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Abstract

Multimodal intent recognition (MIR) seeks to accu-
rately interpret user intentions by integrating verbal
and non-verbal information across video, audio and
text modalities. While existing approaches priori-
tize text analysis, they often overlook the rich se-
mantic content embedded in non-verbal cues. This
paper presents a novel Wavelet-Driven Multimodal
Intent Recognition (WDMIR) framework that en-
hances intent understanding through frequency-
domain analysis of non-verbal information. To be
more specific, we propose: (1) a wavelet-driven fu-
sion module that performs synchronized decompo-
sition and integration of video-audio features in the
frequency domain, enabling fine-grained analysis
of temporal dynamics; (2) a cross-modal interac-
tion mechanism that facilitates progressive feature
enhancement from bimodal to trimodal integration,
effectively bridging the semantic gap between ver-
bal and non-verbal information. Extensive experi-
ments on MIntRec demonstrate that our approach
achieves state-of-the-art performance, surpassing
previous methods by 1.13% on accuracy. Ablation
studies further verify that the wavelet-driven fusion
module significantly improves the extraction of se-
mantic information from non-verbal sources, with
a 0.41% increase in recognition accuracy when an-
alyzing subtle emotional cues.

1 Introduction
Intent recognition is a key aspect of human-computer in-
teraction, and its core goal is to enable machines to accu-
rately grasp user intent and thus provide users with better ser-
vice [Zhang et al., 2019; Huang et al., 2023; Qiu, 2024]. Re-
cently, multimodal intent recognition has been used to under-
stand the user’s intent in more complex scenarios. Compared
with unimodal intent, multimodal information fusion can im-
prove intent recognition accuracy by making joint decisions
[Soleymani et al., 2017; Chen et al., 2021; Zou et al., 2022;
Zhang et al., 2024; Sun et al., 2025].

∗Corresponding author.

Uh, I am so honored to receive this sprite.

Intent:

Flaunt
Video:

Audio:

Text:

Figure 1: In the task of multimodal intent recognition, videos and
audio contain relatively few key pieces of information, necessitating
the in-depth mining of complementary information.

Researchers are currently paying greater attention to mul-
timodal intent detection research as it focuses more on intri-
cate real-world situations. To this end, [Zhang et al., 2022a]
introduces the first multimodal intention recognition baseline
dataset, MIntRec, and conducts experiments on models such
as MulT [Tsai et al., 2019], MISA [Hazarika et al., 2020],
and MAG-BERT [Rahman et al., 2020] to establish a base-
line for intent recognition for subsequent research. Subse-
quently, in order to effectively integrate information from dif-
ferent modalities such as text, video, and audio, researchers
have designed various models, all of which have achieved
certain results in the field of multimodal intent recogni-
tion [Zhang et al., 2022c; Sun et al., 2024; Huang et al., 2024;
Zhou et al., 2024]. Although existing methods have made
some progress in multimodal intent recognition, the accu-
racy of multimodal analysis of user’s intent is still limited
due to the fact that the potential correlation between differ-
ent modalities has not yet been fully explored, as well as the
insufficiency of the video and audio modalities in semantic
feature extraction. As shown in Figure 1, when the speaker
says, “Uh, I am so honored to receive this sprite,” we might
initially infer that the speaker is joking. However, by care-
fully observing the speaker’s facial expressions and analyzing
their tone, we can discern that the speaker’s true intention is
to flaunt. so much so that multimodal intention recognition
currently presents the following two challenges: first, how
to deeply mine the semantic information in video and audio
modalities; and second, how to efficiently align and fuse the
features of text, video and audio modalities.

To address the first challenge, we propose a wavelet-
driven approach. As far as we know, we are the first to
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introduce wavelet transform to drive the fusion of video
and audio data information. Wavelet transform decomposes
signals into low-frequency and high-frequency components.
The low-frequency component captures the global charac-
teristics of the signal, reflecting smooth trends and large-
scale variations [Satirapod et al., 2001], while the high-
frequency component focuses on local details, such as abrupt
changes, fine structures, and rapid variations [Lahmiri, 2014;
Li et al., 2023].

