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Abstract

The brain-assisted target speaker extraction (TSE)
aims to extract the attended speech from mixed
speech by utilizing the brain neural activities, for
example Electroencephalography (EEG). However,
existing models overlook the issue of temporal
misalignment between speech and EEG modali-
ties, which hampers TSE performance. In addi-
tion, the speech encoder in current models typ-
ically uses basic temporal operations (e.g., one-
dimensional convolution), which are unable to ef-
fectively extract target speaker information. To ad-
dress these issues, this paper proposes a multi-scale
and multi-modal alignment network (M3ANet) for
brain-assisted TSE. Specifically, to eliminate the
temporal inconsistency between EEG and speech
modalities, the modal alignment module that uses
a contrastive learning strategy is applied to align
the temporal features of both modalities. Addi-
tionally, to fully extract speech information, multi-
scale convolutions with GroupMamba modules are
used as the speech encoder, which scans speech
features at each scale from different directions, en-
abling the model to capture deep sequence informa-
tion. Experimental results on three publicly avail-
able datasets show that the proposed model outper-
forms current state-of-the-art methods across vari-
ous evaluation metrics, highlighting the effective-
ness of our proposed method. The source code is
available at: https://github.com/fchest/M3ANet.

1 Introduction

The cocktail party problem [Haykin and Chen, 2005] refers
to the ability of humans to track a particular conversation in
a multi-speaker social setting, known as selective auditory
attention. Target speaker extraction (TSE) is a fundamental
task in speech signal processing that aims to extract the target
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speech using auxiliary cues, thus effectively addressing the
cocktail party problem.

Recent advances in deep learning have significantly im-
proved TSE performance [Ge et al, 2020; Hao et al.,
2024].  Traditional TSE approaches often rely on pre-
recorded speech from the target speaker as a cue [Xu et al.,
2020], but this method requires prior knowledge of the target
speaker. Other studies have explored alternative cues, such as
spatial cues (e.g., the direction of the target speaker) [Wang
et al., 2024; Ge et al., 2022] or visual cues (e.g., facial
video) [Lin ef al., 2023; Li et al., 2024]. However, in prac-
tical applications, visual cues can be hindered by obstacles
in the environment, and spatial cues are inherently limited
to multi-microphone setups [Zmolikova et al., 2023]. These
challenges, in turn, degrade the performance of TSE in com-
plex, real-world environments.

Recent studies on auditory attention decoding (AAD) have
revealed the correlation between brain neural activities and
speech stimuli [Yan et al., 2024; Ni et al., 2024], opening
a new avenue for TSE techniques. Researchers are increas-
ingly exploring how to leverage speech-related information
embedded in Electroencephalography (EEG) to guide tar-
get speech extraction, thereby eliminating the need for prior
speaker knowledge. Early methods focus on reconstruct-
ing speech envelope from EEG data and matching it with
sound sources to identify target speech [Han er al., 2019;
O’Sullivan et al., 20171, but this approach is computation-
ally intensive due to the need to separate all sources. The
brain-informed speech separation (BISS) network [Ceolini
et al., 2020] innovatively integrates the reconstructed enve-
lope into the TSE task, using it as an audio cue to avoid
separating all sources. However, stimulus reconstruction re-
quires a distinct network, which still entails considerable
computational costs. More recent studies [Qiu et al., 2023;
Pan et al., 2024b] have further streamlined this process by
directly using EEG signals as the reference cue, and these
methods have since become the standard in the field.

However, EEG and speech data are simultaneously fed into
the models during training, yet they are not perfectly synchro-
nized. This is because sound stimuli must first pass through
the ear and auditory pathways before reaching the auditory
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cortex, where EEG signals are generated [Litovsky, 2015].
Previous works [De Silva et al., 2024; Zhang et al., 2023]
only focus on the effectiveness of modality fusion but ne-
glect the temporal alignment between speech and EEG, which
increases the difficulty of efficient multi-modal fusion and
negatively impacts overall performance. Additionally, con-
volutional neural networks (CNNs) used in most TSE speech
encoders [Hao er al., 2023] often fail to effectively capture
the latent features of mixed speech, leading to reduced model
performance. While transformer-based encoders [Fan et al.,
2025a; Heo et al., 2024] offer more power, they tend to intro-
duce significant computational complexity.

