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Abstract

In modern wireless networks, user mobility model-
ing plays a pivotal role in learning-based network
optimization, particularly in tasks such as user as-
sociation and resource allocation. Traditional ran-
dom mobility models, e.g., random waypoint and
Gauss Markov model, often fail to accurately cap-
ture the distribution patterns of users within real-
world areas. While trace-based mobility models
and advanced learning-based trajectory generation
methods offer improvements, they are frequently
limited by the scarcity of real-world trajectory data
in target areas, primarily due to privacy concerns.
This paper introduces Map2Traj, a novel zero-shot
trajectory generation method that leverages the dif-
fusion model to capture the intrinsic relationship
between street maps and user mobility. With solely
the street map of an unobserved area, Map2Traj
generates synthetic user trajectories that closely re-
semble the real-world ones in trajectory pattern and
spatial distribution. This enables the creation of
high-fidelity individual user channel states and an
accurate representation of the overall network user
distribution, facilitating effective wireless network
optimization. Extensive experiments across multi-
ple regions in Xi’an and Chengdu, China demon-
strate the effectiveness of our proposed method for
zero-shot trajectory generation. A case study ap-
plying Map2Traj to user association and load bal-
ancing in wireless networks is also presented to val-
idate its efficacy in network optimization.

1 Introduction

With the long-term evolution of cellular networks in terms
of heterogeneity, density, and multi-band usage, the accu-
racy of user mobility modeling has become increasingly cru-
cial for performance evaluation and optimization of wireless
communication networks. In the realm of learning-based net-
work optimization, involving resource management [Naderi-
alizadeh er al., 2021], user association [Gupta er al., 2024],
and edge computing [Xu et al., 2023], user mobility models
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stand as the cornerstone for constructing virtual environments
and digital twins [Tao et al., 2024] for training artificial in-
telligence (AI) models, for instance, the deep reinforcement
learning (DRL) agents.

Most existing network optimization studies [Zhao et al.,
2019; Gupta et al., 2021; Jia and Wang, 2023] employed ran-
dom mobility models, typically the random waypoint model
[Johnson and Maltz, 1996] and the Gauss Markov model
[Liang and Haas, 19991, to represent user mobility patterns.
While these models can partially simulate user movement,
their direct adherence to random probability distributions
causes a significant mismatch in the spatial distribution of
users compared to real-world scenarios. This mismatch can
lead to considerable performance degradation when deploy-
ing these models in practice [Feriani and Hossain, 2021]. Al-
though this issue can be alleviated by incorporating real trace-
based mobility models to some extent, user trajectories are
often unfortunately inaccessible due to data acquisition costs
and privacy concerns [Tabassum et al., 2019].

In recent years, Al models such as generative adversar-
ial network (GAN) [Goodfellow et al., 2020] and diffusion
model [Ho er al., 2020] have been applied to trajectory gen-
eration with promising results [Zhu er al., 2023b]. However,
these methods typically require a substantial number of real
trajectories to learn the specific trajectory distribution within
a given area, creating a paradox. That is, Al models struggle
to capture user mobility without ample real trajectories, yet
when real data becomes sufficient to create trace-based mo-
bility models, the Al models tend to be redundant for wireless
network optimization.

Inspired by zero-shot image generation [Ramesh et al.,
2021], which enables the creation of images from descrip-
tions unseen during training, we try to devise a similar ap-
proach for trajectory generation. This method, termed zero-
shot trajectory generation, aims to generate realistic user
trajectories for unobserved areas. The question arises: Is
there some form of auxiliary data that is both readily accessi-
ble and closely related to real user trajectories, akin to the re-
lationship between texts and images? Our answer is the street
map, which is usually open-source and available on platforms
like OpenStreetMap'. Street maps exhibit a strong correla-
tion with user trajectories as illustrated in Figure 1, including

'https://www.openstreetmap.org/
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Figure 1: Correlation between street map and user trajectories

a street map for a specific area, 100 trajectories in this area,
each assigned a color, and a heatmap of the trajectory distri-
bution. This correlation forms the foundation of our proposed
methodology, which uses street maps as pilots in trajectory
generation.