To address the second challenge, we designed collabora-
tive representations and progressive fusion modules. These
modules aim to enhance the alignment and integration be-
tween wavelet-driven non-verbal modalities and text modali-
ties through cross-modal mechanisms, achieving a transition
from bimodal to trimodal collaborative representations. Sub-
sequently, the progressive fusion module is utilized for deep
representation, leveraging complementary information at dif-
ferent stages to improve the accuracy of multimodal intent
recognition. Our primary contributions in this study are:

• We design wavelet-driven multimodal intent recognition
methods to achieve fusion of nonverbal modal features
in the frequency domain to improve the model’s ability
to understand and recognize multimodal data.

• We achieve cross-modal collaborative alignment to in-
tegrate multimodal information, and through progres-
sive fusion, mine complementary information to en-
hance recognition accuracy.

• Our experiments significantly improved each metric on
MIntRec and MELD-DA, validating the validity and
generalizability of the method.

2 Related Works
2.1 Multimodal Intent Recognition
Multimodal intent recognition aims to extract the user in-
tent from multimodal information. However, challenges re-
main when dealing with scenarios involving text, visual, and
acoustic modalities. [Zhang et al., 2022a] introduced the
multimodal intent recognition task and released a MIntRec
dataset, which integrates textual, visual, and acoustic modal-
ities to recognize user intent comprehensively. [Zhou et al.,
2024] proposed a token-level contrastive learning method
with modality-aware prompts that effectively integrates text,
audio, and video modality features through similarity-based
modality alignment and cross-modal attention. [Huang et al.,
2024] introduced a shallow-to-deep interactive framework
with data augmentation capabilities to address the modal-
ity alignment issue by gradually fusing multimodal features
and incorporating ChatGPT-based data augmentation meth-
ods. [Sun et al., 2024] proposed a context-enhanced global
contrastive method that alleviates biases and inconsistencies
in multimodal intent recognition by using within-video and
cross-video interactions and retrieval, combined with global
context-guided contrastive learning.

2.2 Multimodal Fusion Methods
Multimodal fusion aims to integrate information from differ-
ent modalities (e.g., text, video, and audio) to better under-
stand and process information from multiple sources, thereby

improving system performance [Zhang et al., 2022b]. For
example, [Zadeh et al., 2017] proposes a tensor fusion net-
work that learns intra- and inter-modal dynamic features in
an end-to-end manner. [Tsai et al., 2019] addresses the prob-
lem of aligning multimodal sequences in different time steps
by using directed pairwise cross-modal attention. [Rahman
et al., 2020] Introduced multimodal adaptation gates to fine-
tune BERT to address non-verbal modal input. [Hazarika et
al., 2020] maps each modality to two different subspaces to
learn common and modality-specific features.

2.3 Wavelet Transform
Wavelet transform is a commonly used time-frequency anal-
ysis technique in signal processing that can convert infor-
mation from the time domain to the frequency domain.
The decomposed information exhibits both global and lo-
cal characteristics. In recent years, many researchers have
applied wavelet transforms to various fields. [Li et al.,
2023] introduced a wavelet fusion module for facial super-
resolution tasks, addressing the issue in existing Transformer-
based methods where global information integration often ne-
glects relevant details, leading to blurring and limiting high-
frequency detail recovery. [Phutke et al., 2023] proposed an
end-to-end blind image inpainting architecture with a wavelet
query multi-head attention transformer block, effectively re-
pairing images by using the wavelet coefficients processed to
provide encoder features as queries, bypassing the damaged
region prediction step. [Sabry et al., 2024] applies wavelet
transform to lung sound signal analysis, addressing the issues
of noise contamination and artifact removal in lung sound sig-
nals. By performing a multi-scale analysis of the lung sound
signals, effective features are extracted, improving the accu-
racy of lung disease classification. [Frusque and Fink, 2024]
introduced wavelet techniques for denoising audio informa-
tion. Our method mainly uses wavelet transform to decom-
pose video and audio information at multiple levels, to re-
alize the fusion of video and audio features in the frequency
domain, and to realize the analysis of non-verbal modal infor-
mation in the frequency domain to enhance its representation.

3 Method
3.1 Task Description
Let text, video, and audio data from three modalities are
taken as inputs, their features are fused to predict user intent.
Specifically, let the feature of the text modality be t, the fea-
ture of the video modality be v, and the feature of the audio
modality be a. By designing a multimodal fusion module F ,
these features are mapped into a unified representation.