In this paper, we propose a multi-scale and multi-modal
alignment network (M3ANet) for brain-assisted TSE, which
facilitates temporal alignment between EEG and speech,
while extracting more comprehensive and deeper speech fea-
tures from both the breadth and depth. To address the mis-
alignment caused by the temporal asynchrony between EEG
and speech, this paper introduces a modal alignment mod-
ule into the brain-assisted TSE task for the first time. It em-
ploys a contrastive learning strategy to minimize the distance
between EEG and speech features at the same time steps,
thereby achieving precise synchronization of cross-modal
data. Additionally, to fully capture the latent features in
speech, the speech encoder first uses multi-scale convolutions
to extract short- and long-term features, obtaining local- and
global-level temporal representations. Next, GroupMamba
(GM) modules are introduced to efficiently model the chan-
nel and feature dimensions of speech from different direc-
tions, capturing deeper features at each level with linear com-
plexity. Experimental results show that the M3ANet model
achieves state-of-the-art (SOTA) performance on the Cocktail
Party, AVED, and MM-AAD datasets, with relative improve-
ments of 8.2%, 12.8%, and 10.4% in scale-invariant source to
distortion ratio (SI-SDR), respectively, compared to the best
current baselines.

The main contributions of this paper can be summarized as
follows:

 This paper proposes a new brain-assisted target speaker
extraction model, introducing an innovative modal
alignment module that leverages contrastive learning to
align EEG and speech temporally.

e This paper proposes a multi-scale encoding approach
combined with the GM module, which effectively ex-
tracts latent speech features in both breadth and depth.

* Experimental results on the Cocktail Party, AVED, and
MM-AAD datasets show significant improvements over
baseline models, demonstrating the effectiveness of our
proposed model.

2 Related Works

Neuroscience research has revealed that humans possess se-
lective auditory attention, wherein target speech signals are
closely linked to neural activity in the brain. This makes
it possible to utilize EEG signals as references for target
speaker extraction. O’sullivan et al. [2015] proposed that
auditory stimuli can be decoded from neural responses (i.e.,

EEG) through a process called stimulus reconstruction [Van-
thornhout et al., 2018]. BISS [Ceolini et al., 2020] is a pio-
neering brain-assisted TSE model that jointly trains a stimu-
lus reconstruction network and a speaker extraction network
to estimate the target speech. BESD [Hosseini et al., 2021]
is the first model to directly use EEG signals as references in
this field, enabling training with a single extraction network
and reducing computational complexity. BESD employs a
speech encoder consisting of two convolutional layers. The
improved version, U-BESD [Hosseini ef al., 2022], enhances
feature extraction by introducing skip connections and a U-
shaped structure in the encoder-decoder. However, the per-
formance of these models remains limited. BASEN [Zhang
et al., 2023], building upon ConvTasNet [Luo and Mes-
garani, 20191, uses 8 layers of depthwise convolutions to bet-
ter capture speech information and incorporates an effective
multi-layer cross-attention fusion module, leading to substan-
tial performance improvements. MSFNet [Fan er al., 2024],
which employs a multi-scale parallel extraction network, ap-
plies convolutions at different scales to extract speech fea-
tures more effectively and currently holds the SOTA perfor-
mance on the Cocktail Party dataset. NeuroHeed [Pan et al.,
2024al, based on the Spex [Xu et al., 2020] architecture, in-
troduces an online self-registration auditory cue network and
is the first to consider real-time processing.

However, these networks do not account for the inherent
temporal discrepancies between EEG and speech, which lim-
its further performance improvements. Additionally, the sim-
ple convolution operations in their speech encoders result in
inadequate feature representation.

3 Model Architecture

The proposed model primarily consists of four components:
the speech encoder, EEG encoder, modal alignment module,
and speaker extractor. The system workflow is as shown in
Figure 1. The speech and EEG encoders extract feature repre-
sentations of the input signals, which are then fed into the fu-
sion module for effective information integration, while also
being passed through the alignment module for modal align-
ment. The fused features are then passed through a speaker
extractor to generate an estimated mask, which is multiplied
by the encoded speech features to obtain the masked speech.
Finally, the target speaker’s speech is decoded through a 1D
transposed convolution. Each part is described in detail be-
low.

