designed to address non-IID data scenarios, we
restricted our analysis of local training epochs to non-IID
conditions. During the training process, we tracked and re-
ported the highest ASR observed for each configuration. Due
to its design, SIA in FedSGD (i.e., FedSGD-ESIA) is lim-
ited to a single local training epoch (E=1) per communication
round, with results for higher epochs (e.g., E=5 or E=10) un-
available and marked as “–” in the tables.
Impact of Local Training Epochs. As illustrated in Ta-
ble 3, an increase in the number of local training epochs
(E) generally enhances the ASR for frameworks such as
FedAvg-ESIA and FedMD-ESIA. For instance, in FedAvg-
ESIA with α = 0.1, the ASR on the Purchase dataset rises
from 73.2% to 78.3% as E increases. This improvement can
be attributed to the strengthened confidence of local mod-
els resulting from prolonged training on client-specific data.
However, this trend is not consistent across all cases. On the
MNIST dataset, for example, the ASR declines from 67.5%
to 63.7% with extended training. This reduction stems from
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The ASR (%) of ESIAs
Datasets α = 100 α = 1 α = 0.1

E = 1 E = 5 E = 10 E = 1 E = 5 E = 10 E = 1 E = 5 E = 10

FedSGD-ESIA
Synthetic 21.3 – – 37.8 – – 67.4 – –
Purchase 18.2 – – 38.4 – – 73.5 – –
MNIST 14.5 – – 30.8 – – 68.5 – –
CIFAR-10 19.6 – – 33.7 – – 71.4 – –

FedAvg-ESIA
Synthetic 22.4 23.3 24.8 33.5 32.1 34.3 66.8 64.4 65.7
Purchase 19.8 24.9 31.6 37.4 41.2 40.9 73.2 71.2 78.3
MNIST 16.6 16.2 17.3 26.7 27.1 28.2 67.5 65.2 63.7
CIFAR-10 19.5 52.5 56.7 28.4 55.6 62.8 68.8 70.9 74.3

FedMD-ESIA FEMNIST 16.4 18.5 19.1 24.6 26.2 26.8 52.7 55.1 58.6
CIFAR-100 21.2 22.1 24.9 27.3 29.4 31.5 49.6 54.2 57.9

Table 3: The ablation study on data distribution and local epochs.

The ASR (%) of ESIAs
Datasets α = 0.1

E = 1 E = 5 E = 10

FedPer-ESIA
Synthetic 65.3 69.2 73.8
Purchase 68.9 72.6 77.3
MNIST 61.6 65.1 71.7
CIFAR-10 60.3 64.5 68.8

FedProx-ESIA
Synthetic 34.6 36.8 40.8
Purchase 45.2 48.3 51.4
MNIST 38.4 41.5 42.3
CIFAR-10 42.0 44.3 47.3

Table 4: ESIAs in FedPer and FedProx.

The ASR (%)
Dataset α = 0.1, E = 10

SIAs GA DA ESIAs

FedAvg
Synthetic 51.7 55.6 61.4 65.7
Purchase 66.2 69.8 72.6 78.3
MNIST 42.3 44.7 60.1 63.7
CIFAR-10 62.5 67.3 72.5 74.3

Table 5: The ablation study of GA and DA.

a dual effect: while prolonged training improves the fit to lo-
cal data, it also enhances generalization to data from other
clients, thereby reducing the disparities in prediction losses
across clients and weakening the effectiveness of ESIAs.

Further analysis, presented in Table 4, reveals divergent
behaviors between FedPer and FedProx under non-IID con-
ditions. FedPer’s personalized sub-models, which prioritize
adaptation to local data, achieve higher ASR by capturing
client-specific patterns. Conversely, FedProx imposes regu-
larization constraints that penalize deviations of local models
from the global model, promoting generalization and reduc-
ing overfitting. This results in smaller prediction loss dif-
ferences across clients, slightly compromising local perfor-
mance but significantly mitigating the vulnerability to ESIAs
by limiting global model overfitting.
Impact of Non-IID Data Distribution. The degree of non-
IID data distribution among clients markedly affects ESIA
performance, as evidenced in Table 3. Across all frameworks
and datasets, ASR increases as the non-IID characteristics be-
come more pronounced. In highly non-IID settings, clients
often hold training data predominantly from a single class,
leading to local models that exhibit minimal prediction loss
on their own data but substantial loss on data from other
clients. These pronounced differences in prediction losses

across clients enable the server to effectively execute ESIAs,
accurately inferring the source of a given training record.
ESIA Components. By comparing Gradient Ascent (GA)
and Data Augmentation (DA), the ablation study on core
ESIA mechanisms indicates that DA is significantly more ef-
fective than GA in revealing client source information (see
Table 5). The reason is that GA requires SIAs to identify
clients that perform robustly on both the target record and
its variants, thereby enhancing the stability of SIAs. This
emphasis on robust identification is key to improving SIA’s
overall success rate.