H = F(t, v, a) (1)
Subsequently, a classifier Fintent maps the fused features to

the intent category space, generating a predicted distribution
ŷ = Fintent(H) (2)

where t ∈ Rdt , v ∈ Rdv , and a ∈ Rda represent the features
of the text, video, and audio modalities, respectively, with
dt, dv , and da denoting the dimensions of each modality’s
features. H ∈ Rdh is the fused feature representation; dh is
the dimension of the fused features; ŷ ∈ Rc represents the
predicted probability distribution over c intent categories.
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Figure 2: The overall framework of WDMIR primaril consists of the Wavelet-driven Fusion Module (WFM), Collaborative Representation
Module (CRM), and Progressive Fusion Module (PFM), which are responsible for video and audio feature fusion, cross-modal collaborative
representation, and enhancing intent recognition accuracy using multi-level features, respectively.

3.2 Framework Overview
The overall framework of WDMIR is shown in Figure 2. It
mainly consists of Wavelet-driven Fusion Module (WFM),
Collaborative Representation Module (CRM) and Progres-
sive Fusion Module (PFM). WFM can realize the feature fu-
sion of video and audio in frequency domain by multilevel
decomposition of video and audio in the frequency domain.
CRM utilizes the cross-modal mechanism to realize the col-
laborative representation of text modality and wavelet-driven
video and audio modality to realize the collaborative repre-
sentation of two modalities to three modalities. PFM im-
proves the accuracy of intent recognition using multilevel fea-
ture progressive fusion representation.

3.3 Feature Extraction
For text modality, in order to fully utilize the semantic infor-
mation in the text [Liu et al., 2023], we use pre-trained model
BERT [Lee and Toutanova, 2018] to encode the text and ex-
tract the last hidden layer as the feature representation of the
text.

Ft = BERTEmbeding(t) (3)
where t is the input conversation text, Ft is the text feature
extracted through BERTEmbedding.

For the video modality, we follow the research approach
in [Zhou et al., 2024] and choose the Swin-Transformer [Liu
et al., 2021], which performs excellently in the field of com-
puter vision, to sample the video frame by frame and perform
pre-training, extracting the last hidden layer to represent the
visual semantic information.

Fv = Swin-Transformer([f1, f2, .., flv]) (4)
where fi is the i-th frame in each video segment, lv is the
number of frames sampled from the video, and Fv is the vi-
sual semantic information extracted by Swin-Transformer.

For audio modality, we adopt the method [Zhang et al.,
2022a] to pre-train the model using Wav2Vec 2.0 [Baevski et
al., 2020] to extract the output of the last hidden layer as the
audio feature representation.

Fa = Wav2Vec 2.0(a) (5)

where a is the audio sequence corresponding to the video clip
and Fa is the audio feature extracted by Wav2Vec 2.0.

3.4 Wavelet-driven Fusion Module (WFM)
WFM is able to decompose audio and video signals over se-
quences into the frequency domain, where fine-grained fea-
ture fusion of non-verbal modalities is achieved.Before fur-
ther analyzing the video and audio features, we perform se-
quence alignment of the video and audio features using the
CTC model [Graves et al., 2006].

V,A = CTC(Fv, Fa) (6)

where V and A represent the video and audio features after
sequence alignment, respectively.

In order to facilitate the fusion of non-verbal modal infor-
mation in the frequency domain. We choose Haar wavelet
bases to perform 3-level 1-dimensional DWT transform on
audio and video aligned in sequences to obtain the high-
frequency and low-frequency components of video and audio
information, which correspond to local and global features,
respectively.

(La, Hai) = DWT (A)

(Lv, Hvi) = DWT (V )
(7)

Where La and Lv are the low-frequency components of the
audio and video features obtained through multilevel wavelet
decomposition, respectively, and Hai and Hvi are the i-th
high-frequency components of the audio and video features
after multilevel decomposition, respectively.

To better extract global information from video and audio
data, we employ a one-dimensional convolution with a kernel
size of 3 to strengthen the representation of low-frequency
components, further enhancing the model’s understanding of
global information.