3.1 EEG Encoder

The structure of the whole EEG encoder is shown in Figure 1.
In this paper, we use the same EEG encoder with graph con-
volutional network (GCN) [Ren et al., 2024] as in [Fan et al.,
2024]. If the EEG data are recorded with N electrodes, it can
be abstracted as a graph G = (V, E) (Here, E denotes the
set of edges, while elsewhere in the paper, it represents the
EEG data), where V is the set of |V| = N channels, and
E C V x V is the set of undirected connections between
channels.

Initially, a three-layer graph convolution operation is used
on each EEG segment to generate graph-level embedding,
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4 Speech Encoder
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Figure 1: The overall architecture of the proposed method. The colored squares in the bottom right corner explain how the contrast learning
strategy used in this paper defines query vectors and pairs of positive and negative samples. Each EEG segment is treated as a query vector;
the temporally aligned speech segment serves as the positive sample, while the other segments within the same batch are considered negative
samples. The CMCA is a convolutional multi-layer cross attention module.

and the chebyshev polynomial is used as the convolution ker-
nel of GCN to simplify the laplacian matrix computation.
Next, we normalize the data along the channel dimension us-
ing channel-wise normalization to achieve a more uniform
feature distribution. The data then sequentially pass through
a 1x1 Conv1D layer, followed by three ResBlocks, and are
finally processed by another 1x1 ConvlD layer to produce
the encoded EEG embedding vector ' € RE*NexTe  The
ResBlock consists of two convolution layers, each of them
followed by a batch normalization (BN) layer and a PReLU
activation function, with residual connections introduced af-
ter the second BN layer. Additionally, a MaxPooling layer
is included to capture more representative temporal features.
Now let R denote the input features and R the output of the
first convolution module. The ResBlock can be represented
as follows:

R = PReLU(BN(Conv1D(R,1, Nin, Nows))) (1)

Xyes = PReLU(R + BN(Convl1D(R', 1, Nout, Nows))) (2)
where V;,,, N,,,: represent the number of channels.

3.2 Speech Encoder

While most time-domain TSE models typically use the
convolution layers to extract speech embeddings, M3ANet
adopts a more comprehensive approach by first capturing
broad temporal features from the speech, followed by model-
ing long-range dependencies in each time window to extract
deeper, more intricate speech characteristics. The proposed
speech encoder, depicted in Figure 1, comprises multi-scale
encoding and GM modules [Shaker et al., 2024]. Firstly, four
Convl1D layers with different kernel sizes are applied to the
mixed speech waveforms, each followed by a ReLU activa-
tion function, respectively, mapping the number of channels
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(a) VSSSBlock (b) Scanning Directions

Figure 2: (a) VSSSBlock. The 1D-SS refers to the use of a 1D se-
lective scanning strategy, with the scanning direction of each VSSS-
Block being one of the directions shown in the right. (b) Four dif-
ferent scanning directions.

to N, to obtain richer speech information. Given mixture
X € RBXIXT \where B represents the batch size, and T is
the length of the time-domain sequence, let L; represent the
filter length at the i-th scale for i € {1,2,3,4}. The process
is described as:

X; = ReLU(ConvlD(X,1, Ny, L;)) € REXN:xT: (3

where X; denotes the encoded features at the i-th scale, and
the stride of all parallel convolutions is set to L1 /2. By defin-
ing different L;, these layers extract features at different tem-
poral resolutions, capturing both short- and long-term depen-
dencies within the speech signals.

To further extract the deeper information contained in
speech with linear complexity, N layers of GM modules are
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incorporated after multi-scale encoding for long sequence
modeling. The GM module divides the 2D input features into
four groups along the channel dimension. Each group is in-
dependently processed by a visual single selective scanning
block (VSSSBlock), which integrates a mamba block oper-
ating in a specific direction—Ileft-to-right, right-to-left, top-
to-bottom, or bottom-to-top—as illustrated in Figure 2. The
full GM module also includes a channel affinity modulation
(CAM) block and a feedforward layer.