In FL, factors like Non-IID data lead to local model over-
fitting. This occurs because models prioritize client-specific
patterns, undermining global generalization. Such overfit-
ting creates unique local behaviors that ESIAs exploit through
data augmentation and gradient ascent to pinpoint the client
tied to target records, posing a privacy threat.

5 Future Work
Despite its idealized and rare practical occurrence, enhanc-
ing ESIA ASR under IID assumptions remains worthy of in-
depth study. We posit that relying solely on inferences from
single prediction outcomes of a target record across various
clients yields insufficient source information to accurately
pinpoint its origin client. Therefore, considering other data
types is necessary to expand source information dimensions.
For instance, pre-classifying target data records using spatio-
temporal features (e.g., time, location) can help aggregate
records likely belonging to the same source client. This ap-
proach is promising in specific fields like healthcare, such as
identifying clustered abnormal physiological indicators dur-
ing a rare disease outbreak in a specific region, or tracking
localized drug prevalence within a healthcare system.

6 Conclusion
In this paper, we propose enhanced source inference attacks
using data augmentation and gradient ascent, significantly
improving the ASR. ESIAs effectively exploit client-side tar-
get record disparities and adapt to varied data distributions
in federated learning. Experimental results validate our ap-
proach’s superiority over existing methods, showing substan-
tial increases in attack success rates and highlighting the crit-
ical need for stronger privacy-preserving mechanisms in FL.
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ter, Hannah Dröge, and Michael Moeller. Inverting
gradients-how easy is it to break privacy in federated learn-
ing? Advances in neural information processing systems,
33:16937–16947, 2020.

[Hu et al., 2021] Hongsheng Hu, Zoran Salcic, Lichao Sun,
Gillian Dobbie, and Xuyun Zhang. Source inference at-
tacks in federated learning. In 2021 IEEE International
Conference on Data Mining (ICDM), pages 1102–1107.
IEEE, 2021.

[Hu et al., 2023] Hongsheng Hu, Xuyun Zhang, Zoran Sal-
cic, Lichao Sun, Kim-Kwang Raymond Choo, and Gillian
Dobbie. Source inference attacks: Beyond membership in-
ference attacks in federated learning. IEEE Transactions
on Dependable and Secure Computing, 21(4):3012–3029,
2023.

[Jin et al., 2025] Di Jin, Yujun Zhang, Bingdao Feng, Xi-
aobao Wang, Dongxiao He, and Zhen Wang. Backdoor
attack on propagation-based rumor detectors. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 39, pages 17680–17688, 2025.

[Karimireddy et al., 2020] Sai Praneeth Karimireddy,
Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebas-
tian Stich, and Ananda Theertha Suresh. Scaffold:
Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pages
5132–5143. PMLR, 2020.

[Khodak et al., 2021] Mikhail Khodak, Renbo Tu, Tian Li,
Liam Li, Maria-Florina F Balcan, Virginia Smith, and
Ameet Talwalkar. Federated hyperparameter tuning:
Challenges, baselines, and connections to weight-sharing.
Advances in Neural Information Processing Systems,
34:19184–19197, 2021.

[Kumar et al., 2023] Kummari Naveen Kumar,
Chalavadi Krishna Mohan, and Linga Reddy Cenkera-
maddi. The impact of adversarial attacks on federated
learning: A survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 46(5):2672–2691,
2023.

[Li and Wang, 2019] Daliang Li and Junpu Wang. Fedmd:
Heterogenous federated learning via model distillation.
arXiv preprint arXiv:1910.03581, 2019.

[Li et al., 2020a] Tian Li, Anit Kumar Sahu, Ameet Tal-
walkar, and Virginia Smith. Federated learning: Chal-
lenges, methods, and future directions. IEEE Signal Pro-
cessing Magazine, 37(3):50–60, 2020.

[Li et al., 2020b] Tian Li, Anit Kumar Sahu, Manzil Zaheer,
Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Pro-
ceedings of Machine Learning and Systems, 2:429–450,
2020.

[Li et al., 2021a] Qinbin Li, Zeyi Wen, Zhaomin Wu, Sixu
Hu, Naibo Wang, Yuan Li, Xu Liu, and Bingsheng He.
A survey on federated learning systems: vision, hype and
reality for data privacy and protection. IEEE Transactions
on Knowledge and Data Engineering, 2021.

[Li et al., 2021b] Tian Li, Shengyuan Hu, Ahmad Beirami,
and Virginia Smith. Ditto: Fair and robust federated learn-
ing through personalization. In International conference
on machine learning, pages 6357–6368. PMLR, 2021.

[Li et al., 2025] Jiaxin Li, Marco Arazzi, Antonino Nocera,
and Mauro Conti. Subject data auditing via source infer-
ence attack in cross-silo federated learning. Journal of In-
formation Security and Applications, 90:104034, 2025.