L
′

a = Conv1D(La)

L
′

v = Conv1D(Lv)
(8)

where L
′

a and L
′

v are the low-frequency components of audio
and video enhanced by one-dimensional convolution.
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For the multilevel high-frequency components obtained
from wavelet decomposition, we concatenate the components
at each level sequentially to construct the total high-frequency
components for each modality. This approach integrates
high-frequency information from different levels, enhancing
the model’s ability to capture fine-grained features.

Fhv = cat(Hv1, Hv2, Hv3)

Fha = cat(Ha1, Ha2, Ha3)
(9)

where Fhv and Fha are the total high-frequency components
of video and audio, respectively.

To better facilitate the fusion of video and audio informa-
tion, we use the BiLSTM model to map audio to the video
space and video to the audio space, respectively.

H
′

v = BiLSTM(Fhv)

H
′

a = BiLSTM(Fha)
(10)

where H
′

v is the visual feature obtained from the high-
frequency component of the video through BiLSTM; H

′

a is
the audio feature obtained from the high-frequency compo-
nent of the audio through BiLSTM.
To better leverage the complementary information between
modalities and enhance feature representation, we designed a
frequency domain interaction module.

HAV = softmax(Fha ⊙H
′

v + Fha)

HV A = softmax(Fhv ⊙H
′

a + Fhv)
(11)

where HAV is the audio feature obtained from the interaction
between audio and video, HV A is the video feature obtained
from the interaction between video and audio, and ⊙ denotes
the element-wise multiplication.

To better integrate the interaction-enhanced features with
their respective low-frequency features, we perform an in-
verse wavelet transform to reconstruct the audio and video
modalities, resulting in fused audio and video features.

FAV = IDWT (cat(L
′

a, HAV ))

FV A = IDWT (cat(L
′

v, HV A))
(12)

where FAV is the reconstructed and enhanced audio modality
feature, and FV A is the reconstructed video modality feature.

3.5 Collaborative Representation Module (CRM)
The text modality serves as the primary source of informa-
tion for intent recognition. We treat the text modality as the
main modality and perform pairwise interactions with the en-
hanced audio and video modalities separately. Cross-modal
attention mechanisms are employed to achieve alignment and
feature fusion. Subsequently, the audio and video modalities,
weighted by the text features, are further interacted with the
text modality, enabling deep fusion of the three modalities.

Considering that the text modality contains the primary
information, we perform sequence alignment on the fused
video and audio features through a cross-attention mecha-
nism [Huang et al., 2024]. We choose the text modality Ft

as the query Q, and the fused video FV A and audio modality
FAV as the key and value K and V .

Cross− attention(Q,K, V ) = softmax(
QKT

√
dk

)V

Fvat = Cross− attention(Ft, FV A, FV A)

Favt = Cross− attention(Ft, FAV , FAV )

(13)

where Fvat and Favt denote the weighted video and audio
features, respectively.

Then Ft as the query vector Q, Fvat as the key vector K,
and Favt as the value vector V are used to realize the trimodal
co-representation via cross-transformer [Tsai et al., 2019].

Ftva = softmax(
FtFvat

T

√
dk

)Favt (14)

where Ftva denotes the three modal co-representation fea-
tures of text, video, and audio.

3.6 Progressive Fusion Module (PFM)
PFM improves the accuracy of multimodal intent recognition
mainly through multilevel feature progressive fusion.To fo-
cus on the fused text, video, and audio model features from
different visions. We stack Ft, Fvat and Favt to obtain the
matrix Fm.

Fm = [Ft, Fvat, Favt] (15)
Then, the stacked Fm is enhanced through self-

attention [Vaswani, 2017; Zhang et al., 2021] for feature en-
hancement.

F = Self − attention(Fm) (16)

where F = [F
′

t , F
′

vat, F
′

avt] denotes the enhanced features.
We utilize LSTM to learn the encoded video and audio in-

formation, taking the hidden state of the last layer as output to
prevent the loss of key features during the processing of video
and audio characteristics, thereby enhancing the model’s un-
derstanding of complex data.

Flv = LSTM(Fv)

Fla = LSTM(Fa)
(17)

where Flv and Fla denote the video features and audio fea-
tures obtained by LSTM, respectively.

We concatenate the features obtained from multiple layers
and map them to the output space through an MLP to get the
final output ŷ.