M3ANet treats speech features at different granularities as
channel-grouped 2D data. Specifically, X; is first expanded
by adding a new dimension at the end and concatenated to
form X € RB*N:xT:x4 \hich serves as the input to the
GM block. Taking the first-layer GM block as an exam-
ple, X is then split along the last dimension to recover each
X;, which are individually processed by the corresponding
VSSSBlocks. The process can be described as follows:

X! = VSSSBlock(X;, CrossScan;) € RE*N:xTsx1 (4)

where CrossScan; represents the i-th scanning direction.
Then, X is also concatenated along the last expanded di-
mension to obtain X.. At this point, X. contains informa-
tion from four scales and feature representations from four
scanning perspectives.

Subsequently, the CAM block is used to enhance cross-
scale feature interaction by reweighting the scale information.
The structure of CAM can be represented as:

Xoam = X ® (aWs - (W1 X)) (®)]

where § and « denote the ReLU and sigmoid functions, re-
spectively, and W7, W, are the learnable weights of fully con-
nected layers. Next, Xcam is passed through a normalization
layer and a feedforward layer, and then a residual connection
is applied with the initial input X, producing the output of
the current GM module. To achieve optimal feature extrac-
tion, the GM module is repeated N times. In summary, the
speech encoder in this paper ultimately generates speech em-
beddings X € RB*NsxTax4,

3.3 Modal Alignment Module

Existing brain-assisted target speaker models focus on effi-
ciently fusing EEG and speech information, yet they over-
look the latency issue inherent in the data acquisition process,
leading to misalignment of time frames. Inspired by the con-
cept of “align before fusion” in [Li ef al., 2021], this paper
proposes a multi-modal alignment framework based on con-
trast learning between speech and EEG embeddings, utilizing
InfoNCE loss to optimize the alignment process. As shown
in the red arrows of Figure 1, the speech features X are first
reshaped to (B x N x T, x 1) and then squeezed along the
last dimension. Convolutional layers are applied to recon-
figure the channels to match the EEG features E’ in dimen-
sion. To satisfy the computation requirements of InfoNCE,
padding operation was applied to make E’ equal in temporal
dimension with the speech sequence X, and the new vector
obtained is £ € RB*NexTs and then the EEG and speech
embeddings are unified to the shape (B, N, x T%).

The strategy for constructing sample pairs is also illustrated
in Figure 1. For the input EEG sequence {ej,es,...,e,}
and speech sequence {x1, x2, ..., T, }, where n represents the
batch size here, each EEG segment e; is treated as a query
vector g;. The corresponding speech frame x; in the time se-
ries is considered the positive sample, and both of them form
a positive sample pair (¢;,z;7). Meanwhile, other speech
frames x;(j # ) from the same mini-batch are treated as
negative samples, resulting in n — 1 negative sample pairs
(i, z; ). To reduce time-level modality inconsistencies and
achieve contrastive learning, we use the InfoNCE loss func-
tion for optimization, aiming to maximize the similarity be-
tween positive samples and minimize the similarity between
negative samples. For each sample pair (qi,a:;r), the In-
foNCE function is defined as:

exp(sim(q;, ) /)
Son_y exp(sim(gi, z)/T)
where x; represents speech segments in the current batch,
sim(:, -) represents the cosine similarity calculation between
two samples, and 7 is the temperature coefficient, set to 0.1.

Based on this contrastive learning strategy, the modal
alignment module minimizes the distance between the EEG
and the corresponding speech during training, achieving
alignment between the two on a temporal frame level. This
kind of cross-modal temporal alignment not only captures ad-
ditional contextual information to enhance temporal consis-
tency but also generates optimized multi-modal representa-
tions for downstream extraction tasks [Hu et al., 2023].

(6)

LinfoNcE = — log

3.4 Speaker Extractor

The speaker extractor network, which serves as the core of
the system, estimates a mask to extract the target speaker’s
speech. To leverage cross-modal information, speech and
EEG embeddings are fused prior to mask estimation. The
proposed extractor comprises a modality fusion module im-
plemented using convolutional multi-layer cross attention
(CMCA) [Zhang et al., 2023], and four layers of dual-path
recurrent neural networks (DPRNN) [Luo et al., 2020].