Building on these motivations and the observed correla-
tion, we propose a street-Map-pilot zero-shot Trajectory
generation (Map2Traj) method. With solely a street map
input, Map2Traj generates synthetic user trajectories simi-
lar to real ones in both trajectory pattern and spatial dis-
tribution. Such similarities are pivotal for optimizing wire-
less networks, as they enable learning-based methods, e.g.,
DRL, trained in Map2Traj-based environments to be effec-
tively deployed in real-world scenarios with minimal perfor-
mance degradation caused by mobility discrepancy. To sum-
marize, the contributions of this work are as follows.

* We develop the Map2Traj method for zero-shot trajec-
tory generation, leveraging the diffusion model to gen-
erate real-world user trajectories solely based on street
maps. To the best of our knowledge, this is the first work
to achieve zero-shot trajectory generation, especially for
mobile users in wireless networks.

We validate the efficacy of Map2Traj through compre-
hensive experiments, proving that our method can gen-
erate high-fidelity trajectories for areas beyond the train-
ing set, with considerable similarity to real trajectories in
both trajectory pattern and spatial distribution.

* We examine the efficacy of Map2Traj in a network
optimization task, specifically the user association and
load balancing in a multi-cell and multiuser wireless
communication network. The results indicate that the
Map2Traj-based mobility model significantly outper-
forms traditional random mobility models and exhibits
nearly the same efficacy as the model using real trajec-
tories.

2 Related Work

Before introducing our proposed method, we review related
works on trajectory generation and analyze the limitations
that prevent these methods from achieving zero-shot trajec-
tory generation in wireless network optimization.

Initially, trajectory generation methods were developed to
synthesize mobility data and safeguard the privacy of data
providers. Liu et al. [Liu et al., 2018] first proposed to use
GANSs for trajectory generation, albeit without providing a

detailed approach. TrajGAIL [Zhang et al., 2020] employed
generative adversarial imitation learning (GAIL), combining
DRL and GAN to generate trajectories through a series of
next-location predictions. TrajGen [Cao and Li, 2021] trans-
formed trajectories into images and used a deep convolutional
GAN (DCGAN) to generate virtual trajectory images. TS-
TrajGen [Jiang et al., 2023] integrated GAN with the mobil-
ity analysis method, including the A* algorithm and mobil-
ity yaw reward, to enhance the model performance. DiffTraj
(SynMob) [Zhu et al., 2023a; Zhu et al., 2023b] applied a dif-
fusion model to generate synthetic trajectories while preserv-
ing spatial-temporal features extracted from real trajectories.
These studies have demonstrated commendable performance
in generating privacy-preserving synthetic trajectories.

However, these methods fall short when it comes to zero-
shot trajectory generation for unobserved new areas. Specif-
ically, TrajGAIL simply samples actions from generated ac-
tion probability distribution and constructs trajectory autore-
gressively, without the capacity to introduce data from new
areas. Although TrajGen uses street map data to filter and cal-
ibrate generated trajectories through map matching [Newson
and Krumm, 2009], the generated trajectories adhere to the
training set distribution, rather than that in new areas. Build-
ing further upon TrajGen, TS-TrajGen utilizes street maps to
select and construct the best continuous trajectory with the A*
algorithm. This process, however, remains confined to trajec-
tories that adhere to the original distribution. Alternatively
in a conditional generation manner, DiffTraj employs the dif-
fusion model and incorporates prior knowledge of trip data,
such as the travel time, average speed, and distance. While
these complementary knowledge do improve generation per-
formance, they do not enable the transfer of trajectory gener-
ation to new areas.

In contrast to these approaches, our Map2Traj method inte-
grates the street map with complete information into the tra-
jectory generation process via a diffusion model. Our train-
ing set encompasses a diverse range of trajectories and cor-
responding street maps from various areas, instead of area-
specific trajectories, allowing the model to learn the intrin-
sic relationship between street maps and trajectories. These
innovations endow our model with the unique capability for
zero-shot trajectory generation. A comparative analysis of
our method against existing works is detailed in Table 1.