ŷ = MLP (cat(Flv, Fla, F
′

t , F
′

vat, F
′

avt, Ftva)) (18)

To make the output better approximate the true distribution,
we use a cross-entropy loss function to measure the difference
between the predicted and true values.

L = − 1

N

N∑
i=1

C∑
j=1

yij log(ŷij) (19)

where L is the total loss function of the model. N is the num-
ber of samples and C is the number of intended categories.
yij is the true label of the i-th sample in the jth category. ŷij
is the probability distribution of the i-th sample belonging to
the j-th category as predicted by the model.
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Methods MIntRec MELD-DA

ACC WF1 WP R ACC WF1 WP R

MAG-BERT 72.65 72.16 72.53 69.28 60.63 59.36 59.80 50.01
MISA 72.29 72.38 73.48 69.24 59.98 58.52 59.28 48.75
MulT 72.52 72.31 72.85 69.24 60.36 59.01 59.44 49.93
TCL-MAP 73.62 73.31 73.72 70.50 61.75 59.77 60.33 50.14
SDIF-DA∗ 73.93 73.89 74.18 71.66 −− −− −− −−
CAGC 73.39 −− −− 70.39 −− −− −− −−

WDMIR (Our) 75.06 74.96 75.26 72.65 62.16 60.94 61.44 51.36
△ 1.13↑ 1.07↑ 1.08↑ 0.99↑ 0.41↑ 1.17↑ 1.11↑ 1.22↑

Table 1: The experimental results of our method on the MIntRec and MELD-DA datasets are as follows. △ represent the comparison results
between our method and the previous best method, bold indicates the best results, underline denotes the second best results, ↑ denotes the
improvement effect, asterisks * indicate the results from our re-experimentation, and all other results are sourced from published papers.

4 Experiments

4.1 Datasets

We conduct experiments on two datasets, MIntRec [Zhang
et al., 2022a] and MELD-DA [Saha et al., 2020]. MIntRec
is a multimodal intent dataset containing text, video, and au-
dio, with 2224 samples and 20 intent categories. It includes
1334, 445, and 445 samples for training, validation, and test-
ing, respectively. MELD-DA is a multi-round emotion con-
versation dataset containing text, video, and audio, with 9988
samples and 12 emotion conversation behavior labels. It in-
cludes 6991, 999, and 1998 samples for training, validation,
and testing, respectively.

4.2 Baselines

In our experiments, we will use state-of-the-art multimodal
fusion methods as baselines: (1) MISA [Hazarika et al.,
2020] projects each modality into two different subspaces to
learn the fusion of common features and unique attributes of
different modalities. (2) MulT [Tsai et al., 2019] potentially
converts one modality to another for feature fusion by direct-
ing paired cross-modal attention. (3) MAG-BERT [Rahman
et al., 2020] introduces a multimodal adaptation gate as an ac-
cessory to fine-tune BERT to enable it to handle non-verbal
data for multimodal data fusion. (4) TCL-MAP [Zhou et
al., 2024] uses the similarity of modalities to design a mul-
timodal perceptual cueing module for modal alignment, and
uses a cross-modal attention mechanism to generate modal
perceptual cues for multimodal fusion. (5) SDIF-DA [Huang
et al., 2024] enhances text data through ChatGPT, then de-
signs interaction modules from shallow to deep and gradually
aligns and fuses features between different modalities effec-
tively. (6) CAGC [Sun et al., 2024] enhances the capture of
global contextual features by mining the contextual interac-
tion information within and between videos, thus effectively
solving the problems of perceptual bias and inconsistency of
multimodal representations.

4.3 Evaluation Metrics
Based on previous work [Zhou et al., 2024], we use Accu-
racy (ACC), Weighted F1 Score (WF1), Weighted Precision
(WP), and Recall (R) as the evaluation metrics of the model.
The impact of sample unevenness on model performance is
reduced by a weighted average of the number of samples in
each category by WF1 and WP.

4.4 Experimental Settings
In our experiments, bert-base-uncased1 and wav2vec2-base-
960h2 from the Huggingface are used as the pre-training mod-
els for extracting mentioned text and audio features. Video
features are extracted from the Torchvision library by us-
ing swin b pre-trained on ImageNet1K. Adam [Loshchilov,
2017] as an optimization parameter throughout the experi-
ment. The training batch size is 16, and the validation and
test batch sizes are both 8.