CMCA is an efficient information fusion method. In
this module, EEG and speech features are processed sep-
arately through information processing flows that include
cross-attention, residual connection, and group normaliza-
tion, enabling bidirectional feature coupling. CMCA em-
ploys a three-layer structure, where the output vector of the
last layer is concatenated with the input vector of the first
layer and processed with a 1D convolution to obtain the fused
feature Y € RB>*NexTs,

DPRNN, as a classical speech separation network, per-
forms chunking processing on Y with each chunk having a
length of L and a 50% overlap, applying RNN operations
in both intra-chunks and inter-chunks. Compared to CNNss,
RNNs are more suitable for processing sequential data, as
their recurrent structure effectively captures temporal depen-
dencies. After processing through four layers of DPRNN, the
network outputs the target speech mask M € RE*NsxTs,
which is element-wise multiplied with the encoded speech
X.,, to obtain the masked speech S. X,, € RBXNexT: jg
obtained by concatenating the multi scale features X; along
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the channel dimension, followed by a convolution with N,
output channels. The process is as follows:

S = Xen ® M € REXN-XT: (7
Finally, the one-dimensional transposed convolution within
the speech decoder reconstructs the estimated target speech §
from S.

3.5 Objective Functions

The objective function used in this study consists of two com-
ponents: the SI-SDR loss function and the InfoNCE loss
function. The SI-SDR loss is commonly employed in speech
processing tasks and is defined as follows:

|55
Lsi-son(s,9) = ~10logjo 10 L qg)
&= s

where s represents the ground truth speech and § repre-
sents the predicted target speaker speech extracted from the
M3ANet. We combine the Lsi_spr and the contrastive
learning loss L, foncE to form the overall objective func-
tion, defined as follows:

Liotal = Ls1-SDR + AMInfoNCE (&)
where ) is the weighting factor and the value has been deter-
mined by experiment to be 3.

4 Experimental Setup

4.1 Datasets

Cocktail Party. For this dataset [Broderick ez al., 2018], 33
subjects (aged 23-38 years) perform 30 trials, each lasting 60
seconds. During each trial, they listen to two classic works of
fiction: one in the left ear and the other in the right ear. The
subjects are divided into two groups, each instructed to focus
on either the left or right ear. EEG data are recorded with
128 channels (plus two mastoid channels) at a rate of 512 Hz.
For each subject, five trials are randomly selected as the test
set, two for validation, and the remaining trials are used for
training.

AVED. The audio-video EEG dataset (AVED) [ZHANG et
al., 2024] includes EEG signals and corresponding speech
from 20 normal-hearing students (14 males, 6 females) in a
cocktail party scenario. Each completes 16 trials, and each
trial lasts 152 seconds. EEG signals are recorded with 32
electrodes at a 1k Hz sampling rate. As in [Fan er al., 2024],
the speaker-specific setting is applied to the AVED, analyzing
only the trials where subjects focus on the left ear. For each
subject, one trial is randomly selected as the test set, one as
the validation set, and the remaining chosen trials are used for
training.

MM-AAD. This dataset is a multi-modal AAD dataset [Fan
et al., 2025b], consisting of EEG recordings from 50 normal-
hearing subjects (34 males, 16 females). Each subject com-
pletes approximately 165 seconds of 20 trials. EEG data are
captured from 32 channels at a 2048 Hz sampling rate. The
attention direction used in AVED is also selected for MM-
AAD. Similarly, for each subject, two trials are randomly se-
lected as the test set, one as the validation set, and the remain-
ing trials are used for training.

4.2 Data Processing

Raw EEG signals often contain a lot of noise, requiring pre-
processing before they can be used. For the Cocktail Party
dataset, EEG signals are downsampled to 128 Hz, filtered be-
tween 0.1-45 Hz, and re-referenced to the mastoid average.
Independent component analysis (ICA) is then applied to re-
move artifacts from blinks and muscle movements. For the
AVED and MM-AAD datasets, we apply a notch filter to re-
move 50 Hz frequency interference, followed by band-pass
filtering (1-50 Hz) and downsampling the EEG signals to 128
Hz. ICA is used to separate mixed signal components and
remove interference. Finally, EEG signals are re-referenced
using a whole-brain average reference.