3 Preliminary

Map2Traj is primarily designed for wireless network opti-
mization and differs from conventional trajectory generation
approaches in important ways. Specifically, it focuses on the
fidelity of trajectory pattern and spatial distribution, which
are critical for shaping both individual user channel states
and overall network user distribution. In terms of traffic pat-
terns, this paper concentrates on heavy-load traffic scenarios,
e.g., the rush hour, where network optimization is required
to address potential congestion and load imbalances. Addi-
tionally, given the spatial consistency of wireless channels
[Huang et al., 2022], fine-grained trajectory details are less
critical, especially for large-scale network optimization tasks
such as user association and resource allocation. As a result,
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DiffTraj (NIPS) Diffusion model

Trajectories + trip data

Noise + trip data

Method \ Model \ Training data | Inference data | Zero-shot generation
TrajGAIL (ICDM) GAIL Trajectories Random sampling X
TrajGen (KDD) DCGAN Trajectories + maps Noise + maps X
TS-TrajGen (AAAI) GAN Trajectories + maps Noise + maps X
X
4

Map2Traj (Proposed) | Diffusion model

Trajectories + maps

Noise + maps

Table 1: Comparison of trajectory generation methods
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Figure 2: Map2Traj framework.

this paper discretizes the trajectory within a 1.92 kmx1.92
km region into a 192x 192 image, emphasizing macroscopic
location changes. Nevertheless, the proposed method is ap-
plicable to other traffic patterns, such as those in mid-night,
and is scalable to larger areas (e.g., 256x256). Relevant ex-
periments and results are provided in the technical appendix.
We now define the key terms and notations used in this paper.

Trajectory: In this paper, the trajectory is defined by
a series of coordinates {cy,ca,...,c,} restricted in a 1.92
kmx1.92 km urban area, where each c; represents a 10-
meter-spaced point. This discrete trajectory sequence can
be easily transformed into a 192x192 image, denoted by I,
for further processing, while the sequence can also be recon-
structed from the image [Endo et al., 2016].

Street Map: A street map is conventionally denoted as a
graph, where edges correspond to road segments and nodes to
road junctions. To align with the trajectories, we also convert
each street map into an image of the same 192x 192 dimen-
sion, denoted by m.

Problem Statement: The training set includes a set of
street maps M = {m!, m? ...} and corresponding sets
of real-world trajectories 7 = {£',£?,...}. Each L' =
{11,172, .} is a set of real trajectories within the area
of the street map m’. The objective of zero-shot trajectory
generation is to develop a generative model trained on this
training set. For an unobserved street map m° ¢ M, this
model should be capable of generating synthetic trajectories
that closely resemble real ones in trajectory pattern and spa-
tial distribution, as well as have an efficacy close to that of
real trajectories in network optimization.

4 The Map2Traj Approach

The key to zero-shot learning is to associate observed and un-
observed objects through some form of auxiliary information,
which encodes the inherent properties of objects [Xian et al.,
2017]. In our study, the objects are trajectories following dif-
ferent area-specific distributions, while the auxiliary informa-
tion is the street map. By learning the relationship between
trajectories and maps from extensive training data, Map2Traj
generates synthetic trajectories for unobserved areas based on
the street map, i.e., the zero-shot trajectory generation.

In particular, our Map2Traj approach is based on the dif-
fusion model, consisting of a forward diffusion process and
a reverse diffusion process (denoising) for generation. By
integrating trajectories from various areas and utilizing rele-
vant street maps as conditional inputs, Map2Traj extends the
original single target distribution in diffusion model into mul-
tiple area-specific target distributions corresponding to given
street maps. As a result, Map2Traj can estimate the trajectory
distribution through an unobserved street map and generate
synthetic trajectories that conform to this distribution through
sampling. The entire process is illustrated in Figure 2. For
subsequent network optimization, the generated image under-
goes post-processing to reconstruct the trajectory sequence.

4.1 Forward Diffusion Process

The forward diffusion process in Map2Traj is a Markovian
process that iteratively adds Gaussian noise N (+) to a trajec-
tory data Iy =l over T time steps:

qlir1 [ 1) =N (lig1; Vs, (1 — o) T), (1)

T
g o) =] a@ [ l), )
t=1

where o, fort = 1,2,...,T are hyper-parameters of the
noise schedule, and N'(x;u, o) represents the normal dis-
tribution of mean p and covariance o that produces x. The
forward process with o is constructed to make [ virtually
indistinguishable from Gaussian noise at the 7-th step. The
forward process at the ¢-th step can also be marginalized as
follows:

q(lt | lO) :N(lta\/’%l()v(l _Wt) I)a (3)
where v, = szl «;. Additionally, the parameterization

of the Gaussian distribution of the forward process allows a
closed-form formulation of the posterior distribution of 1;_;
given (1o, 1;). It follows

gLy [0, l) =N (L—y; p, 0°T) )
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4.2 Reverse Diffusion Process
In Map2Traj, the reverse diffusion process, also known as the
denoising process, is formulated as follows:

T
po (lo.r | m) =p(r) [[pe (leer | L,m),  (5)
t=1

where p(lr) = N(l7;0,I). Map2Traj undergoes training
and performs inference through the reverse diffusion process.
Training
Given a noisy trajectory I, sampling from Eq. (3), we have

lt:\/’%l()‘k\/l*'ytea ENN(OaI) (6)
where the goal is to recover the target trajectory ly. Our neu-
ral network model is parameterized by fg(m,l;,t), condi-
tioned on the street map m, a noisy trajectory l;, and the
noise level indicated by the time step ¢. Training of Map2Traj
involves predicting the noise vector € by minimizing the mean
squared error loss. That is,

i B 11 fo(m, ilo + VT =0, ) — €. (D)

L

Inference

The sampling process of the diffusion model starts at pure
Gaussian noise I, followed by T refinement steps. Given
any noisy trajectory l;, we can approximate the target trajec-
tory by rearranging the terms in Eq. (6) as

5 1
b= —= (b= VT 2o madin) . ®)

Substituting estimate io into Eq. (4), we parameterize the
mean of pg (I;—1 | I, m) in Eq. (5) as

1 1-— (677
— |l - —= gm,l,t>. 9
= (1~ = fotm. 1
And the variance of pg (I;—1 | l;,m) is approximated as
(1 — ay), following the setting in [Ho et al., 2020]. With this
parameterization, the sampling can be executed iteratively as
follows:

Ho (m7 lt7 t) Vv

lt—l <

1 1-—
\/OTt <lt - \/%fe (mvlht)) + v 1 _Oét(El;))

where € ~ N (0,1).

4.3 Architecture of Map2Traj

The architecture of Map2Traj is based on a classic U-Net
model [Ronneberger ef al., 2015], with multiple modifica-
tions to improve its performance such as attention blocks
[Oktay et al., 2018] and group normalization [Wu and He,
2018]. A distinctive feature of Map2Traj is the incorporation
of street map data through concatenation, which allows the
model to be conditioned on the spatial information inherent
in the maps. The architecture is depicted in Figure 3.
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Downsampling layer
Upsampling layer

Convolution block
Convolution block + attention

Figure 3: Map2Traj architecture.

4.4 Other Technical Details

Street Map Splitting

While a single binary image can effectively convey the spatial
layout of a street map, it falls short in depicting the distinct
characteristics of various road types. In the OpenStreetMap
dataset, roads are tagged with attributes such as Trunk, Pri-
mary, and Residential. To exploit these attributes, we catego-
rize roads into multiple groups, create binary images for each
group, and merge them into a multi-channel binary image, as
illustrated in Figure 2.

Data Augmentation

We notice that the correlation between street map and trajec-
tory, as shown in Figure 1, remains consistent under transfor-
mations such as rotation and reflection. This inherent prop-
erty can be leveraged for data augmentation during training.
We randomly rotate and flip both street maps and trajectory
data to enhance the generalization capability of Map2Traj.

Post Processing of Trajectory Image

The trajectory sequence needs to be reconstructed from the
image to model user mobility for wireless network optimiza-
tion. Since each image represents only one trajectory per user,
we used a simple search algorithm to reconstruct the sequence
from one end to the other, where each point represents the co-
ordinate of the pixel center. An extra deep neural network is
utilized to estimate the sojourn time at each point, as utilized
in [Endo et al., 2016] and [Jiang and Fei, 2017], from which
the speed and relative time stamp can be derived.

S Experiments

In this section, we evaluate the efficacy of Map2Traj in the
zero-shot trajectory generation task by comparing the fidelity
of generated user trajectories with real ones. In addition, we
employ Map2Traj in a typical wireless network optimization
task to validate its efficacy.