4.5 Main Result
Our method is compared with the optimal method in §4.2,
and the experimental results are shown in Table 1. From
the analysis of the experimental results, it is clear that our
approach has made significant progress in two main areas.
First, on the MIntRec dataset, our method achieves 1.13%,
1.07%, 1.08%, and 0.99% improvement in four key perfor-
mance metrics, namely, ACC, WF1, WP, and R, respectively,
when compared to the best existing baseline method. These
results strongly demonstrate the effectiveness of the method
in handling multimodal intent recognition tasks in complex
real-world scenarios. Second, on the multi-round sentiment
dialog analysis dataset MELD-DA, our method also demon-
strates better performance, improving 0.41%, 1.17%, 1.11%,
and 1.22% in the four evaluation metrics of ACC, WF1, WP,
and R, respectively, compared to the optimal baseline. This
result confirms the effectiveness and robustness of our pro-
posed method in the task of conversational emotion recogni-
tion. Overall, the experimental results fully demonstrate that

1https://huggingface.co/google-bert/bert-base-uncased
2https://huggingface.co/facebook/wav2vec2-base-960h
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Modules MIntRec MELD-DA

Flv Fla F
′

vat F
′

avt Ftva WFM ACC WF1 WP R ACC WF1 WP R

× × ✓ ✓ ✓ ✓ 73.49 73.24 73.46 70.68 61.68 60.56 60.65 51.20
✓ ✓ × × ✓ ✓ 72.70 72.29 72.36 69.67 60.61 59.15 59.38 49.59
✓ ✓ ✓ ✓ × ✓ 72.02 71.71 71.82 69.06 61.06 59.63 59.66 50.61
✓ ✓ ✓ ✓ ✓ × 72.02 71.76 72.20 68.77 60.56 59.28 59.13 49.68

✓ ✓ ✓ ✓ ✓ ✓ 75.05 74.96 75.26 72.65 62.16 60.94 61.44 51.36

Table 2: Conducting ablation studies on the MIntRec and MELD-DA datasets respectively. Features obtained from the first layer are denoted
as Flv and Fla, features from the second layer are denoted as F

′
vat and F

′
avt, and features from the third layer are denoted as Ftva. WFM

stands for the audio-video feature fusion module.
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Figure 3: MIntRec-WDMIR represents the confusion matrix eval-
uation results with wavelet-driven fusion module on the MIntRec
dataset, where leading zeros before decimal points are omitted.

our method outperforms the existing state-of-the-art base-
line methods on all evaluation metrics for two representative
datasets, which in turn validates the effectiveness and gener-
alizability of the method.

4.6 Ablation Study
To further explore the impact of different modules on the
performance of the WDMIR method on the MIntRec, we
perform ablation experiments on the Wavelet-driven Fusion
Module, Collaborative Representation Module, and Progres-
sive Fusion Module to determine the contribution of each
module to the overall performance.

Wavelet-driven Fusion Module
To evaluate the performance of WFM, we removed it from
the model. The experimental results are shown in Table
2: on the MIntRec dataset, the model’s accuracy (ACC)
dropped by 3.03%, weighted F1 score (WF1) decreased by
3.2%, weighted precision (WP) declined by 3.06%, and re-
call (R) decreased by 3.88%. On the MELD-DA dataset,
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Figure 4: MIntRec-NWDMIR denotes the confusion matrix evalua-
tion results obtained after removing the wavelet-driven fusion mod-
ule in the MIntRec dataset, with leading zeros before decimal points
omitted.

ACC dropped by 1.6%, WF1 by 1.66%, WP by 2.31%, and
R by 1.68%. These results indicate that WFM can effec-
tively extract fine-grained semantic information from non-
verbal modalities in intent and emotion data. Moreover, the
confusion matrix in Figure 3 and the visualization in Figure 4
on the MIntRec dataset suggest that WFM also contributes to
the recognition of implicit intents.