[Lyu et al., 2020] Lingjuan Lyu, Han Yu, and Qiang Yang.
Threats to federated learning: A survey. arXiv preprint
arXiv:2003.02133, 2020.

[Lyu et al., 2022] Lingjuan Lyu, Han Yu, Xingjun Ma, Chen
Chen, Lichao Sun, Jun Zhao, Qiang Yang, and S Yu
Philip. Privacy and robustness in federated learning: At-
tacks and defenses. IEEE transactions on neural networks
and learning systems, 2022.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[McMahan et al., 2017] Brendan McMahan, Eider Moore,
Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-efficient learning of deep networks
from decentralized data. In International Conference on
Artificial Intelligence and Statistics, pages 1273–1282.
PMLR, 2017.

[Melis et al., 2019] Luca Melis, Congzheng Song, Emiliano
De Cristofaro, and Vitaly Shmatikov. Exploiting unin-
tended feature leakage in collaborative learning. In 2019
IEEE Symposium on Security and Privacy (S&P), pages
691–706. IEEE, 2019.

[Nasr et al., 2019] Milad Nasr, Reza Shokri, and Amir
Houmansadr. Comprehensive privacy analysis of deep
learning: Passive and active white-box inference attacks
against centralized and federated learning. In 2019 IEEE
symposium on security and privacy (S&P), pages 739–
753. IEEE, 2019.

[Shokri et al., 2017] Reza Shokri, Marco Stronati, Con-
gzheng Song, and Vitaly Shmatikov. Membership infer-
ence attacks against machine learning models. In 2017
IEEE symposium on security and privacy (S&P), pages 3–
18. IEEE, 2017.

[Smith et al., 2017] Virginia Smith, Chao-Kai Chiang,
Maziar Sanjabi, and Ameet S Talwalkar. Federated
multi-task learning. Advances in neural information
processing systems, 30, 2017.

[Tolpegin et al., 2020] Vale Tolpegin, Stacey Truex,
Mehmet Emre Gursoy, and Ling Liu. Data poisoning
attacks against federated learning systems. In Computer
security–ESORICs 2020: 25th European symposium on
research in computer security, ESORICs 2020, guildford,
UK, September 14–18, 2020, proceedings, part i 25, pages
480–501. Springer, 2020.

[Wang et al., 2020] Jianyu Wang, Qinghua Liu, Hao Liang,
Gauri Joshi, and H Vincent Poor. Tackling the objective in-
consistency problem in heterogeneous federated optimiza-
tion. Advances in neural information processing systems,
33:7611–7623, 2020.

[Wang et al., 2022] Zhibo Wang, Yuting Huang, Mengkai
Song, Libing Wu, Feng Xue, and Kui Ren. Poisoning-
assisted property inference attack against federated learn-
ing. IEEE Transactions on Dependable and Secure Com-
puting, 2022.

[Wei et al., 2025] Jiaheng Wei, Yanjun Zhang, Leo Yu
Zhang, Chao Chen, Shirui Pan, Kok-Leong Ong, Jun
Zhang, and Yang Xiang. Extracting private training data
in federated learning from clients. IEEE Transactions on
Information Forensics and Security, 2025.

[Xie et al., 2022] Yuanyuan Xie, Bing Chen, Jiale Zhang,
and Wenjuan Li. Algans: Enhancing membership infer-
ence attacks in federated learning with gans and active
learning. In 2022 IEEE International Symposium on Prod-
uct Compliance Engineering-Asia (ISPCE-ASIA), pages
1–6. IEEE, 2022.

[Xu et al., 2020] Yongchao Xu, Liya Ma, Fan Yang, Yanyan
Chen, Ke Ma, Jiehua Yang, Xian Yang, Yaobing Chen,

Chang Shu, Ziwei Fan, et al. A collaborative online ai
engine for ct-based covid-19 diagnosis. medRxiv, 2020.

[Zhang and Xia, 2024] Lening Zhang and Hui Xia. Active
source inference attack based on label-flipping in federated
learning. In 2024 IEEE 23rd International Conference on
Trust, Security and Privacy in Computing and Communi-
cations (TrustCom), pages 1675–1680. IEEE, 2024.

[Zhao et al., 2020] Bo Zhao, Konda Reddy Mopuri, and
Hakan Bilen. idlg: Improved deep leakage from gradients.
arXiv preprint arXiv:2001.02610, 2020.

[Zhou et al., 2022] Chunyi Zhou, Yansong Gao, Anmin Fu,
Kai Chen, Zhiyang Dai, Zhi Zhang, Minhui Xue, and
Yuqing Zhang. Ppa: Preference profiling attack against
federated learning. In Network and Distributed Systems
Security Symposium 2022. Internet Society, 2022.

[Zhu et al., 2019] Ligeng Zhu, Zhijian Liu, and Song Han.
Deep leakage from gradients. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