For all three datasets, the audio stimuli are downsampled
to 14.7 kHz. EEG and speech signals are cut into 2-second
segments for training and validation sets, while testing seg-
ments are 20 seconds long. No overlap occurs between data
in different sets or segments.

4.3 Training Details

In the training process, the model was trained for 60 epochs
using the Adam optimizer with a weight decay of 1 x 1073
and momentum of 0.9. The learning rate scheduler used in
this study combines a linear warm-up phase (with a warm-up
ratio of 5%) followed by a cosine decay phase. The learning
rates are tailored for each dataset to suit them better. Specif-
ically, the initial learning rate is set to 6e~* for the Cocktail
Party dataset, 2e 2 for AVED and 3e~2 for MM-AAD. The
batch size was set to 8, and all experiments were accelerated
by a single NVIDIA GeForce RTX 4090 GPU.

For our network, we set the speech feature dimension N
to 128 and EEG feature dimension NN, to 64. The speech
encoder uses filter lengths of 2.5ms, 5Sms, 10ms, and 20ms
(L1 to Ly4). In the DPRNN, the size L of each block is set to
250.

4.4 Evaluation Metrics

We focus on using five objective evaluation metrics to mea-
sure the quality of predicted speech. The source to distortion
ratio (SDR) [Le Roux et al., 2019] and scale-invariant source
to distortion ratio (SI-SDR) measure the quality of a signal,
with SI-SDR being more robust to scaling differences. Short-
time objective intelligibility (STOI) and extended short-time
objective intelligibility (ESTOI) [Taal et al., 2011] assess
speech intelligibility, with ESTOI offering more accurate pre-
dictions by considering nonlinear hearing properties, with
values ranging from O to 1. Perceptual evaluation of speech
quality (PESQ) [Rix et al., 2001] compares the loudness spec-
tra of desired and separated speech signals to evaluate speech
quality. The PESQ scores range from [—0.5, 4.5]. These met-
rics are widely used in speech applications due to their ob-
jective nature and ability to accurately reflect signal quality,
intelligibility, and perceptual performance. Higher values are
better for all metrics. Among them, SDR and SI-SDR are
measured in dB, while the other metrics are unitless.
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Datasets Methods SDR(dB) SI-SDR(dB) STOI ESTOI PESQ
Mixture 0.45 74.00% 55.00% 1.61

BESD [Hosseini et al., 2021] 5.75 79.00% - 1.79

UBESD [Hosseini et al., 2022] 8.54 83.00% - 1.97

Cocktail Party BASEN [Zhang er al., 2023] - 12.23 86.00% - 2.24
NeuroHeed* [Pan et al., 2024al -0.09 -0.11 71.48% 54.79% 1.45

MSENet [Fan et al., 2024] 13.03 12.89 88.00% 77.00% 2.51

M3ANet (ours) 14.11 13.95 89.23% 78.36 % 2.58

Mixture 1.54 1.52 75.83% 60.57% 1.50

UBESD [Hosseini et al., 2022] 7.89 85.00% 72.00% 1.75

AVED BASEN [Zhang et al., 2023] 8.46 86.00% 75.00% 1.91
NeuroHeed* [Pan et al., 2024al 8.61 88.11% 77.81% 1.82

MSFNet [Fan et al., 2024] 9.84 9.65 89.00% 79.00% 2.07

M3ANet (ours) 11.14 10.89 90.60 % 82.06% 2.21

Mixture 2.14 2.12 79.67% 64.10% 1.54

BESD* [Hosseini et al., 2021] 6.46 5.44 83.94% 66.09% 1.68

UBESD* [Hosseini et al., 2022] 6.60 6.29 84.32% 69.59% 1.66

MM-AAD BASEN* [Zhang ef al., 2023] 8.22 8.04 87.72% 74.45% 2.01
NeuroHeed* [Pan er al., 2024al 8.42 8.26 89.10% 78.10% 2.18

MSFENet* [Fan et al., 2024] 9.69 9.57 90.19% 78.71% 2.18

M3ANet (ours) 10.71 10.57 91.68% 82.31% 2.33

Table 1: Comparison with other mainstream models on Cocktail Party, AVED, MM-AAD. The experimental results marked with an asterisk
(*) were reproduced using the authors’ publicly available code. Here, NeuroHeed operates in a non-causal setting. For the Cocktail Party
dataset, the other experimental results are obtained from their respective papers. In contrast, the results on the AVED dataset are derived from

[Fan et al., 2024].