Collaborative Representation Module
To assess the effectiveness of the collaborative representation
module, we conducted an ablation study by removing Ftva,
with the results shown in Table 2. The removal of Ftva led
to a significant performance drop on both the MIntRec and
MELD-DA datasets, particularly on MIntRec, where ACC,
WF1, WP, and R decreased by 3.03%, 3.25%, 3.44%, and
3.59%, respectively. These results demonstrate that the col-
laborative representation module effectively integrates com-
plementary information across multiple modalities, thereby
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Figure 5: Single-Modality Missing Comparison. AM represents no
missing modality, w/o-text indicates the removal of text modality,
w/o-video indicates the removal of video modality, and w/o-audio
indicates the removal of audio modality.

enhancing the accuracy and robustness of intent recognition.

Progressive Fusion Module
To verify the impact of the progressive module on the overall
performance of WDMIR, we sequentially removed Flv and
Fla, as well as F

′

vat and F
′

avt. The experimental results are
shown in Table 2. The results demonstrate that the progres-
sive fusion module improves model performance on both the
MIntRec and MELD-DA datasets. Specifically, Flv and Fla

compensate for the loss of audio-visual information, while
F

′

vat and F
′

avt enhance deep fusion between modalities. The
ablation experiments further validate the critical role of the
progressive fusion module in optimizing multimodal infor-
mation complementarity and improving the overall perfor-
mance of the model.

4.7 Performance with Single-Modality Missing
We further analyzed the impact of removing a specific modal-
ity on the model’s performance, as shown in Figure 5. The
vertical axis of the figure depicts the model’s performance
metrics—ACC, WF1, WP, and R—on the MIntRec and
MELD-DA datasets. The experimental results indicate that
the absence of the text modality leads to a significant decline
in performance, demonstrating that text plays a dominant role
in multimodal tasks. Removing the video or audio modalities
also causes performance degradation, but to a lesser extent,
suggesting that they mainly provide auxiliary information.

4.8 F1-Score Analysis Across Intent Categories
To better evaluate the performance of WDMIR on MIntRec,
we compare its f1-score with baselines to assess how each
method performs across fine-grained intent categories. As il-
lustrated in Figure 6, our approach demonstrates strong per-
formance, particularly in the intent categories of “Flaunt”,
“Joke” and “Oppose” suggesting that WDMIR is adept at
managing complex intent categories. WDMIR performs sim-
ilarly to other methods in the “Care” and “Complain” cate-
gories, and even outperforms in some areas, indicating sta-
ble performance in common intent categories, likely due to

MISAWDMIR SDIF-DA* TCL-MAP MulTHuman MAG-BERT

Figure 6: F1-score comparison between our method and the
baselines on the MIntRec dataset. SDIF-DA* denotes the re-
implemented result, while the other data are from TCL-MAP. Bold
indicates the best performance excluding human results.

the wavelet-driven nonverbal modal fusion. However, despite
some improvements in certain intent categories, WDMIR’s
performance in categories like “Taunt”, “Oppose” and “Joke”
is not as strong as that of other methods, which may be linked
to the influence of wavelet-driven nonverbal modal fusion.
The F1-scores metric performed significantly below human
levels on the “Taunt”, “Oppose”, and “Joke” intentions. This
suggests that WDMIR still faces challenges in understanding
emotions that are heavily dependent on context and humor,
and that further improvements in understanding linguistic hu-
mor and contextual variation are needed.

5 Conclusion
In this paper, wavelet transform is introduced into the field of
multimodal intent recognition for the first time, and a novel
wavelet-based multimodal intent recognition method, WD-
MIR, is proposed. The method serializes multilevel decom-
position of video and audio data by wavelet transform and re-
alizes the extraction and fusion of video and audio features in
the frequency domain. Through the collaborative fusion mod-
ule, it realizes the collaborative representation from bimodal
to trimodal, which improves the expression of deep features
and better identifies the semantic information in multimodal
data. Through the progressive fusion module, the whole dif-
ferent levels of feature representations are effectively repre-
sented to improve the accuracy of multimodal intent recogni-
tion. Comprehensive experimental results show that the pro-
posed wavelet-driven approach can enhance the performance
of the model in multimodal intention recognition tasks. This
study not only demonstrates the potential of wavelets in mul-
timodal learning but also provides a new perspective on fea-
ture extraction and fusion of multimodal data.
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