5.1 Dataset Description

Map2Traj is trained on a real-world trajectory dataset from
Xi’an, China, recorded in 2016 [Didi-Chuxing, 2017], along-
side the OpenStreetMap dataset from the same year. The
training set is restricted to longitudes between 108.912 and
108.974, while the test set spans from 108.974 to 108.996
to avoid data leakage. Regions in Chengdu, China are also
used to evaluate the zero-shot generation performance of
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Map2Traj across different geographical layouts and urban
planning. All datasets are sourced from the ChinaGEOSS?.

5.2 Evaluation Metrics

We employ a suite of metrics to evaluate the quality of gen-
erated trajectories, in terms of similarities in both trajectory
pattern and spatial distribution.

Trajectory Pattern Similarity
» Edit Distance on Real Sequences (EDR): EDR [Chen
et al., 2005] quantifies the minimum number of op-
erations required to make two trajectories match. A
match is defined when the distance between correspond-
ing points is less than a threshold of 7 = 20 meters.

* Dynamic Time Wrapping (DTW): DTW [Berndt and
Clifford, 1994] calculates the squared Euclidean dis-
tance between two trajectories through a dynamic pro-
gramming alignment algorithm.

Both metrics are widely used in mobility analysis [Tao et al.,
2021]. Since EDR and DTW are designed for sequential data,
the trajectory sequences are reconstructed from images for
comparison. Since the direction of the trajectory is not dis-
cernible from the image, both the original and reversed se-
quences are evaluated, and the minimum value is selected as
the final result.

Spatial Distribution Similarity
* Cosine Similarity: Cosine similarity is a widely used
measure of similarity between two vectors. While it re-
flects the similarity between probability distributions, it
falls short in expressing the spatial correlation between
adjacent blocks in two-dimensional (2D) distributions.

* Wasserstein Distance: To overcome the limitations of
cosine similarity, we introduce the Wasserstein distance
[Riischendorf, 1985], defined as the cost of the optimal
transport plan for moving the mass in the predicted dis-
tribution to match that in the target. In this context, it
quantifies the effort needed to align the spatial distri-
bution of generated trajectories with that of real trajec-
tories. For improved computational efficiency, we use
the sliced Wasserstein distance instead [Kolouri et al.,
2019].

5.3 Baseline Methods

For comparison, we use several traditional random mobility
models, along with two real trajectory-based methods, de-
spite their inability to zero-shot trajectory generation.

For traditional random mobility models, the most com-
monly used one in wireless network optimization is the ran-
dom waypoint model (RWP), where the trajectory is formed
by constantly moving to a randomly chosen destination and
then selecting the next one arbitrarily. To adapt this model
to geographical constraints, we develop a variant, termed
map-restricted random waypoint (M-RWP), where the des-
tinations are confined within the street map area. The tra-
jectory between points is determined using a breadth-first

“https://chinageoss.cn/
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Figure 4: Trajectory generation in Xi’an (Top: Trajectory; Bottom:
Heatmap).

search (BFS) algorithm to ensure that the shortest path re-
mains within streets. Additionally, we considered the Gauss
Markov model (GM), characterized by using a stochastic pro-
cess to model changes in user velocity and direction. Simi-
larly, we introduce the map-restricted Gauss Markov model
(M-GM) to restrict user movements within street areas.

In terms of the real trajectory-based ones, the state-of-the-
art trajectory generation model, DiffTraj [Zhu et al., 2023b],
is included to benchmark the generation quality of our pro-
posed model. It is important to note that for this comparison,
DiffTraj was trained on the complete trajectory dataset [Didi-
Chuxing, 2017], including those from the test area. The rel-
evant data is sourced from the DiffTraj-generated synthetic
dataset, SynMob, provided by the authors of DiffTraj in [Zhu
et al., 2023al. An original-destination (OD) method is also
used, where the origin and destination locations are sampled
from real trajectories, and the trajectory is determined by the
shortest path calculated using the BFS algorithm.