5 Results

5.1 Comparison with Baseline Methods

We compare M3ANet with current brain-assisted tar-
get speaker extraction models, including BESD, UBESD,
BASEN, NeuroHeed, and MSFNet. The experimental results
on three datasets, presented as the median of all test segments
from the subjects, are summarized in Table 1. As shown,
our M3ANet outperforms all other models across all three
datasets.

On the Cocktail Party dataset, M3ANet outperforms the
current SOTA model, MSFNet, with significant improve-
ments across all metrics. Specifically, M3ANet achieves im-
provements of 1.08 dB in SDR, 1.06 dB in SI-SDR, 1.23% in
STOI, 1.36% in ESTOI, and 0.07 in PESQ. Moreover, with
an SDR of 14.11 dB and an SI-SDR of 13.95 dB, the results
demonstrate that our proposed model achieves competitive
performance in speaker extraction.

On the AVED dataset, M3ANet also shows notable im-
provements over MSFNet. It achieves 1.3 dB in SDR, 1.24
dB in SI-SDR, 1.6% in STOI, 3.06% in ESTOI, and 0.14 in
PESQ improvements. Notably, the significant improvements
in SDR and SI-SDR highlight M3ANet’s effectiveness in en-
hancing speech quality and reducing distortion. Similarly, on
the MM-AAD dataset, M3ANet delivers impressive perfor-
mance, surpassing the current best performance by 1.02 dB in
SDR, 1 dB in SI-SDR, 1.49% in STOI, 3.6% in ESTOI, and
0.15 in PESQ, which further demonstrates the outstanding
generalizability and efficiency of the proposed model. The
notable ESTOI gains on both datasets indicate that M3 ANet
also effectively improves speech intelligibility.

Additionally, we present the combined boxplot and half-

violin plot for the extracted speech segments from BASEN,
MSFNet, and M3ANet models on the Cocktail Party dataset,
as shown in Figure 3. The experimental results of all models
are obtained from our own reproductions. The SI-SDR results
of BASEN are widely distributed, accompanied by high vari-
ance and many low or even negative values, suggesting un-
stable performance and weak generalization. MSFNet shows
more stability, with a narrower distribution and fewer outliers.
In contrast, M3ANet outperforms both BASEN and MSFNet,
with a concentrated distribution around its high median value
of 13.95 dB and almost no outliers, highlighting its superior
and stable performance.

These results underscore the importance of maintaining
temporal consistency between EEG and speech signals, while
also highlighting the significance of fully extracting features
from mixed speech. Furthermore, the results highlight the
model’s potential for real-world applications in brain-assisted
speech extraction, offering a promising solution to the chal-
lenges posed by multi-modal data integration.

5.2 Ablation Study

To investigate the effectiveness of the GM layer and modal
alignment module, we conducted ablation experiments on all
three datasets, with the results shown in Table 2. We primarily
present three key speech quality evaluation metrics: SDR, SI-
SDR and STOL.

Effectiveness with GM Block. In the w/o GM model, we
removed the GM module from the speech encoder but still
used the four-scale Conv1D for initial feature extraction. To
be consistent with the structure of the proposed model, we use
a simple addition operation to fuse features of different gran-



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Datasets Methods SDR(dB) SI-SDR(dB) STOI Layers SDR(dB) SI-SDR(dB) STOI = ESTOI PESQ
M3ANet (ours)  14.11 13.95 89.23% 1 13.25 13.08 87.96% 75.08% 2.48
Cocktail Party w/o GM 13.95 13.80 88.94% 2 14.11 13.95 89.23% 78.36% 2.58
w/o Alignment  13.78 13.63 88.87% 3 13.97 13.83 8891% 7842% 2.61
M3ANet (ours) 1114 10.89  90.60% N\ o et e, i g
AVED w/o GM 10.17 9.96 88.93% ’ ’ ’ ’ :
w/o Alignment  10.25 10.04 88.88%
Table 3: Impact of the number of layers of GM on overall perfor-
M3ANet (ours)  10.71 10.57 91.68 % mance. Experiments are conducted on the Cocktail Party dataset.
MM-AAD w/o GM 10.04 9.87 90.25%
w/o Alignment  10.12 9.99 91.43%

Table 2: Ablation study on three dataset. w/o GM stands for remov-
ing the GM block from the speech encoder and retaining only the
multi-scale encoding structure. w/o Alignment means removing the
modal alignment module between EEG and speech embeddings.

2
2
£ 54
a
CII}
7]
0-
I QR (Q3-Q1)
T Range within=£ 1.5IQR
-5 — Median Line

MS/I\Net MS]I’Net BA;EN

Figure 3: Combined boxplot and half-violin plot comparison of SI-
SDR (dB) performance across different models. The colored circles
represent the SI-SDR values for each test speech segment. The right
half-violin plot indicates the density and distribution of the data,
where a wider area indicates a higher concentration of data points.
The left boxplot includes the median line, interquartile range (IQR),
and whiskers, which represent the range within £ 1.5 IQR. Values
outside this range are considered outliers.

ularities and input them into the speaker extractor. The ex-
perimental results demonstrate that removing the GM module
led to a decrease in SDR, SI-SDR, and STOI across all three
datasets, especially in the AVED and MM-AAD datasets,
where SDR values decreased by 0.97 dB and 0.67 dB, SI-
SDR values dropped by 0.93 dB and 0.7 dB, and STOI de-
clined by 1.67% and 1.43%, respectively. These findings not
only highlight the critical role of the GM module in main-
taining model performance but also demonstrate its profound
capability to extract latent speech features in depth. Thanks
to the powerful long sequence modeling capability of the
mamba module, the GM module can extract the speech em-
beddings more adequately and efficiently. Meanwhile, the
CAM structure within the GM module acilitates information
interaction across temporal scales, thereby enhancing both
separation performance and speech extraction quality.

Effectiveness with Alignment Module. To explore the im-
pact of the modal alignment module on overall performance,

we removed it between EEG and speech embeddings, while
keeping the rest of the model architecture consistent with
M3ANet. Compared to the final results, removing the align-
ment module led to a decrease in all performance metrics.
On the three datasets, the SDR values dropped by 0.33 dB,
0.89 dB, and 0.59 dB, respectively, and the SI-SDR values
decreased by 0.32 dB, 0.85 dB, and 0.58 dB. Moreover, the
STOI scores show varying degrees of degradation across dif-
ferent datasets. These results highlight the critical role of the
alignment module in enhancing model performance for tar-
get speaker extraction. The performance degradation without
this module can be attributed to the lack of feature alignment
between the EEG and speech modalities. By optimizing the
InfoNCE loss, the module effectively reduces the distance be-
tween positive pairs and aligns features at corresponding time
steps across modalities, thereby improving separation qual-
ity through more accurate temporal correspondence between
EEG and speech signals.

5.3 Impact of GM Layers on Model Performance

Additionally, we investigated the impact of the number of
GM layers on overall performance. As shown in Table 3,
we explored the model results with 1 to 5 GM layers. The
results indicate that the model with 2 layers of GM achieved
the best performance across SDR, SI-SDR, and STOI. As the
number of GM layers increased, the overall performance of
the model deteriorated. This experiment demonstrates that
the GM module is a simple and efficient feature extraction
method, which can significantly improve model performance
with only a small increase in model complexity while main-
taining good training efficiency and generalization ability.

6 Conclusion

This paper proposes a novel time-domain, multi-scale and
multi-modal alignment network for brain-assisted target
speaker extraction. To align EEG and speech temporally,
we introduce a modal alignment module based on contrastive
learning, which reduces temporal discrepancies between the
two embeddings. Additionally, to fully capture speech fea-
tures, we employ multi-scale encoding to extract broad tem-
poral features and use GM modules to extract more detailed
and deeper speech information. Experimental results on three
datasets demonstrate that the proposed model achieves state-
of-the-art performance and strong generalization capabilities.
In future work, we will explore advanced contrastive learning
strategies and more efficient feature fusion techniques to fur-
ther enhance the alignment and complementarity between the
two modalities.
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