5.4 Generation Performance

We select the area depicted at the beginning of this paper
as the test area. Figure 4 displays the generated trajecto-
ries by all methods alongside corresponding heatmaps. Tra-
ditional random mobility models, i.e., RWP and GM, re-
sult in chaotic trajectories and heatmaps that bear no resem-
blance to real-world patterns. While map-restricted models,
M-RWP and M-GM, show some similarity in trajectory pat-
tern to real ones, they still fall short in distribution similarity
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Trajectory pattern similarity

Spatial distribution similarity

Category Method
EDR (7 = 20) | DTW | Cosine similarity T Wasserstein distance |,
RWP 264.1 76.74 0.1537 21.01
Random mobility GM 213.1 82.96 0.1698 19.21
M-RWP 192.0 21.44 0.3081 2291
M-GM 155.4 33.57 0.2793 26.32
Zero-shot Map2Traj 21.47 8.933 0.6834 6.096
: : DiffTraj 68.35 13.63 0.5573 9.134
Real trajectory-based oy e hiod 30.12 9,064 0.5531 6.147
Real trajectories 7.570 1.018 0.9959 2.569

Table 2: Quantified evaluation of trajectory generation performance

/

(c) Map2Traj

(a) Street map (b) DiffTraj

Figure 5: Trajectory generation in Chengdu.

due to the absence of a learning mechanism. As expected,
real trajectory-based methods, including DiffTraj and the OD
method, demonstrate high similarity to real trajectories and
heatmaps. Our proposed Map2Traj, even in a zero-shot sce-
nario, generates results that closely match real trajectories
and, in some cases, outperform DiffTraj in trajectory detail.
Additional experimental results, including data from other re-
gions in the two cities, varied traffic patterns, and higher res-
olutions, are provided in the technical appendix.

Further, we quantify the similarity of the generated tra-
jectories with real ones using the metrics mentioned earlier.
Considering the stochastic nature of trajectory generation, we
generate 1,000 trajectories per method and compare them to
a benchmark of 1,000 real trajectories. For each generated
trajectory, we calculate the EDR and DTW to all real tra-
jectories and select the minimum value as the representative
measure. This process is repeated for all 1,000 generated tra-
jectories to calculate the average similarity between the gen-
erated and real sets. The spatial distribution is calculated by
summing and normalizing the binary trajectory images. An
additional set of 1,000 real trajectories is included in the cal-
culation to represent the optimal similarities. Table 2 presents
the quantified similarity comparison among different trajec-
tory sets. The results indicate that our proposed Map2Traj
significantly exceeds the traditional random mobility models,
producing synthetic trajectories closely resembling real ones
in both trajectory and distribution similarities. This suggests
that Map2Traj has effectively learned the correlation between
street maps and actual trajectories.

It is encouraging to see our zero-shot Map2Traj model out-
performs the real trajectory-based DiffTraj and OD method.
The advantage of Map2Traj lies in the continuous guidance
from street maps throughout the denoising process, while

- User Equipment
*Base Station

Figure 6: User association and load balancing scenario.

DiffTraj only involves some trip information as the condi-
tion. Also, DiffTraj fixes the trajectories into uniform shapes
through sampling, instead of transforming them into im-
ages, potentially leading to information loss. However, real
trajectory-based methods, such as DiffTraj, have the poten-
tial to outmatch Map2Traj given a sufficiently large training
dataset, a wider and deeper network structure, or in some
specific test scenarios. It should be noted that the primary
contribution of this work is the development of a zero-shot
trajectory generation method, rather than merely surpassing
existing real-trajectories-based generation techniques.

5.5 Case Study in Wireless Network Optimization

In this case study, we employ Map2Traj in wireless network
optimization, specifically the user association and load bal-
ancing task.

System Model and Task Overview

We consider a typical urban area, i.e., the test area in Fig-
ure 4, where base stations are densely deployed in a hexag-
onal pattern, with a 500 m interval. Each base station pos-
sesses multi-band capabilities, supporting connections at 3.7
GHz with a 40 MHz bandwidth and 0.7 GHz with a 10 MHz
bandwidth. As illustrated in Figure 6, users move continu-
ously within this area, connecting to base stations based on
a specific user association policy. Traditional user associa-
tion methods that maximize signal-to-interference-plus-noise
ratio (SINR) can lead to load imbalances and frequent han-
dovers, resulting in user rate degradation when users are not
uniformly distributed. An advanced user association strategy
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is required to balance network loads and minimize handovers,
thereby enhancing user experience and connection stability.

Mehthodology

Solving the user association problem through integer linear
programming is unfeasible due to real-time constraints and
the computational complexity introduced by a large number
of users, along with the dynamics of mobility and handover.
In this context, current works primarily employ DRL to ad-
dress this problem. However, the direct training of DRL
agents within the real-world wireless network is fraught with
challenges, including prohibitive trial-and-error costs and the
risk of compromising the quality of service [Feriani and Hos-
sain, 2021]. Consequently, constructing a realistic training
environment is crucial for applying DRL in wireless network
optimization. While there is extensive research on wireless
channel measurement and modeling, studies on user mobility
models are limited. The current use of random mobility mod-
els, such as RWP and GM, does not ensure the efficacy of
DRL agents when applied to real-world scenarios. Map2Traj
is utilized as the user mobility model in training environments
to enhance the performance of DRL agents.

Case Study Setup and Metrics

The main purpose of this case study is to investigate whether
DRL agents trained with traditional random mobility models
experience performance degradation when deployed into real
environments, and whether incorporating Map2Traj can mit-
igate this issue. The case study consists of two phases. Ini-
tially, DRL agents are trained in environments based on vari-
ous mobility models, including Map2Traj and baselines. Af-
ter achieving convergence, these agents are deployed into the
real environment where user movements adhere to real tra-
jectories to assess performance. The performance of a DRL
agent trained directly in the real environment is also provided
as a benchmark for optimal performance.

To focus on mobility model comparisons, wireless chan-
nels are kept constant across different environments, using the
urban macrocell path-loss model from 3GPP [3GPP, 2020]
and the shadow fading model implemented via the sum-
of-sinusoids method, as used in QuaDRiGa [Jaeckel et al.,
2018]. The DRL method employed here is the state-of-the-art
proximal policy optimization (PPO) algorithms [Schulman
et al., 2017], with the actor-network built on a long short-
term memory (LSTM) network [Hochreiter and Schmidhu-
ber, 1997] to incorporate memory capabilities. Performance
metrics for user association encompass the 5th percentile user
rate (5% rate) to evaluate cell-edge performance, and the log-
arithmic mean of all user rates, which serves as an indicator
of the overall utility of the wireless network.

Results

We first thoroughly train DRL agents in various training envi-
ronments. it is observed that all DRL agents notably surpass
the traditional Max SINR approach, with detailed figures pro-
vided in the technical appendix. Subsequently, these agents
are deployed in the real scenario, and the results are presented
in Table 3. Consistent with our expectations, agents trained
with random mobility models exhibit substantial performance
degradation, in some cases deteriorating to levels comparable

Category Method 5% rate T  Utility 1
DRL (RWP) 2.098 6.571
Rafé@‘l‘?m DRL (GM) 3.032 6.592
mobility DRL (M-RWP) 5.622 6.638
DRL (M-GM) 2.894 6.595
Zero-shot DRL (Map2Traj) 7.688 6.669
. DRL (DiffTraj) 6.976 6.664
Real traj-based  hpiOp) 7295 6.662
Non-DRL (Max SINR) 5.394 6.574
DRL (Real) 8.503 6.682

Table 3: User association performance in deployment
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Figure 7: CDF of performance in deployment.

to or even worse than the traditional Max SINR method. In
contrast, the DRL agent trained with the Map2Traj-based mo-
bility model maintains superior performance.

To provide a more nuanced view of the performance, we
present the cumulative density function (CDF) of the metrics.
As illustrated in Figure 7, the Map2Traj-based DRL agent not
only outperforms those trained with random mobility mod-
els but also closely approaches the performance of the agent
trained in the real environment. All these results demonstrate
that synthetic trajectories generated by Map2Traj have effi-
cacy comparable to real ones for learning-based wireless net-
work optimization.

6 Conclusion

In this paper, we delve into the correlation between street
maps and user mobility, introducing a novel Map2Traj
method based on a diffusion model to achieve zero-shot tra-
jectory generation for wireless network optimization. While
prior research has successfully generated trajectories for spe-
cific regions using real datasets, we are the first to directly
generate synthetic trajectories for new and unobserved ar-
eas. Extensive experiments demonstrate our method outper-
forms the traditional random mobility model and even some
real trajectory-based models in terms of trajectory pattern
and spatial distribution similarities. This enables the creation
of high-fidelity individual user channel states and an accu-
rate representation of the overall network user distribution.
Through a case study of user association and load balanc-
ing in wireless networks, we validate that trajectories gener-
ated by Map2Traj exhibit comparable efficacy to real ones for
wireless network optimization.
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